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Abstract: In this paper we present a modified neural network architecture and an algorithm 

that enables neural networks to learn vectors in accordance to user designed sequences or 
graph structures. This enables us to use the modified network algorithm to identify, generate 

or complete specified patterns that are learned in the training phase. The algorithm is based 
on the idea that neural networks in the human neurocortex represent a distributed memory of 

sequences that are stored in invariant hierarchical form with associative access. The 

algorithm was tested on our custom built simulator that supports the usage of our ADT 
neural network with standard backpropagation and our custom built training algorithms, 

and it proved to be useful and successful in modelling graphs. 

Keywords: Neural networks, MLP training algorithms, neural network ADT, neural 

network graph modelling. 

1.  INTRODUCTION 

In this paper we present a modified neural network architecture and an algorithm 

that enables neural networks to learn vectors in accordance to user designed 

sequences. This enables us to use the modified network algorithm to identify, 

generate or complete specified patterns that are learned in the training phase. The 

algorithm is based on the idea that neural networks in the human neurocortex 

represent a distributed memory of sequences that are stored in invariant hierarchical 

form with associative access. (See [4]) The algorithm was tested on our custom 

built simulator that supports the usage of our ADT neural network with standard 

backpropagation and our custom built training algorithms. 

  

2.  PREVIOUS RESEARCH IN THIS FIELD 

Similar works that can employ some sort of temporal processing are Elman and 

Jordan networks (see [5] page 528) which employ feedback loops from the hidden to 

input layer and Time delayed neural network (TDNN) (see [5] page 479). Both 

present a method that employs modifications to the original algorithm’s inner 

functioning and cannot represent dispersed time patterns, while this modification 
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can be utilized on the original algorithm without changing of the algorithms internal 

functioning. Also our modifications to the original algorithm can be extended to a 

number of architectures and training algorithms, because they represent a concept of 

transfering information in the neural network. Also our algorithm can model graphs 

with vertices and edges so it has a broad use. 

3.  MODIFICATIONS TO THE FEEDFORWARD NEURAL 

     NETWORK ARCHITECTURE 

Each neural network has the ability to transform an input vector to an output 

vector by means of the weights and biases that the network contains. Those weights 

and biases represent the networks information processing memory. We define that 

transformation ability that can organize output vectors as a set that contains certain 

vectors (edges) and nodes. The output vector organization can be represented as a 

mathematical graph. Nodes of the vector only represent a certain state that a neural 

net can be in, in which only the vectors from that state are available.  A vector is 

defined as a set of data that represents the input or output of the neural net. Input 

vectors are marked as: [ 1 2 3 nx ,x ,x ,...,x ] and output vectors are marked as: 

[ 1 2 3 ny , y , y ,..., y ].  

A node is defined as a point in the graph in which all vectors that are assigned to 

that node have a unique representative part that can be used in the feedback loop of 

the neural net. Some vectors point to the same node in the graph, while some vectors 

can be modelled so that the can shift the current node the neural net uses. Nodes are 

marked as “Nn:” where the lowercase “n” represents the numerical designation of 

the node.  

Also, we define a specific architecture and a principle of neural net training 

which is based on modifications to the feedforward algorithm that enables the usage 

of feedback loops where the user uses only the relevant part of the neurons that 

represent input neurons which can also be feedback neurons or stand-alone input 

neurons like neuron #3 as represented on figure 1.  The feedback loop connects 

output layer neurons with their input counterparts with or without usage of special 

trigger neurons (designated T) that are used for additional modelling or preparation 

of the combined input vector. By that, we add information into the input and output 

vectors of our neural net in the training phase, so we can organize vectors into 

sequential, parallel or combined patterns. In accordance to that, the network has a 

temporal effect: current output of the network is affected by previous vectors that 

were computed. 

Every vector has the ability to transpose the network into another node in which 

for the same inputs the net gives out different outputs that are defined by our 

network training because the part of the information about the output is transmitted 

to the input in the next feedforward phase. Our algorithm was tested on a three 

layered neural network with backpropagation training with usage of linear 

momentum and jitter. (See [2],[7] and [8]) 
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To employ the organization of neural net memory into sequences, each input and 

corresponding output vector used in training or running the network must have a 

specific number of neurons devoted for usage in the feedback loop. Those neurons 

can be stand-alone neurons that are only used for the feedback loop like the neurons 

1 and 2 on figure 1, or if we have a set of unique inputs with unique outputs we can 

use the input neurons normally and also use them in the feedback loop. As an 

example of organization of input vectors from figure 1, we can derive expression 1, 

where we see that if we want a transition from node 1 to node 2 that y1, y2 that are 

the outputs of the neural net in feedforward phase “t” must be transferred to x1, x2

which are the input neurons in the beginning of the next feedforward phase “t+1” 

1 1 2 2 1 2 1[ ] [ ]t tN : y , y N : x ,x +
(1) 

Following that, we can define any number of neurons that will be used for the 

feedback loop, where each output vector defines which input vectors can be selected 

in the next feedforward phase. If we use a greater number of neurons for the 

feedback loop, we can create more nodes. We can represent the memory 

organization of vectors and nodes with a memory organization graph. For example 

we can create the graph for network from figure 1, with 2 nodes and 5 vectors. 

Figure 2. Example memory organization graph 
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Figure 1. Modified neural network architecture 
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From figure 2 we can see that the user generated graph of memory organization 

has 2 nodes, N1 and N2. Node 1 has a vector V5 that is only used in that node and a 

transition vector V1. Also, N1 is the starting node and is marked with double 

outlined circle. Node 2 has two vectors that are only accessible from that node, V2 

and V3 and has a transition vector V4. As previously noted, we can generate as 

many nodes or vectors as we want as long as there are enough weights and biases to 

represent them since the information about transformation of the input is contained 

in the weights and biases of the network. To evaluate the memory capacity of any 

multilayered MLP network, we created expression 2. This gives us the exact number 

of weights and biases in the whole network. 

1

1

1 2

i i j

i j

( w b ) ( NPL NPL ) ( NPL )
λ λ−

+

= =

∧ = ⋅ + (2) 

In expression 2 the Greek sign lambda represents the number of layers of the 

network and NPLi stands for “neurons per layer” the number of neurons in a 

network layer. The first part of the expression before the summation sign is 

connected to the number of weights while the second part of the expression is 

connected to the number of biases. Also when modelling the feedback loop data, we 

need to note that the neurons of the feedback loop will most easily convert the input 

values that are the asymptotical values of their activation functions. Additional 

improvements to the feedback loop can be made by usage of a layer of trigger 

neurons on the feedback loop that utilise certain rules based on value of the input 

that they receive. Most effective solutions are based on binary or bipolar triggers 

that convert the input to the desired output based on a certain tolerance ratio like 5% 

or 10% deviation from the desired value, using these neurons we can avoid certain 

situations that put our network in an unidentified node or an unstable state. It is 

advised to use such neurons if we use a larger number of nodes. Also, any discrete 

value with enough distance from another identifier can be used for the feedback 

loop.  Activation function of such neuron can be easily represented by the source 

code 

double binary_trigger(double input) 
{ 
if(input>0.5)  
return 1; 
else 
return 0; 
} 

4.  CREATION OF GRAPHED VECTORS FOR 

     BACKPROPAGATION LEARNING 

Each vector that wants to be used in this architecture must be composed of two 

parts, the data part and the feedback part. Each output vector must have a unique 

identifier in its feedback part about the node that follows from that vector. As an 

example, we can take the memory organization graph from figure 2. For the neural 

network from figure 1, Neurons 1 and 2 are used in the feedback loop and create the 
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feedback part, while neuron 3 creates the data part of the vector. Output vectors have 

4 neurons. 1 and 2 which create the feedback part and 3 and 4 which create the data 

part.  

Node 1 will use the designation (0,0) so the input vector for node 1 looks like:  

),0,0( Γ   

Node 2 will use the designation (0,1) and it’s input vector is: 

),1,0( Γ , where Γ represents any input value. 

And from that, given for some input or output data, we can create the set of 

training vectors that look like: 
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If we want to use another approach, we can use graph structures that today 

present a method for visualization and understanding a wide variety of problems. 

The most common and standard way to mathematically describe graphs is with use 

of adjacency matrixes. The problem is to transfer the graph matrix into a set of input 

output vector combinations. For a proof of concept the following example for a 

graph with 4 nodes and 10 vectors is given: 

Table 1. Graph adjacency matrix 

 N1 N2 N3 N4 

N1 V1 V10 V5  

N2  V2,V3  V11

N3 V7    

N4 V8  V9 V4
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Figure 3. Graph for matrix in table 1 

From Table 1 we created the graph in figure 3. Conversion to the input and 

output pairs will be given with some assumptions: Each of the node designators 

(Nn) where the “n” numerical designation of the node, will be treated as generated 

binary set, as we said in chapter 3 of this paper. In this case, for example this would 

be (N1: 00, N2: 01, N3: 10, N4:11). Each of the vectors is shown as “Vn” where 

each vector would state an input / output combination pair for the neural network. 

The conversion is simple, because the adjacency matrix in reality shows that each 

row specifies the start node, and each column designates and end node connection. 

An example conversion is done in table 2. 

Table 2. Input / Output vector combinations created from Table 1. 

# Input vector Output Vector

1 N1,V1 N1,V1

2  N1,V10 N2,V10

3 N1,V5 N3,V5

4 N2,V2 N2,V2

5 N2,V3 N2,V3

6  N2,V11 N4,V11

7 N3,V7 N1,V7

8 N4,V8 N1,V8

9 N4,V9 N3,V9

10 N4,V4 N4,V4

From this table we can see that conversions from matrix to vector set form are 

simple for manual or automatic conversion and that they can be easily automated 

with a simple program. 

If we want to use the algorithm on our created vector set, we need to transfer the 

output feedback loop data to the input feedback loop data, transfer the input data 

part and then initiate the feedforward sequence. This can be described with the 

source code: 

N1 N2 

N3 N4 
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void Feedback_Forward(){ 

input_vector[0] = network_layer[1].neuron[0].output; 
input_vector[1] = network_layer[1].neuron[1].output; 
// the feedback loops are defined here,here, we see the example for 2 loops, while we can add any number of 
loops. 

for(a = 0; a < architecture[1]; a++) 
network_layer[0].neuron[a].output =0; // Clean up the outputs of hidden layer neurons 
for(a = 0; a < architecture[2]; a++) 
network_layer[1].neuron[a].output =0; 

for(a = 0; a < architecture[1]; a++) 
{ 
network_layer[0].neuron[a].output += network_layer[0].neuron[a].bias;  // Hidden layer FeedForward
for(b = 0; b < architecture[0]; b++) 
{ 
network_layer[0].neuron[a].output += network_layer[0].neuron[a].weight[b] * input_vector[b]; 
} 
network_layer[0].neuron[a].output = sig(network_layer[0].neuron[a].output, prim_slope_type); 
} 
for(a = 0; a< architecture[2]; a++) 
{ 
for(b = 0; b< architecture[1]; b++) 
{ 
network_layer[1].neuron[a].output += network_layer[1].neuron[a].weight[b] * network_layer[0].neuron[b].output; 
} 
network_layer[1].neuron[a].output += network_layer[1].neuron[a].bias; 
network_layer[1].neuron[a].output = sig(network_layer[1].neuron[a].output , sec_slope_type); // Output layer 
feedforward
} 
} // End of function Feedback_Forward

As we can see from the code, the original algorithm is intact, all changes and 

modifications can be created as an additional phase that is executed prior the 

feedforward phase. Also, we call the function sig(x,y) in our code, which returns the 

value of the sigmoid function of that neuron in a specific layer. 

After training, our network is in the last node that the training sequence initiated 

with its feedback_forward function. We must set the initial node of the network with 

the function starting_node that will put the starting node in the input vectors 

feedback part. We can modify the function to accommodate a larger set by simply 

adding more elements for the feedback loop and more hidden neurons. Here the 

starting nodes designation in the feedback part of the vector is (0,0) 

void starting_node() 
{ 
network_layer[1].neuron[0].output = 0;  // Set the feedback part of the vector to (0,0,.....
network_layer[1].neuron[1].output = 0; 
} 
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5.  VERIFICATION OF ALGORITHM AND ARCHITECTURE / 

     SIMULATIONS AND RESULTS 

We verified our algorithm on several sets in our NN-SIM2 simulator for 

validation and as a proof of concept. As an example we will take a memory 

organization graph composed of 10 nodes with 30 vectors. The graph's organization 

and dataset is shown on figure 4. 

Figure 4. Dataset and graph for proof of concept

The network's training architectures are shown on table in figure 3, also each 

training architecture was tested with a variety of learning rates, momentum’s and 

jitter factors. Validation neurons were also used, and their usefulness was tested. 

Table 3.  Architecture test data. 

Input 

Feedback 

Input 

Data 

Hidden 

neurons 

Output 

Feedback 

Output 

Data 

4 Neurons 2 Neurons 10 4 Neurons 2 Neurons 

4 Neurons 2 Neurons 13 4 Neurons 2 Neurons 

4 Neurons 2 Neurons 14 4 Neurons 2 Neurons 

4 Neurons 2 Neurons 20 4 Neurons 2 Neurons 

4 Neurons 2 Neurons 30 4 Neurons 2 Neurons 

4 Neurons 2 Neurons 60 4 Neurons 2 Neurons 

1

2

3

8

10

7

4

5

6

9

Node FEEDBACK DATA FEEDBACK DATA

1 1 1 1 0.3 0.9 0 0 0 1 0.1 0.6

1 1 1 1 1 0.7 0.1 1 0 0 0 0.2 0.7

1 1 1 1 0.4 0.5 1 0 0 1 0.6 0.2

0 0 0 1 0.3 0.9 0 0 1 0 0.3 0.6

2 0 0 0 1 0.7 0.1 1 1 1 1 0 0

0 0 0 1 0.4 0.5 0 0 0 1 0.2 0.1

0 0 1 0 0.3 0.9 0 0 1 1 0 0

3 0 0 1 0 0.7 0.1 0 0 0 1 0.2 0.7

0 0 1 0 0.4 0.5 0 1 1 0 0.2 0.1

0 0 1 1 0.3 0.9 0 1 0 0 0.2 0.7

4 0 0 1 1 0.7 0.1 0 0 1 0 0.2 0.5

0 0 1 1 0.4 0.5 0 0 1 1 0.1 0.1

0 1 0 0 0.3 0.9 0 1 0 1 0.7 0.3

5 0 1 0 0 0.7 0.1 0 0 1 1 0.9 0.6

0 1 0 0 0.4 0.5 0 1 0 0 0.8 0.2

0 1 0 1 0.3 0.9 0 1 1 0 0 0

6 0 1 0 1 0.7 0.1 1 0 0 1 0.2 0.6

0 1 0 1 0.4 0.5 1 0 0 0 0.3 0.5

0 1 1 0 0.3 0.9 0 1 1 1 0.5 0.3

7 0 1 1 0 0.7 0.1 1 0 0 1 0.3 0.6

0 1 1 0 0.4 0.5 0 1 1 0 0 0

0 1 1 1 0.3 0.9 1 0 0 0 0.2 0.6

8 0 1 1 1 0.7 0.1 0 1 1 0 0.2 0.7

0 1 1 1 0.4 0.5 1 0 0 1 0.4 0.7

1 0 0 0 0.3 0.9 1 0 0 1 0.3 0.5

9 1 0 0 0 0.7 0.1 0 1 1 1 0.3 0.6

1 0 0 0 0.4 0.5 1 0 0 1 0.1 0.5

1 0 0 1 0.3 0.9 1 1 1 1 0.3 0.4

10 1 0 0 1 0.7 0.1 0 1 0 0 0.6 0.8

1 0 0 1 0.4 0.5 0 0 0 1 0.6 0.9
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 5.1 SIMULATION RESULTS 

Each simulation was executed in iterations of 1000 to 50000 iterations with MSE 

measurements after each 1000th iteration. The architecture and algorithm proved to 

complete and gave correct outputs on all sufficient sets. We will show the MSE 

measurements for only 2 sets that are the most interesting. The minimal architecture 

is 14 neurons, which can be seen from the unique output set vectors. The line on the 

graph symbolizes the MSE. 

Figure 5.  MSE outputs, left: 14 hidden neurons; right: 30 hidden neurons 

As we can see, the smallest deviation is achieved with the 30 hidden neurons 

(right side of Figure 5). This is logical because each hidden neuron is allocated to 

one vector the network has to learn. The network with 14 hidden neurons is a 

minimal solution because 13 unique vectors that are represented in the entire 

network while there are some vectors that are doubled, but are not represented in the 

same state. Also, the network with 30 hidden neurons converges to a global 

minimum faster. 

Also if we don’t use any trigger neurons on the feedback loop, we noticed that by 

sequential execution of some vectors like vector 3 in node 2 and any other local loop 

vectors on the graph that by adding a slight error or a small jitter impulse like 

maximum of 20% noise to the input, the network will slightly deviate from it’s 

learned output and after some iterations, it will return to it’s original, learned state. 

This is shown on figure 6, as a deviation that continues on 3 iterations of the 

algorithm. 
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Figure 6. Output deviation and recovery based on single addition of noise 

5.2. GENERATION OR CONTINUANCE OF SEQUENCES WITH THE network 

 Our neural network can be used to generate or continue sequences. In that order, 

the feedback loop works as a trigger in which the whole network continues to the 

next node by the automatic change in the input vectors feedback part. For example: 

data part from figure 3 has only 3 unique inputs:  (0.3, 0.9), (0.7, 0.1) and (0.4, 0.5) 

if we set the data part to any of those vectors, and sequentially execute our 

algorithm, the network will traverse the graph’s nodes based on the same value data 

inputs.  

5.3. ALGORITHM BENCHMARKING AND CONCLUSION OF TEST RESULTS 

As we tested and implemented our algorithm with mixed datasets, of one which 

is showed above, we found out that the algorithm gives us the ability to model ADT 

Graphs, and that it doesn’t slow down or disrupt the classic backpropagation or any 

of its modified variants. Standard benchmarking datasets cannot be used because the 

algorithm appends additional neurons for its feedback loop (as we can see from our 

research), and actually only changes the way that the vectors are presented and 

transferred to the neural network and since there are no networks that use this 

principle, this is the reason why we used our datasets. The only difference is that our 

network needs to use additional hidden neurons to “store” the processing 

information because of the added data, and some modifications to the architecture 

and algorithms, we can conclude that this method doesn’t disrupt the original 

backpropagation, and gives us additional possibilities stated in this paper. 

6. CONCLUSION AND FUTURE RESEARCH

The feedback loop architecture can be used in areas that require memory 

organization abilities with all the features and benefits of neural networks. The 

benefits of organizing the output patterns into graphs are valued in some fields that 

can employ this architecture in areas that require sequential or mixed pattern 

recognition, pattern completion and dynamic control. Such systems require some art 
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of output generation based on previous inputs. We will try to implement this 

network and some other data evaluation and extraction principles in an “adaptive 

expert system” that will use a neural network as part of our hybrid main data 

evaluation part and will function as an expert system shell. 

The problem with adding the feedback part of the vector in large sets can be 

easily suppressed by temporally grouping the training input-output vector pairs into 

sets for pre-processing. First the pairs are grouped in which all output vector point to 

a certain node. Each of these sets gets a unique identifier which is the output vector 

feedback part. Next, the vector pairs are grouped in sets in which the same input 

vectors are representatives of their nodes, and they get their unique identifiers. This 

can be easily implemented into a script for pre-processing of training data sets. 

Future research on this network will be based on automated learning method that 

will employ an ADT that can represent the memory organization graph in any form 

that will be a compact and effective way for training representation. Because of the 

simplicity of this algorithm and modifications to the architecture, we can modify any 

program or implementation to utilise the feedback loop architecture. Also, future 

works will include attempted modifications on other algorithms (See: [3] and [2]) 

that are not strictly backpropagation based. 
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