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Abstract
Using of category theory in computer science has extremely grown in the last decade. Categories

allow us to express mathematical structures in unified way. Algebras are used for constructing

basic structures used in computer programs. A program can be considered as an element of the

initial algebra arising from the used programming language. In our contribution we formulate

two ways of expressing algebras in categories. We also construct the codomain functor from the

arrow category of algebras into the base category of sets which objects are also the carrier-sets of

the algebras. This functor expresses the relation between algebras and carrier-sets.
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1. Introduction

Knowing and proving of the expected behavior of complex program systems is very important and

actual rôle. It carries the time and cost savings: in mathematics [8] or in practical applications of

economical character. The aim of programming is to construct such correct programs and program

systems that during their execution provide expected behavior [7]. A program can be considered

as an element of the initial algebra arising from the used programming language [14]. Algebraic

structures and number systems are widely used in computer science. They allow to abstract from

concrete objects which lead to the mathematical branches of abstract algebra and universal alge-

bra. On the other hand, category theory provides possibilities to model many important features

of computer science [2, 6]. It affords suitable structures for the describing program construction

using algebras T (C) → C and for modelling observable behavior using coalgebras C → T (C),
where C is a category object and T is a polynomial endofunctor induced by a signature. Algebra

and coalgebra are from category’s point of view dual constructions [17]. In this paper we present

two ways of expressing the relation between T -algebras and their carrier-sets. We construct arrow

category of algebras and Kleisli arrow category of algebras where objects are morphisms from a

base category. The relation we will formulate with the codomain functor which takes objects of

arrow category into morphism codomains from base category.

2. Basic Concepts

Algebraic and coalgebraic concepts are based on category theory [4, 11]. A category C is a math-

ematical structure consisting of objects, e.g. A, B, C, . . . and morphisms of the form f : A → B
between objects. Every object has the identity morphism idA : A → A and morphisms are

composable. Because the objects of category can be arbitrary structures, categories are useful
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in computer science, where we often use more complex structures not expressible by sets. Mor-

phisms between categories are called functors. A functor F : C → D from a category C into a

category D preserves the structure, i.e. it sends the objects A, B from C into the objects FA, FB
from D and the morphism f : A → B from C into the morphism Ff : FA → FB from D . In

this contribution we consider only the category Set with sets as objects and functions between

them as morphisms, but this approach can be extended to categories of arbitrary complex objects.

3. Algebras in category

In our research we are interested in formal description of program construction by algebras and

observation of program behavior by coalgebras. Construction of algebras over the signatures were

introduced in [11, 15]. We construct a polynomial endofunctor over the category Set of sets for

substantiation of the signature operations for a given program. Let T be an endofunctor

T : Set → Set. (1)

Algebras over signatures we construct in category. Operations in signature determine polyno-

mial endofunctor that can be constructed inductively from T using constants, identities, products,

co-products and powersets. One of the most used categorical forms of algebra is as follows:

T -algebra, the model of signature, is a pair

(A, a)

where A is a carrier-set, a representation of a type. The algebraic structure (or structuring map)

a = [cons1, . . . , consn] : TA → A

is defined as cotuple function of constructors cons1, . . . , consn.

The relations between algebras are defined by algebra homomorphisms. Let (A, a) and (B, b)
be T -algebras. A homomorphism f : (A, a) → (B, b) of T -algebras is the function f : A → B
between carrier-sets which commutes with the operations as it is illustrated on the following

diagram at the Fig. 1

TA
Tf � TB

A

a

�

f
� B

b

�

Figure 1: The relation between algebras

so it holds the equality f ◦ a = b ◦ Tf .

Homomorphisms of T -algebras can be composed, and every T -algebra (A, a) has the identity

homomorphism id(A,a) : (A, a) → (A, a). Therefore we can construct the category Alg of

T -algebras consisting of T -algebras as objects and homomorphisms between them as category

morphisms. The most important concept in algebraic approach is the initial T -algebra [1, 11]. A

T -algebra is initial if for arbitrary T -algebra there exists unique homomorphism from initial to

arbitrary T -algebra. Initial T -algebras, if they exists have some important properties:
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• they are unique up to isomorphism, therefore we write the initial T -algebra as u : TU ∼= U ,

and

• the initial algebra has an inverse u−1 : U → TU .

In the other words, from the first property it follows that there exists at most one initial T -

algebra. Because from the initial T -algebra exists unique homomorphism to every T -algebra, the

initial T -algebra is the initial object in the category Alg. The second property was proved in [12]

and it says that the initial T -algebra is the least fixed point of the functor T . Initial algebras are

generalizations of the least fixed points of monotone functions, since they have unique maps into

arbitrary T -algebra.

Such formulated category of T -algebras allows us to work with algebras as with category

objects. If we want to formulate the relations between algebras and carrier-sets, we need to define

the couple of two functors

U : Alg → Set F : Set → Alg

which we call the adjoint functors [5]

F � U.

The functor U is forgetful functor which assigns to any algebra from category of sets an appropri-

ate carrier-set from the category of sets. Vice versa, the functor F is defined as functor assigning

to each carrier-set an appropriate algebraic structure. But there is also another form of repre-

sentation of algebras in category. By availing of the algebra properties and using some special

categories we enclose algebras in the arrow category.

4. Arrow category for algebras

We define algebras for simpler working and expressing in category of another form - we interpret

algebraic structure given by the pair (A, a) as a map

TA
a−→ A.

For such expressed algebras we define category of morphisms - the arrow category. For formu-

lation of the relation between algebras and carrier-sets we construct the codomain functor from

arrow category into category of carrier-sets. This category of algebras we denote TAlg. The

objects are the algebras of the form TA
a−→ A, TB

b−→ B, . . . as objects and morphisms be-

tween objects. Morphisms are algebra homomorphisms of the form (f, a, b), where map f is the

function between codomains of the appropriate algebras - the carrier-sets A and B (Fig. 2)

f : cod(a) → cod(b)

where cod(a) = A and cod(b) = B are the codomains of the algebraic structures a and b respec-

tively.

We must prove the following properties, that have to be valid for TAlg be the category. We

define for each algebra TA
a−→ A the identity morphism of the form (idA, a, a) expressed by the

commutative diagram at Fig. 3.

It also holds that morphisms are composable: for (f, a, b) and (g, b, c) we have (g ◦ f, a, c) as it

is depicted at Fig. 4.

The initial algebra in the category TAlg is its initial object. It is the least fixed point of the functor

T . The least fixed point of the functor T we denote also as φT . Seeing that it is the T -algebra,

there exists the algebra operation in defined as

in : T (φT ) → φT.
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TA
a � A

TB

Tf

�

b
� B

f

�

Figure 2: Morphism of algebras

TA
a � A

TA

TidA

�

a
� A

idA

�

Figure 3: Identity morphism of algebras

TA
a � A

TB

Tf

� b � B

f

�

TC

Tg

�

c
� C

g

�

Figure 4: Composition of algebra homomorphism

TφT
in � φT

TA

T (cata a)

�

a
� A

cata a

�

Figure 5: Diagram for initial algebra
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The T -algebra (φT, in) is the initial T -algebra, if for any T -algebra (A, a) there exists an unique

arrow cata a : φT → A making the diagram at Fig. 5 to commute,

i.e. the following equality holds

cata a ◦ in = a ◦ T (cata a).

The morphism cata(−) we call the catamorphism. The initial algebra (μT, in) is the initial object

in the category TAlg and the catamorphism cata(−) is the mediating arrow out of it. It also holds

that the initial algebra exists if T is ω-cocontinuous (i.e. it preserves the colimits of ω-chains) [4].

From the existence of the initial algebra it implies the property called the reflection, so it holds

id = cata in.

5. Monads

From one point of view, a monad is an abstraction of certain properties of algebraic structures.

From another point of view, it is an abstraction of certain properties of adjoint functors. Theory

of monads has turned out to be an important tool also for studying toposes [5].

5.1 Definition

A monad
T = (T, η, μ)

on a category Set is an endofunctor

T : Set → Set

together with two natural transformations

• η : IdSet → T called unit;

• μ : T 2 → T called multiplication.

subject to the condition that the diagrams at Fig. 6 and Fig. 7 commute.

T 3 Tμ � T 2

T 2

μT

�

μ
� T

μ

�

Figure 6: Coherence square for monad

If we consider a monad over category Set of sets then the unit transformation is a map

ηX : X → TX for each set X satisfying a suitable naturality condition. The multiplication

transformation consists of functions μX : T 2X → TX with X ranging over sets. Next example

illustrates monad that involves monoids.

Example. Let M = (M,�, e) be a monoid and the polynomial functor T : Set → Set be

defined by TX = M × X .
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T
ηT � T 2 � Tη

T

T

μ

��
id

T
id

T
�

Figure 7: Coherence triangle for monad

Let ηX : X → M × X be the morphism assigning to x a pair (e, x) and let μX : M × M ×
X → M × X be the another morphism that takes (m, n, x) to (m � n, x). Identities at Fig. 7

follow from those on M .

��
The monad structures play a crucial rôle in modeling "branching". Intuitively, the unit η em-

beds a non-branching behavior as a trivial branching with only one possibility to choose. The

multiplication μ "flattens" two successive branching into one branching, abstracting away internal

branching [9].

The notion of "algebras for a monad" generalizes classical notions from universal algebra, and

in this sense, monads can be thought of as "theories". Every monad is defined by its T -algebras

[3]. T -algebras for a monad T should interact properly with the extra structure on T . A T -algebra

is an arrow a : TA → A as before, such that the diagrams at Fig. 8 and Fig. 9 commute.

T 2A
Ta � TA

TA

μA

�

a
� A

a

�

Figure 8: Algebra in monad via multiplication

A
ηA � TA

A

a

�

id
A

�

Figure 9: Algebra in monad via unit

In our approach we want to make use of the useful categorical structures - arrow category and

Kleisli category.

�������	
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5.2 Kleisli categories

Kleisli category is the kind of category which should be investigated for the functional program-

ming paradigm or for the generalizing the structures in category [5, 13]. This category is an

extremal solution of the problem of constructing an adjunction that gives rise to the given monad.

A monad is defined as an endofunctor which can be considered as the composition of two ad-

joint functors. Its dual concept, the comonad has useful properties for behavioral theory [16].

Recognizing the categories of coalgebras for a comonad is an important tool of topos theory .

The relevance of Kleisli categories in usual coalgebraic approach is that Kleisli category can

be thought of as a category where the branching is implicit [9, 16].

Given any monad T , its Kleisli category K (T ) is defined as follows. Its objects are the objects

of the base category, hence sets in the current setting. An arrow A → B in K (T ) is the same

thing as an arrow A → TB in the base category, here Set:

A → B in K (T )
A → TB in Set

.

Identities and compositions of arrows are defined using the unit and the multiplication of T .

Moreover, there is a canonical adjunction

F � U

where functors are:

F : Set → K (T ) U : K (T ) → Set.

In this adjunction the right adjoint U assigns an arrow f : A → B in K (T ) (i.e. a function

f : A → TB in Set) to a map

TA
Tf−→ T 2B

μB−→ TB

in Set. Moreover, compositions of arrows in category K (T ) are given by

A
f−→ B

g−→ C

as the composition

A
f−→ TB

Tg−→ T 2C
μC−→ TC

in the category Set. The composition μC ◦ Tg is the unique lifting of g to the free T -algebra on

its domain [10]. The Kleisli category K (T ) is equivalent to the subcategory of TAlg consisting

of the free algebras of the form

μA : T 2A → TA.

Every object A of the category K (T ) uniquely generates free algebra TA and actions μA. An

arrow f from the Kleisli category lifts uniquely to arrow μB ◦ Tf (Fig. 10).

6. Codomain functor

Codomain functor is the special functor defined for arrow category. Codomain functor is always

defined for the arrow category and the appropriate base category [10]. The arrow category over

the base category is a mathematical structure consisting of

• an object of arrow category is an arrow (morphism) of the base category;
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V.SLODIČÁK SOME USEFUL STRUCTURES FOR CATEGORICAL APPROACH FOR PROGRAM BEHAVIOR

T 2A
T 2f� T 3B

TμB� T 2B

TA

μA

�

Tf
� T 2B

μTB

�

μB
� TB

μB

�

Figure 10: Algebras in Kleisli category

• given two objects A
f−→ B, A′ g−→ B′, a morphism from f to g consists of an ordered pair

(u, v), where A
u−→ A′, B

v−→ B′ such that the following diagram

A
f � B

A′

u

�

g
� B′

v

�

is a commutative diagram. For purpose of this approach we can consider the morphism of

an arrow category also in the form (v, f, g).

We construct codomain functor from category of algebras TAlg into category of sets Set
which objects are also the carrier-sets of the algebras:

Cod : TAlg → Set.

The functor Cod sends an object of the category TAlg (algebras) into the category Set: it assigns

an appropriate carrier-set to the given algebra:

Cod(TA
a−→ A) = A.

The functor Cod according to the definition sends the morphism of the category TAlg - the

algebra homomorphism into the appropriate morphism of the category of sets. Let TA
a−→ A,

TB
b−→ B and TC

c−→ C be the objects of the category TAlg and let (f, a, b), (g, b, c) be the

morphisms where f and g are the codomain maps

f : cod(a) → cod(b) g : cod(b) → cod(c).

Then it holds

Cod(f, a, b) = f.

For the identity morphism ida we have

Cod(ida) = (idA, a, a) = idA

which satisfies the definition of the codomain functor. Functor Cod also preserves the composition

of the morphisms:

Cod(g ◦ f, a, c) = g ◦ f.

The codomain functor from arrow category into appropriate base category always exists. We

do not need to define extra adjoint functors to formulate the relation between algebras and the

carrier-sets.

�������	
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6.1 Codomain functor for the Kleisli category

We defined the Kleisli category K (T ) of a monad T = (T, μ, η). Now we construct the arrow

category over K (T ) denoted K (T )→ as follows:

• objects are algebras of the form

μA : T 2A → TA;

• morphisms are algebra homomorphisms of the form (Tf, μA, μB) such that the following

diagram at Fig. 11 commutes;

T 2A
μA � TA

T 2B

T 2f

�

μB
� TB

Tf

�

Figure 11: Morphism of algebras in category K (T )

• identity has the form (TidA, μA, μA);

• composition of two algebras (Tf, μA, μB) and (Tg, μB, μC) is (Tg ◦ Tf, μA, μC).

Next we define the codomain functor Kod for the Kleisli arrow category. The functor has the

form

Kod : K (T )→ → Set.

Codomain functor Kod sends the objects of Kleisli arrow category of algebras into the ca-

tegory of carrier-sets Set such that it assigns to any algebra μA : T 2A → TA the appropriate

carrier-set:

Kod
(
T 2A

μA−→ TA
)

= TA.

Functor Kod according to definition maps the morphisms of category K (T )→ (the algebra

homomorphisms) into the appropriate morphisms of the category of carrier-sets. Let’s have the

algebras μA : T 2A → TA, μB : T 2B → TB, μC : T 2C → TC with their morphisms

(Tf, μA, μB) and (Tg, μB, μC), where Tf and Tg are the codomain maps

Tf : cod(μA) → cod(μB)

Tg : cod(μB) → cod(μC).

For the algebra homomorphisms according to the definition of Kleisli category it holds that

Kod (Tf, μA, μB) = μB ◦ Tf.

For identity homomorphisms it holds that

Kod (TidA, μA, μA) = μA ◦ ηA.
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Codomain functor Kod also preserves the composition of algebra homomorphisms:

Kod (Tg ◦ Tf, μA, μC) = (μC ◦ Tg) ◦ (μB ◦ Tf).

If we want to formulate the relation between algebras and their carrier-sets, we need to con-

struct the pair of adjoint functors F � U . For construction of this adjunction is a non-trivial matter

and its existence has to be proven. The codomain functor from Kleisli arrow category K (T )→

into the base category always exists. This functor expresses explicitly the relation between alge-

bras and their carrier-sets. It assigns to each algebra its appropriate carrier-set.

7. Conclusion

In this paper we formulated the expression of algebras in the arrow category. The relation between

algebras and their carrier-sets we constructed as codomain functor from the arrow category TAlg
into the base category Set of sets. We also formulated another approach of expressing algebras

in Kleisli arrow category. We defined that relation between algebras and their carrier-sets as

codomain functor from K (T )→ into the base category of sets. The codomain functor for the

arrow category is always defined, that’s why our approach does not need to construct the couple

of adjoint functors and to prove the construction. In our next research we will focus on suitable

categorical structures as a base for algebraic description of construction and coalgebraic behavior

of program systems. We would like to apply achieved theoretical results to real non trivial program

systems from the area of computer networks, database systems and distributed systems.
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