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Abstract 
In the paper, we consider non-classical queueing systems with non-homogeneous 
customers. The non-homogeneity we treat in the following sense: in systems under 
consideration, we characterize each customer by random capacity (volume) that can 
have an influence on his service time. We analyze a stochastic process having the sense 
of the total volume of all customers present in the system at given time instant. Such 
analysis for different queueing systems with unlimited or limited total volume can be 
used in designing of nodes of computer and communication networks while 
determining their buffer space capacity. We discuss basic problems of the theory of 
these systems and their performance characteristics. We also present some examples 
and results for systems with random volume customers. 
Keywords: customer’s volume, buffer space capacity, total volume, loss probability, 
volume unit loss probability, Laplace-Stieltjes transform 

1. Introduction  
Classical queueing theory was created by Danish engineer and scientist A.K. Erlang in 
the early years of 20th century. Its first mathematical models were used in designing of 
telephone networks.  Now, they are known as M/M/n/0 or Erlang systems. Nowadays, 
queueing theory contains a set of developed mathematical tools that are widely used as 
mathematical models of many real objects, such as markets, communication and 
computer networks, airport traffic, Internet etc. (see e.g. [1], [2], [3], [4], [5]). 

Classical queueing models are often used for determination of communication 
networks’ nodes characteristics [6], [7], [8], [9]. One of the most important of them is 
loss probability or probability of message’s losing that depends on messages’ arrival 
process characteristics, buffer space capacity of the node and distributions of message’s 
volume and its service time. 
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Let 𝜂𝜂(𝑡𝑡)be the number of customers present in a system under consideration at time 
instant t. It is known that, in classical queueing theory, the determination of almost all 
performance characteristics comes to analysis of a stochastic process 𝜂𝜂(𝑡𝑡). But such 
analysis becomes insufficient, if we want e.g. to determine buffer space capacity of a 
communication network’s node that guarantees small losses of information transmitted 
in the network. The causes of this fact are the following: 1) different messages 
(customers) in a network consist, as a rule, of different numbers of bytes, in other 
words, they have different volumes; 2) service time of a customer can be dependent on 
his volume; 3) the total (summarized) volume of customers present in the system is 
limited by some buffer capacity. The factors 1–3 are not be able taken into 
consideration in classical queueing theory.  

To overcome appeared difficulties, we have to introduce the following 
assumptions: 1) each customer in the system is characterized by random volume 𝜁𝜁, 
where 𝜁𝜁 is a non-negative random variable (RV); 2) service time 𝜉𝜉 of a customer can 
depend on his volume, generally, this dependence can be defined by a joint distribution 
function (DF) 

𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 𝐏𝐏{𝜁𝜁 < 𝑥𝑥, 𝜉𝜉 < 𝑡𝑡}.                                              (1) 

Let 𝜎𝜎(𝑡𝑡)be the total volume, i.e. the sum of volumes of all customers present in the 
system at time instant t. The process 𝜎𝜎(𝑡𝑡)is a generalization of 𝜂𝜂(𝑡𝑡)one. Indeed, their 
values are the same, if 𝜁𝜁 ≡ 1. It is clear that changing epochs of both these processes 
are the same, because their values change at epochs of customers arriving to the system 
and customers service termination. But it is clear that an analysis of the process 𝜎𝜎(𝑡𝑡) is 
more complicated, because, at an epoch of service termination, each customer takes 
away from the buffer the same volume that he brings to it at an arrival epoch. For the 
process 𝜂𝜂(𝑡𝑡), these values are equal 1 and −1, respectively. We assume that volumes of 
different customers are independent and do not depend on the customers’ arriving 
epochs. 

Note that, from relation (1), we obtain the following formulae for DFs 𝐿𝐿(𝑥𝑥) and 
𝐵𝐵(𝑡𝑡) of RVs 𝜁𝜁 and 𝜉𝜉, respectively: 

𝐿𝐿(𝑥𝑥) = 𝐏𝐏{𝜁𝜁 < 𝑥𝑥} = lim
𝑡𝑡→∞

𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 𝐹𝐹(𝑥𝑥, ∞), 𝐵𝐵(𝑡𝑡) = 𝐏𝐏{𝜉𝜉 < 𝑡𝑡} = lim
𝑥𝑥→∞

𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 𝐹𝐹(∞, 𝑡𝑡). 

In queueing models of real systems, the total volume is usually limited by constant 
value V > 0 that is called buffer space capacity of the system. Below, we assume that 
inequality 0 ≤ 𝜎𝜎(𝑡𝑡) ≤ 𝑉𝑉 holds (the case of 𝑉𝑉 = ∞ is also possible for some models). We 
also assume that buffer space is occupied by a customer at an epoch he arrives and is 
released entirely at an epoch he completes service. If the value V is finite, it leads to 
additional losses of customers. A customer of volume x, which arrives at epoch 𝜏𝜏 when 
there are idle servers or waiting positions in the queue, will be admitted to the system, 
if 𝜎𝜎(𝜏𝜏 − 0) + 𝑥𝑥 ≤ 𝑉𝑉, where 𝜎𝜎(𝜏𝜏 − 0) is the left-sided limit of the process 𝜎𝜎(𝑡𝑡) at the point 
of 𝜏𝜏. In other words, if 𝜏𝜏 is an arriving epoch, then 𝜎𝜎(𝜏𝜏 − 0) is the number of customers 
present in the system just before 𝜏𝜏. Otherwise (if 𝜎𝜎(𝜏𝜏 − 0) + 𝑥𝑥 > 𝑉𝑉), the customer will 
be lost. In the first case, we have 

𝜂𝜂(𝜏𝜏) = 𝜂𝜂(𝜏𝜏 − 0) + 1, 𝜎𝜎(𝜏𝜏) = 𝜎𝜎(𝜏𝜏 − 0) + 𝑥𝑥, 
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where 𝜂𝜂(𝜏𝜏 − 0) is the left-sided limit of the process 𝜂𝜂(𝑡𝑡) at the point of 𝜏𝜏. In the second 
case, we obtain: 

𝜂𝜂(𝜏𝜏) = 𝜂𝜂(𝜏𝜏 − 0), 𝜎𝜎(𝜏𝜏) = 𝜎𝜎(𝜏𝜏 − 0). 
If t is an epoch of service termination of a customer having volume x, we obtain 

𝜂𝜂(𝑡𝑡) = 𝜂𝜂(𝑡𝑡 − 0) − 1, 𝜎𝜎(𝑡𝑡) = 𝜎𝜎(𝑡𝑡 − 0) − 𝑥𝑥. 

2. Classification of Models 
Consider firstly a classical queueing system of GI/G/n/m (1 ≤ 𝑛𝑛 ≤ ∞, 0 ≤ 𝑚𝑚 ≤ ∞) 
type  in Kendall’s notation (see e.g. [2]). This system with identical servers 𝑆𝑆1, ..., 𝑆𝑆𝑛𝑛 
is shown schematically in Fig. 1.  

 
Fig. 1. Classical queueing system GI/G/n/m 

Denote by GI/G/n/(m,V) a similar system with random volume customers and 
limited by value V (𝑉𝑉 ≤ ∞) total volume. It is shown in Fig. 2. 

 
Fig. 2. Queueing system GI/G/n/(m,V) with random volume customers 

It is clear that the system shown in Fig. 2 generally differs from classical one, 
because its loss characteristics at some arrival epoch depend on the volume of arriving 
customer and the total volume of other customers present in the system at this time. 
Indeed, compare mechanisms of customers’ losing in both systems under assumption 
that there are no other limitations except those shown in Fig. 1 and Fig. 2. 

In both systems, a customer is lost, if, at the epoch 𝜏𝜏 of his arrival, there are             
𝑛𝑛 + 𝑚𝑚 other customers in each of them (𝜂𝜂(𝜏𝜏 − 0) = 𝑛𝑛 + 𝑚𝑚). In the system GI/G/n/(m,V), 
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a customer having volume x is lost not only if 𝜂𝜂(𝜏𝜏 − 0) = 𝑛𝑛 + 𝑚𝑚, but also if 𝜎𝜎(𝜏𝜏 − 0) +
𝑥𝑥 > 𝑉𝑉. It means that an admission or losing of a customer partly or completely depends 
on his volume and total volume of other customers present in the system.  

Classification of models of systems with random volume customers is determined 
by the type of RVs 𝜁𝜁 and 𝜉𝜉 dependence and the value V. Then, we can distinguish four 
following classes of these models: 1) models with 𝑉𝑉 = ∞ and independent RVs 𝜁𝜁 and 
𝜉𝜉 (𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 𝐿𝐿(𝑥𝑥)𝐵𝐵(𝑡𝑡)); 2) models with 𝑉𝑉 < ∞ and independent RVs 𝜁𝜁 and 𝜉𝜉; 3) models 
with 𝑉𝑉 = ∞ and dependent RVs 𝜁𝜁 and 𝜉𝜉 (𝐹𝐹(𝑥𝑥, 𝑡𝑡) ≠ 𝐿𝐿(𝑥𝑥)𝐵𝐵(𝑡𝑡)); 4) models with 𝑉𝑉 < ∞ 
and dependent RVs 𝜁𝜁 and 𝜉𝜉. 

Note that an analysis of models of the first class can be carried out by tools of 
classical queueing theory. 

Consider e.g. a steady-state queueing system M/G/1/∞. Let 𝐿𝐿(𝑥𝑥) be DF of 
customer’s volume 𝜁𝜁, and service time 𝜉𝜉 of a customer does not depend on his volume. 
Denote by 𝐵𝐵(𝑡𝑡) DF of RV 𝜉𝜉 and by 𝛽𝛽(𝑞𝑞) = ∫ 𝑒𝑒−qtd𝐵𝐵(𝑡𝑡)∞

0  Laplace-Stieltjes transform 
(LST) of this DF. Let a and 𝛽𝛽1 be parameters of the arrival process and the mean service 
time of a customer, respectively, then we have 𝜌𝜌 = 𝑎𝑎𝛽𝛽1 < 1. 

It is clear that, in the system under consideration, a distribution of number of 
customers 𝜂𝜂 present in the system in steady state does not depend on their volumes. 
Introduce the notation 𝑝𝑝𝑘𝑘 = 𝐏𝐏{𝜂𝜂 = 𝑘𝑘}. Let 𝑃𝑃(𝑧𝑧) = ∑ 𝑝𝑝𝑘𝑘𝑧𝑧𝑘𝑘∞

𝑘𝑘=0 , |𝑧𝑧| < 1, be generating 
function of number of customers present in the system. Then, the Pollaczek-Khinchine 
formula takes place (see e.g. [1]): 

𝑃𝑃(𝑧𝑧) = (1 − 𝜌𝜌)(1 − 𝑧𝑧)𝛽𝛽(𝑎𝑎 − 𝑎𝑎z)
𝛽𝛽(𝑎𝑎 − 𝑎𝑎z) − 𝑧𝑧 . 

Denote by 𝐷𝐷(𝑥𝑥) DF of the total steady-state customers’ volume 𝜎𝜎. From the fact 
that volumes of customers are independent and their service times do not depend on 
their volumes, we obtain the following relations: 𝐏𝐏{𝜎𝜎 < 𝑥𝑥|𝜂𝜂 = 𝑘𝑘} = 𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥), where 
𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥) is k-fold Stieltjes convolution of DF 𝐿𝐿(𝑥𝑥), i.e. 𝐿𝐿∗
(1)(𝑥𝑥) = 𝐿𝐿(𝑥𝑥), 𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥) =
∫ 𝐿𝐿∗

(𝑘𝑘−1)(𝑥𝑥 − 𝑢𝑢)dL(𝑢𝑢)𝑥𝑥
0  for 𝑘𝑘 = 2, 3, ..., and 𝐏𝐏{𝜎𝜎 = 0} = 𝑝𝑝0 = 1 − 𝜌𝜌. Then, for DF 𝐷𝐷(𝑥𝑥), we 

obtain 

𝐷𝐷(𝑥𝑥) = 𝑝𝑝0 + ∑ 𝑝𝑝𝑘𝑘𝐏𝐏{𝜎𝜎 < 𝑥𝑥|𝜂𝜂 = 𝑘𝑘}
∞

𝑘𝑘=1
= 𝑝𝑝0 + ∑ 𝑝𝑝𝑘𝑘𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥)
∞

𝑘𝑘=1
. 

Passing to LST with respect to x in the last relation, we have: 

𝛿𝛿(𝑠𝑠) = ∫ 𝑒𝑒−𝑠𝑠𝑥𝑥dD(𝑥𝑥)
∞

0
= ∑ 𝑝𝑝𝑘𝑘(𝜑𝜑(𝑠𝑠))𝑘𝑘

∞

𝑘𝑘=0
= 𝑃𝑃(𝜑𝜑(𝑠𝑠)) = 

=
(1 − 𝜌𝜌)(1 − 𝜑𝜑(𝑠𝑠))𝛽𝛽(𝑎𝑎 − 𝑎𝑎𝜑𝜑(𝑠𝑠))

𝛽𝛽(𝑎𝑎 − 𝑎𝑎𝜑𝜑(𝑠𝑠)) − 𝜑𝜑(𝑠𝑠) ,                                          (2) 

 

where 𝛿𝛿(𝑠𝑠) and 𝜑𝜑(𝑠𝑠)(𝑠𝑠) denote LSTs of DFs 𝐷𝐷(𝑥𝑥) and 𝐿𝐿(𝑥𝑥), respectively. I.e. we obtain 
in this case that a distribution of steady-state total volume 𝜎𝜎 is completely determined 



25

JIOS, VOL. 45. NO. 1 (2021), PP. 21-38

TIKHONENKO AND ZIÓŁKOWSKI QUEUEING SYSTEMS WITH RANDOM VOLUME… 

  

a customer having volume x is lost not only if 𝜂𝜂(𝜏𝜏 − 0) = 𝑛𝑛 + 𝑚𝑚, but also if 𝜎𝜎(𝜏𝜏 − 0) +
𝑥𝑥 > 𝑉𝑉. It means that an admission or losing of a customer partly or completely depends 
on his volume and total volume of other customers present in the system.  

Classification of models of systems with random volume customers is determined 
by the type of RVs 𝜁𝜁 and 𝜉𝜉 dependence and the value V. Then, we can distinguish four 
following classes of these models: 1) models with 𝑉𝑉 = ∞ and independent RVs 𝜁𝜁 and 
𝜉𝜉 (𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 𝐿𝐿(𝑥𝑥)𝐵𝐵(𝑡𝑡)); 2) models with 𝑉𝑉 < ∞ and independent RVs 𝜁𝜁 and 𝜉𝜉; 3) models 
with 𝑉𝑉 = ∞ and dependent RVs 𝜁𝜁 and 𝜉𝜉 (𝐹𝐹(𝑥𝑥, 𝑡𝑡) ≠ 𝐿𝐿(𝑥𝑥)𝐵𝐵(𝑡𝑡)); 4) models with 𝑉𝑉 < ∞ 
and dependent RVs 𝜁𝜁 and 𝜉𝜉. 

Note that an analysis of models of the first class can be carried out by tools of 
classical queueing theory. 

Consider e.g. a steady-state queueing system M/G/1/∞. Let 𝐿𝐿(𝑥𝑥) be DF of 
customer’s volume 𝜁𝜁, and service time 𝜉𝜉 of a customer does not depend on his volume. 
Denote by 𝐵𝐵(𝑡𝑡) DF of RV 𝜉𝜉 and by 𝛽𝛽(𝑞𝑞) = ∫ 𝑒𝑒−qtd𝐵𝐵(𝑡𝑡)∞

0  Laplace-Stieltjes transform 
(LST) of this DF. Let a and 𝛽𝛽1 be parameters of the arrival process and the mean service 
time of a customer, respectively, then we have 𝜌𝜌 = 𝑎𝑎𝛽𝛽1 < 1. 

It is clear that, in the system under consideration, a distribution of number of 
customers 𝜂𝜂 present in the system in steady state does not depend on their volumes. 
Introduce the notation 𝑝𝑝𝑘𝑘 = 𝐏𝐏{𝜂𝜂 = 𝑘𝑘}. Let 𝑃𝑃(𝑧𝑧) = ∑ 𝑝𝑝𝑘𝑘𝑧𝑧𝑘𝑘∞

𝑘𝑘=0 , |𝑧𝑧| < 1, be generating 
function of number of customers present in the system. Then, the Pollaczek-Khinchine 
formula takes place (see e.g. [1]): 

𝑃𝑃(𝑧𝑧) = (1 − 𝜌𝜌)(1 − 𝑧𝑧)𝛽𝛽(𝑎𝑎 − 𝑎𝑎z)
𝛽𝛽(𝑎𝑎 − 𝑎𝑎z) − 𝑧𝑧 . 

Denote by 𝐷𝐷(𝑥𝑥) DF of the total steady-state customers’ volume 𝜎𝜎. From the fact 
that volumes of customers are independent and their service times do not depend on 
their volumes, we obtain the following relations: 𝐏𝐏{𝜎𝜎 < 𝑥𝑥|𝜂𝜂 = 𝑘𝑘} = 𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥), where 
𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥) is k-fold Stieltjes convolution of DF 𝐿𝐿(𝑥𝑥), i.e. 𝐿𝐿∗
(1)(𝑥𝑥) = 𝐿𝐿(𝑥𝑥), 𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥) =
∫ 𝐿𝐿∗

(𝑘𝑘−1)(𝑥𝑥 − 𝑢𝑢)dL(𝑢𝑢)𝑥𝑥
0  for 𝑘𝑘 = 2, 3, ..., and 𝐏𝐏{𝜎𝜎 = 0} = 𝑝𝑝0 = 1 − 𝜌𝜌. Then, for DF 𝐷𝐷(𝑥𝑥), we 

obtain 

𝐷𝐷(𝑥𝑥) = 𝑝𝑝0 + ∑ 𝑝𝑝𝑘𝑘𝐏𝐏{𝜎𝜎 < 𝑥𝑥|𝜂𝜂 = 𝑘𝑘}
∞

𝑘𝑘=1
= 𝑝𝑝0 + ∑ 𝑝𝑝𝑘𝑘𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥)
∞

𝑘𝑘=1
. 

Passing to LST with respect to x in the last relation, we have: 

𝛿𝛿(𝑠𝑠) = ∫ 𝑒𝑒−𝑠𝑠𝑥𝑥dD(𝑥𝑥)
∞

0
= ∑ 𝑝𝑝𝑘𝑘(𝜑𝜑(𝑠𝑠))𝑘𝑘

∞

𝑘𝑘=0
= 𝑃𝑃(𝜑𝜑(𝑠𝑠)) = 

=
(1 − 𝜌𝜌)(1 − 𝜑𝜑(𝑠𝑠))𝛽𝛽(𝑎𝑎 − 𝑎𝑎𝜑𝜑(𝑠𝑠))

𝛽𝛽(𝑎𝑎 − 𝑎𝑎𝜑𝜑(𝑠𝑠)) − 𝜑𝜑(𝑠𝑠) ,                                          (2) 

 

where 𝛿𝛿(𝑠𝑠) and 𝜑𝜑(𝑠𝑠)(𝑠𝑠) denote LSTs of DFs 𝐷𝐷(𝑥𝑥) and 𝐿𝐿(𝑥𝑥), respectively. I.e. we obtain 
in this case that a distribution of steady-state total volume 𝜎𝜎 is completely determined 
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by distribution of number of customers present in the system𝜂𝜂and DF 𝐿𝐿(𝑥𝑥) of 
customer’s volume. 

The main characteristics of models from classes 2 and 4 are the distribution of 
number of customers present in the system at arbitrary time instant or in steady state 
and some loss characteristics (e.g. steady-state loss probability).  

For systems belonging to class 2, we can often use tools of classical queueing 
theory. Indeed, let 𝑞𝑞𝑘𝑘, 𝑘𝑘 = 0, 𝑛𝑛 + 𝑚𝑚, be steady-state probability that k customers present 
in the classical system M/G/n/m, 𝑛𝑛 = 1, 2, ...; 𝑚𝑚 = 0, 1, .... Let M/G/n/(m,V) be a system 
from class 2 that differs from the classical M/G/n/m system in the following details:   
1) each customer is characterized by random volume with DF 𝐿𝐿(𝑥𝑥); 2) the total 
customers’ volume is limited by buffer space capacity 𝑉𝑉 < ∞. Assume that DFs of 
service time for both systems are the same. It was proved (see [14], [15]) that steady-
state probabilities 𝑝𝑝𝑘𝑘 of presence of k customers in the system M/G/n/(m,V) can be 
determined by the following relation: 𝑝𝑝𝑘𝑘 = Cq𝑘𝑘𝐿𝐿∗(𝑘𝑘)(𝑉𝑉), 𝑘𝑘 = 1, 𝑛𝑛 +𝑚𝑚,where C can be 

calculated from the normalization condition: 𝐶𝐶 = [∑ 𝑞𝑞𝑘𝑘𝐿𝐿∗
(𝑘𝑘)(𝑉𝑉)𝑛𝑛+𝑚𝑚

𝑘𝑘=0 ]
−1
. Note that this 

relation takes place also if 𝑚𝑚 = ∞, when steady state exists for the classical system.   
The main characteristic of models from class 3 is the distribution of total volume 

at arbitrary time instant or in steady state. Various models of queueing systems with 
random volume customers can be found in [10], [11], [12], [13].  

3. Simple Examples of Systems with Random Volume Customers 

3.1. System M/M/n/(∞,V) with independent customer’s volume and service 
time. 

For this system, we assume that service time does not depend on customer’s volume 
and has an exponential distribution with parameter 𝜇𝜇 > 0, i.e. 𝐵𝐵(𝑡𝑡) = 1 − 𝑒𝑒−𝜇𝜇𝜇𝜇, 𝑡𝑡 >
0. The system was firstly analyzed in [10]. Let 𝐿𝐿(𝑥𝑥) be DF of customer’s volume. 
Denote by 𝜂𝜂 and 𝜎𝜎 the number of customers present in the system in steady state and 
their total volume, respectively. Let a be parameter of the arrival process. For this 
system were obtained the functions 𝑔𝑔𝑘𝑘(𝑥𝑥) = 𝐏𝐏{𝜂𝜂 = 𝑘𝑘, 𝜎𝜎 < 𝑥𝑥}, 𝑘𝑘 = 1, 2, ..., 𝑥𝑥 ∈
[0;  𝑉𝑉]: 

𝑔𝑔𝑘𝑘(𝑥𝑥) =

{
 

 (𝑛𝑛𝑛𝑛)
𝑘𝑘

𝑘𝑘! 𝑝𝑝0𝐿𝐿∗
(𝑘𝑘)(𝑥𝑥),  if 𝑘𝑘 = 1,  𝑛𝑛,

𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘
𝑛𝑛! 𝑝𝑝0𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥),    if 𝑘𝑘 = 𝑛𝑛 + 1,  𝑛𝑛 + 2, . . . ,
 

where 𝑝𝑝0 = 𝐏𝐏{𝜂𝜂 = 0}, 𝑛𝑛 = 𝑎𝑎 (⁄ 𝑛𝑛𝜇𝜇).  
Then, we can easily obtain the following relations for probabilities                       

𝑝𝑝𝑘𝑘 = 𝐏𝐏{𝜂𝜂 = 𝑘𝑘} = 𝑔𝑔𝑘𝑘(𝑉𝑉): 
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𝑝𝑝𝑘𝑘 =

{
 

 (𝑛𝑛𝑛𝑛)
𝑘𝑘

𝑘𝑘! 𝑝𝑝0𝐿𝐿∗(𝑘𝑘)(𝑉𝑉),  if 𝑘𝑘 = 1,  𝑛𝑛,
𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘
𝑛𝑛! 𝑝𝑝0𝐿𝐿∗

(𝑘𝑘)(𝑉𝑉),    if 𝑘𝑘 = 𝑛𝑛 + 1,  𝑛𝑛 + 2, . . . ,
 

where 𝑝𝑝0can be determined from the normalization condition as: 

𝑝𝑝0 = [𝐴𝐴𝑛𝑛(𝑉𝑉) +
𝑛𝑛𝑛𝑛
𝑛𝑛! 𝐵𝐵𝑛𝑛(𝑉𝑉)]

−1
, 

where 

𝐴𝐴𝑛𝑛(𝑥𝑥) = ∑
(𝑛𝑛𝑛𝑛)𝑘𝑘
𝑘𝑘! 𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥)𝑛𝑛
𝑘𝑘=0 , 𝐵𝐵𝑛𝑛(𝑥𝑥) = ∑ 𝑛𝑛𝑘𝑘𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥)∞
𝑘𝑘=𝑛𝑛+1 . 

Loss probability 𝑃𝑃loss for this system is determined by the following relation [10]: 

𝑃𝑃loss = 1 − (𝑛𝑛𝑛𝑛)−1 ∑ 𝑘𝑘𝑝𝑝𝑘𝑘𝑛𝑛−1
𝑘𝑘=1 − 𝑛𝑛−1(1 − ∑ 𝑝𝑝𝑘𝑘𝑛𝑛−1

𝑘𝑘=0 ).                    (3) 

Now, we can easily obtain DF 𝐷𝐷𝑉𝑉(𝑥𝑥) of the total volume 𝜎𝜎: 

𝐷𝐷𝑉𝑉(𝑥𝑥) = 𝑝𝑝0 + ∑ 𝑔𝑔𝑘𝑘(𝑥𝑥)∞
𝑘𝑘=1 = 𝑝𝑝0 [𝐴𝐴𝑛𝑛(𝑥𝑥) +

𝑛𝑛𝑛𝑛
𝑛𝑛! 𝐵𝐵𝑛𝑛(𝑥𝑥)] , 𝑥𝑥 ∈ [0;  𝑉𝑉].          (4) 

Let us consider a special case of the system when customer’s volume is distributed 
exponentially: 𝐿𝐿(𝑥𝑥) = 1 − 𝑒𝑒−𝑓𝑓𝑓𝑓, 𝑓𝑓 > 0, 𝑥𝑥 > 0. Then, we have 

𝐴𝐴𝑛𝑛(𝑥𝑥) = ∑
(𝑛𝑛𝑛𝑛)𝑘𝑘
𝑘𝑘! [1 − 𝑒𝑒−𝑓𝑓𝑓𝑓 ∑ (𝑓𝑓𝑓𝑓)𝑖𝑖

𝑖𝑖!
𝑘𝑘−1
𝑖𝑖=0 ]𝑛𝑛

𝑘𝑘=0 , 

 𝐵𝐵𝑛𝑛(𝑥𝑥) = ∑ 𝑛𝑛𝑘𝑘 [1 − 𝑒𝑒−𝑓𝑓𝑓𝑓 ∑ (𝑓𝑓𝑓𝑓)𝑖𝑖
𝑖𝑖!

𝑘𝑘−1
𝑖𝑖=0 ]∞

𝑘𝑘=𝑛𝑛+1 . 

After some transformations, we can present the relation for 𝐵𝐵𝑛𝑛(𝑥𝑥) in the form that 
does not contain infinite sums:  

𝐵𝐵𝑛𝑛(𝑥𝑥) =
𝑛𝑛𝑛𝑛+1
1−𝑛𝑛 [1 − 𝑒𝑒

−𝑓𝑓𝑓𝑓 ∑ (𝑓𝑓𝑓𝑓)𝑖𝑖
𝑖𝑖!

𝑛𝑛
𝑖𝑖=0 ] − 𝑛𝑛

1−𝑛𝑛 [𝑒𝑒
−(1−𝑛𝑛)𝑓𝑓𝑓𝑓 − 𝑒𝑒−𝑓𝑓𝑓𝑓 ∑ (𝑛𝑛𝑓𝑓𝑓𝑓)𝑖𝑖

𝑖𝑖!
𝑛𝑛
𝑖𝑖=0 ]. 

In the case of one-server system (𝑛𝑛 = 1), we obtain (see [13]): 

𝑝𝑝0 = {
1−𝑛𝑛

1−𝑛𝑛𝑒𝑒−(1−𝜌𝜌)𝑓𝑓𝑓𝑓 ,      if 𝑛𝑛 ≠ 1,
(1 + 𝑓𝑓𝑉𝑉)−1,       if 𝑛𝑛 = 1;

                                       (5) 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = {
1−𝑛𝑛

𝑒𝑒(1−𝜌𝜌)𝑓𝑓𝑓𝑓−𝑛𝑛 ,       if 𝑛𝑛 ≠ 1,
(1 + 𝑓𝑓𝑉𝑉)−1,    if 𝑛𝑛 = 1;

                                      (6) 

𝐷𝐷𝑉𝑉(𝑥𝑥) = {
1−𝑛𝑛𝑒𝑒−(1−𝜌𝜌)𝑓𝑓𝑓𝑓
1−𝑛𝑛𝑒𝑒−(1−𝜌𝜌)𝑓𝑓𝑓𝑓 ,  if 𝑥𝑥 ∈ [0;  𝑉𝑉],
1,                      if 𝑥𝑥 > 𝑉𝑉,

 for ;1  

𝐷𝐷𝑉𝑉(𝑥𝑥) = {
1+𝑓𝑓𝑓𝑓
1+𝑓𝑓𝑉𝑉 ,   if 𝑥𝑥 ∈ [0;  𝑉𝑉],
1,          if 𝑥𝑥 > 𝑉𝑉

  for 𝑛𝑛 = 1.  
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𝑝𝑝𝑘𝑘 =

{
 

 (𝑛𝑛𝑛𝑛)
𝑘𝑘

𝑘𝑘! 𝑝𝑝0𝐿𝐿∗(𝑘𝑘)(𝑉𝑉),  if 𝑘𝑘 = 1,  𝑛𝑛,
𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘
𝑛𝑛! 𝑝𝑝0𝐿𝐿∗

(𝑘𝑘)(𝑉𝑉),    if 𝑘𝑘 = 𝑛𝑛 + 1,  𝑛𝑛 + 2, . . . ,
 

where 𝑝𝑝0can be determined from the normalization condition as: 

𝑝𝑝0 = [𝐴𝐴𝑛𝑛(𝑉𝑉) +
𝑛𝑛𝑛𝑛
𝑛𝑛! 𝐵𝐵𝑛𝑛(𝑉𝑉)]

−1
, 

where 

𝐴𝐴𝑛𝑛(𝑥𝑥) = ∑
(𝑛𝑛𝑛𝑛)𝑘𝑘
𝑘𝑘! 𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥)𝑛𝑛
𝑘𝑘=0 , 𝐵𝐵𝑛𝑛(𝑥𝑥) = ∑ 𝑛𝑛𝑘𝑘𝐿𝐿∗

(𝑘𝑘)(𝑥𝑥)∞
𝑘𝑘=𝑛𝑛+1 . 

Loss probability 𝑃𝑃loss for this system is determined by the following relation [10]: 

𝑃𝑃loss = 1 − (𝑛𝑛𝑛𝑛)−1 ∑ 𝑘𝑘𝑝𝑝𝑘𝑘𝑛𝑛−1
𝑘𝑘=1 − 𝑛𝑛−1(1 − ∑ 𝑝𝑝𝑘𝑘𝑛𝑛−1

𝑘𝑘=0 ).                    (3) 

Now, we can easily obtain DF 𝐷𝐷𝑉𝑉(𝑥𝑥) of the total volume 𝜎𝜎: 

𝐷𝐷𝑉𝑉(𝑥𝑥) = 𝑝𝑝0 + ∑ 𝑔𝑔𝑘𝑘(𝑥𝑥)∞
𝑘𝑘=1 = 𝑝𝑝0 [𝐴𝐴𝑛𝑛(𝑥𝑥) +

𝑛𝑛𝑛𝑛
𝑛𝑛! 𝐵𝐵𝑛𝑛(𝑥𝑥)] , 𝑥𝑥 ∈ [0;  𝑉𝑉].          (4) 

Let us consider a special case of the system when customer’s volume is distributed 
exponentially: 𝐿𝐿(𝑥𝑥) = 1 − 𝑒𝑒−𝑓𝑓𝑓𝑓, 𝑓𝑓 > 0, 𝑥𝑥 > 0. Then, we have 

𝐴𝐴𝑛𝑛(𝑥𝑥) = ∑
(𝑛𝑛𝑛𝑛)𝑘𝑘
𝑘𝑘! [1 − 𝑒𝑒−𝑓𝑓𝑓𝑓 ∑ (𝑓𝑓𝑓𝑓)𝑖𝑖

𝑖𝑖!
𝑘𝑘−1
𝑖𝑖=0 ]𝑛𝑛

𝑘𝑘=0 , 

 𝐵𝐵𝑛𝑛(𝑥𝑥) = ∑ 𝑛𝑛𝑘𝑘 [1 − 𝑒𝑒−𝑓𝑓𝑓𝑓 ∑ (𝑓𝑓𝑓𝑓)𝑖𝑖
𝑖𝑖!

𝑘𝑘−1
𝑖𝑖=0 ]∞

𝑘𝑘=𝑛𝑛+1 . 

After some transformations, we can present the relation for 𝐵𝐵𝑛𝑛(𝑥𝑥) in the form that 
does not contain infinite sums:  

𝐵𝐵𝑛𝑛(𝑥𝑥) =
𝑛𝑛𝑛𝑛+1
1−𝑛𝑛 [1 − 𝑒𝑒

−𝑓𝑓𝑓𝑓 ∑ (𝑓𝑓𝑓𝑓)𝑖𝑖
𝑖𝑖!

𝑛𝑛
𝑖𝑖=0 ] − 𝑛𝑛

1−𝑛𝑛 [𝑒𝑒
−(1−𝑛𝑛)𝑓𝑓𝑓𝑓 − 𝑒𝑒−𝑓𝑓𝑓𝑓 ∑ (𝑛𝑛𝑓𝑓𝑓𝑓)𝑖𝑖

𝑖𝑖!
𝑛𝑛
𝑖𝑖=0 ]. 

In the case of one-server system (𝑛𝑛 = 1), we obtain (see [13]): 

𝑝𝑝0 = {
1−𝑛𝑛

1−𝑛𝑛𝑒𝑒−(1−𝜌𝜌)𝑓𝑓𝑓𝑓 ,      if 𝑛𝑛 ≠ 1,
(1 + 𝑓𝑓𝑉𝑉)−1,       if 𝑛𝑛 = 1;

                                       (5) 

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = {
1−𝑛𝑛

𝑒𝑒(1−𝜌𝜌)𝑓𝑓𝑓𝑓−𝑛𝑛 ,       if 𝑛𝑛 ≠ 1,
(1 + 𝑓𝑓𝑉𝑉)−1,    if 𝑛𝑛 = 1;

                                      (6) 

𝐷𝐷𝑉𝑉(𝑥𝑥) = {
1−𝑛𝑛𝑒𝑒−(1−𝜌𝜌)𝑓𝑓𝑓𝑓
1−𝑛𝑛𝑒𝑒−(1−𝜌𝜌)𝑓𝑓𝑓𝑓 ,  if 𝑥𝑥 ∈ [0;  𝑉𝑉],
1,                      if 𝑥𝑥 > 𝑉𝑉,

 for ;1  

𝐷𝐷𝑉𝑉(𝑥𝑥) = {
1+𝑓𝑓𝑓𝑓
1+𝑓𝑓𝑉𝑉 ,   if 𝑥𝑥 ∈ [0;  𝑉𝑉],
1,          if 𝑥𝑥 > 𝑉𝑉

  for 𝑛𝑛 = 1.  
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3.2. System M/G/1/∞ with unlimited buffer space and service time generally 
dependent on customer’s volume 

Denote by 𝐹𝐹(𝑥𝑥, 𝑡𝑡) a joint DF of customer’s volume 𝜁𝜁 and his service time 𝜉𝜉 . Let 
𝛼𝛼(𝑠𝑠, 𝑞𝑞) = ∫ ∫ 𝑒𝑒−𝑠𝑠𝑠𝑠−𝑞𝑞𝑞𝑞𝑑𝑑𝐹𝐹(𝑥𝑥, 𝑡𝑡)∞

0
∞

0  be double LST of DF 𝐹𝐹(𝑥𝑥, 𝑡𝑡). Then, 𝜑𝜑(𝑠𝑠) =
𝛼𝛼(𝑠𝑠, 0) = ∫ 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝑑𝑑(𝑥𝑥)∞

0  and 𝛽𝛽(𝑞𝑞) = 𝛼𝛼(0, 𝑞𝑞) = ∫ 𝑒𝑒−𝑞𝑞𝑞𝑞𝑑𝑑𝑑𝑑(𝑡𝑡)∞
0  are LSTs of DFs 

𝑑𝑑(𝑥𝑥) and 𝑑𝑑(𝑡𝑡), respectively. Let 𝛽𝛽1 = 𝐄𝐄𝜉𝜉 be the mean value of service time. Assume 
that 𝜌𝜌 = 𝑎𝑎𝛽𝛽1 < 1, where a is parameter of arrival process. Then, for the system under 
consideration, finite steady-state characteristics exist. E.g. we have 𝜎𝜎(𝑡𝑡) ⇒ 𝜎𝜎 and 
𝜂𝜂(𝑡𝑡) ⇒ 𝜂𝜂 in the sense of a weak convergence, where 𝜎𝜎 and 𝜂𝜂 are the steady-state total 
customers’ volume and number of customers in the system, respectively. Let 𝐷𝐷(𝑥𝑥)be 
DF of RV𝜎𝜎. Denote by𝛿𝛿(𝑠𝑠)its LST. Then, we obtain [10], [11], [12], [13]: 

𝛿𝛿(𝑠𝑠) = ∫ 𝑒𝑒−𝑠𝑠𝑠𝑠𝑑𝑑𝐷𝐷(𝑥𝑥) =
∞

0

(1 − 𝜌𝜌)[𝛽𝛽(𝑎𝑎 − 𝑎𝑎𝜑𝜑(𝑠𝑠)) − 𝛼𝛼(𝑠𝑠, 𝑎𝑎 − 𝑎𝑎𝜑𝜑(𝑠𝑠))]
𝛽𝛽(𝑎𝑎 − 𝑎𝑎𝜑𝜑(𝑠𝑠)) − 𝜑𝜑(𝑠𝑠) .       (7) 

Note that, in the case of independent RVs 𝜁𝜁 and 𝜉𝜉 (𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 𝑑𝑑(𝑥𝑥)𝑑𝑑(𝑡𝑡), 𝛼𝛼(𝑠𝑠, 𝑞𝑞) =     
= 𝜑𝜑(𝑠𝑠)𝛽𝛽(𝑞𝑞)), relation (2) follows from (7).    

Using relation (7), we can calculate moments of RV𝜎𝜎 (if they exist). For the first 
and second ones, we have [12], [13]: 

𝛿𝛿1 = 𝐸𝐸𝜎𝜎 = −𝛿𝛿′(0) = 𝑎𝑎𝛼𝛼1 1 + 𝑎𝑎2𝛽𝛽2𝜑𝜑1
2(1 − 𝜌𝜌), 

𝛿𝛿2 = 𝐄𝐄𝜎𝜎2 = 𝛿𝛿″(0) = 

= 𝑎𝑎(𝛼𝛼21 + 𝑎𝑎𝜑𝜑1𝛼𝛼12) + 𝑎𝑎3𝛽𝛽2𝜑𝜑1𝛼𝛼11
1 − 𝜌𝜌 + 𝑎𝑎2𝛽𝛽2𝜑𝜑2

2(1 − 𝜌𝜌) + 𝑎𝑎3𝛽𝛽3𝜑𝜑1
2

3(1 − 𝜌𝜌) + 𝑎𝑎4𝛽𝛽2
2𝜑𝜑1

2

2(1 − 𝜌𝜌)2, 
where 𝜑𝜑𝑖𝑖, 𝛽𝛽𝑖𝑖 are the ith moments of RVs 𝜁𝜁 and 𝜉𝜉 ,respectively, 𝑖𝑖 = 1, 2, ..., 𝛼𝛼𝑖𝑖𝑖𝑖 is the 
mixed (𝑖𝑖 + 𝑗𝑗)th moment of the random vector (𝜁𝜁 , 𝜉𝜉), 𝑖𝑖, 𝑗𝑗 = 1, 2, .... 

Assume e.g. that customer’s volume 𝜁𝜁 has an exponential distribution with 
parameter f, and service time of the customer is proportional to his volume                 
(𝜉𝜉 = 𝑐𝑐𝜁𝜁 , 𝑐𝑐 > 0). In this case, we can determine an explicit form of DF 𝐷𝐷(𝑥𝑥)[13]: 

𝐷𝐷(𝑥𝑥) = 1 + 𝜌𝜌2𝑒𝑒−(1−𝜌𝜌)𝑓𝑓𝑓𝑓

1−2𝜌𝜌 − 𝜌𝜌(1−𝜌𝜌)
√𝜌𝜌(4+𝜌𝜌) ( 1−𝑏𝑏1

1−𝑏𝑏1−𝜌𝜌 𝑒𝑒−𝑏𝑏1𝑓𝑓𝑠𝑠 − 1−𝑏𝑏2
1−𝑏𝑏2−𝜌𝜌 𝑒𝑒−𝑏𝑏2𝑓𝑓𝑠𝑠) , if 𝜌𝜌 ≠ 1/2,(8) 

𝐷𝐷(𝑥𝑥) = 1 + 1
9 𝑒𝑒−2𝑓𝑓𝑠𝑠 − 1

3 (11
6 + 𝑓𝑓𝑠𝑠

4 ) 𝑒𝑒−𝑓𝑓𝑠𝑠 2⁄ , if 𝜌𝜌 = 1/2, 

where 𝜌𝜌 = 𝑎𝑎𝑐𝑐 𝑓𝑓,⁄  

𝑏𝑏1 = 2+𝜌𝜌−√𝜌𝜌(4+𝜌𝜌)
2 , 𝑏𝑏2 = 2+𝜌𝜌+√𝜌𝜌(4+𝜌𝜌)

2 .                              (9) 

Note that, in the case of independent RVs 𝜁𝜁 and 𝜉𝜉 when they have exponential 
distributions with DFs 𝑑𝑑(𝑥𝑥) = 1 − 𝑒𝑒−𝑓𝑓𝑠𝑠 and 𝑑𝑑(𝑡𝑡) = 1 − 𝑒𝑒−𝜇𝜇𝑞𝑞, respectively, we have: 

𝐷𝐷(𝑥𝑥) = 1 − 𝜌𝜌𝑒𝑒−(1−𝜌𝜌)𝑓𝑓𝑠𝑠,                                         (10) 

where 𝜌𝜌 = 𝑎𝑎 𝜇𝜇⁄ . 
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Note that, in the case of exponential distribution of RV 𝜁𝜁 and the same dependence 
between 𝜁𝜁 and 𝜉𝜉 (𝜉𝜉 = 𝑐𝑐𝜁𝜁), we can also determine an explicit form of D(x) for the 
system M/M/n/m with unlimited buffer space, 𝑛𝑛 = 1, 2, ..., 𝑚𝑚 = 0, 1, ...[16]. E.g. for 
𝑛𝑛 = 2, 𝑚𝑚 = ∞, 𝜌𝜌 = 𝑎𝑎𝑐𝑐 (2𝑓𝑓)⁄ < 1, we obtain: 

𝐷𝐷(𝑥𝑥) = 1 + 2𝜌𝜌𝜌𝜌−(1−𝜌𝜌)𝑓𝑓𝑓𝑓

(1 − 𝜌𝜌)(1 − 2𝜌𝜌) − 2𝜌𝜌2𝑝𝑝0

√𝜌𝜌(4 + 𝜌𝜌)
× 

[ 1 − 𝑏𝑏1
(1 − 𝑏𝑏1)(1 − 𝑏𝑏1 − 𝜌𝜌) 𝜌𝜌−𝑏𝑏1𝑓𝑓𝑓𝑓 − 1 − 𝑏𝑏2

(1 − 𝑏𝑏2)(1 − 𝑏𝑏2 − 𝜌𝜌) 𝜌𝜌−𝑏𝑏2𝑓𝑓𝑓𝑓], 

if 𝜌𝜌 ≠ 1 2⁄ , and 

𝐷𝐷(𝑥𝑥) = 1 − 2
27 [(3𝑓𝑓𝑥𝑥 + 10)𝜌𝜌−𝑓𝑓𝑓𝑓 2⁄ − 𝜌𝜌−2𝑓𝑓𝑓𝑓], if 𝜌𝜌 = 1 2⁄ , 

where 𝑝𝑝0 = (1 − 𝜌𝜌 ) (⁄ 1 + 𝜌𝜌) and 𝑏𝑏1, 𝑏𝑏2 are calculated by relations (9). 

4. Loss Characteristics of Systems with Random Volume Customers 
In classical queueing theory, a unique loss characteristic is 𝑃𝑃loss, i.e. the relative part 
of number of customers that were lost in steady state during infinite time interval. In 
terms of our theory, each customer in a classical system has the volume equals 1. 

Let 𝐷𝐷𝑉𝑉(𝑥𝑥) be steady-state DF of the total customers’ volume in a queueing system 
with limited (by V) buffer space (𝐷𝐷𝑉𝑉(𝑥𝑥) = 1, if 𝑥𝑥 > 𝑉𝑉). 

Generally, 𝑃𝑃loss can be obtained from the stability conditions, i.e. from the fact 
that (in steady state) the mean number of customers accepted to the system during 
some time interval must be equal to the mean number of customers completing their 
service during the same interval. E.g. by this way, relation (3) were obtained. For the 
system with Poisson arrival process, in which only buffer space is limited and there 
are no other limitations, we can determine 𝑃𝑃loss by the following relation [13], [17]: 

𝑃𝑃loss = 1 − ∫ 𝐷𝐷𝑉𝑉(𝑉𝑉 − 𝑥𝑥) 𝑑𝑑𝑑𝑑(𝑥𝑥)𝑉𝑉
0 ,                                       (11) 

where 𝑑𝑑(𝑥𝑥) is DF of RV 𝜁𝜁. It is clear that 𝑃𝑃loss is also a performance characteristic of 
systems with random volume customers. But it cannot take into account the fact of 
difference between loss probabilities for customers of different volumes. 

Other (may be more objective) loss characteristic is probability 𝑄𝑄loss of volume 
unit losing [13], [17], i.e. the relative part of total volume of customers that were lost 
during infinite time interval. For the system with Poisson arrival process and without 
other limitations except of buffer space one, this probability can be calculated by the 
following relation: 

𝑄𝑄loss = 1 − 1
𝜑𝜑1

∫ 𝑥𝑥𝐷𝐷𝑉𝑉(𝑉𝑉 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)𝑉𝑉
0 ,                                 (12) 

where 𝜑𝜑1 = 𝐄𝐄𝜁𝜁 = ∫ 𝑥𝑥𝑑𝑑𝑑𝑑(𝑥𝑥)∞
0  is the mean customer’s volume. E.g., for system 

M/M/1/(∞,V) with independent customer’s volume and service time, we obtain from 
relation (4): 
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Note that, in the case of exponential distribution of RV 𝜁𝜁 and the same dependence 
between 𝜁𝜁 and 𝜉𝜉 (𝜉𝜉 = 𝑐𝑐𝜁𝜁), we can also determine an explicit form of D(x) for the 
system M/M/n/m with unlimited buffer space, 𝑛𝑛 = 1, 2, ..., 𝑚𝑚 = 0, 1, ...[16]. E.g. for 
𝑛𝑛 = 2, 𝑚𝑚 = ∞, 𝜌𝜌 = 𝑎𝑎𝑐𝑐 (2𝑓𝑓)⁄ < 1, we obtain: 

𝐷𝐷(𝑥𝑥) = 1 + 2𝜌𝜌𝜌𝜌−(1−𝜌𝜌)𝑓𝑓𝑓𝑓

(1 − 𝜌𝜌)(1 − 2𝜌𝜌) − 2𝜌𝜌2𝑝𝑝0

√𝜌𝜌(4 + 𝜌𝜌)
× 

[ 1 − 𝑏𝑏1
(1 − 𝑏𝑏1)(1 − 𝑏𝑏1 − 𝜌𝜌) 𝜌𝜌−𝑏𝑏1𝑓𝑓𝑓𝑓 − 1 − 𝑏𝑏2

(1 − 𝑏𝑏2)(1 − 𝑏𝑏2 − 𝜌𝜌) 𝜌𝜌−𝑏𝑏2𝑓𝑓𝑓𝑓], 

if 𝜌𝜌 ≠ 1 2⁄ , and 

𝐷𝐷(𝑥𝑥) = 1 − 2
27 [(3𝑓𝑓𝑥𝑥 + 10)𝜌𝜌−𝑓𝑓𝑓𝑓 2⁄ − 𝜌𝜌−2𝑓𝑓𝑓𝑓], if 𝜌𝜌 = 1 2⁄ , 

where 𝑝𝑝0 = (1 − 𝜌𝜌 ) (⁄ 1 + 𝜌𝜌) and 𝑏𝑏1, 𝑏𝑏2 are calculated by relations (9). 

4. Loss Characteristics of Systems with Random Volume Customers 
In classical queueing theory, a unique loss characteristic is 𝑃𝑃loss, i.e. the relative part 
of number of customers that were lost in steady state during infinite time interval. In 
terms of our theory, each customer in a classical system has the volume equals 1. 

Let 𝐷𝐷𝑉𝑉(𝑥𝑥) be steady-state DF of the total customers’ volume in a queueing system 
with limited (by V) buffer space (𝐷𝐷𝑉𝑉(𝑥𝑥) = 1, if 𝑥𝑥 > 𝑉𝑉). 

Generally, 𝑃𝑃loss can be obtained from the stability conditions, i.e. from the fact 
that (in steady state) the mean number of customers accepted to the system during 
some time interval must be equal to the mean number of customers completing their 
service during the same interval. E.g. by this way, relation (3) were obtained. For the 
system with Poisson arrival process, in which only buffer space is limited and there 
are no other limitations, we can determine 𝑃𝑃loss by the following relation [13], [17]: 

𝑃𝑃loss = 1 − ∫ 𝐷𝐷𝑉𝑉(𝑉𝑉 − 𝑥𝑥) 𝑑𝑑𝑑𝑑(𝑥𝑥)𝑉𝑉
0 ,                                       (11) 

where 𝑑𝑑(𝑥𝑥) is DF of RV 𝜁𝜁. It is clear that 𝑃𝑃loss is also a performance characteristic of 
systems with random volume customers. But it cannot take into account the fact of 
difference between loss probabilities for customers of different volumes. 

Other (may be more objective) loss characteristic is probability 𝑄𝑄loss of volume 
unit losing [13], [17], i.e. the relative part of total volume of customers that were lost 
during infinite time interval. For the system with Poisson arrival process and without 
other limitations except of buffer space one, this probability can be calculated by the 
following relation: 

𝑄𝑄loss = 1 − 1
𝜑𝜑1

∫ 𝑥𝑥𝐷𝐷𝑉𝑉(𝑉𝑉 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)𝑉𝑉
0 ,                                 (12) 

where 𝜑𝜑1 = 𝐄𝐄𝜁𝜁 = ∫ 𝑥𝑥𝑑𝑑𝑑𝑑(𝑥𝑥)∞
0  is the mean customer’s volume. E.g., for system 

M/M/1/(∞,V) with independent customer’s volume and service time, we obtain from 
relation (4): 
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𝑄𝑄loss = 𝑝𝑝0 ∫ 𝑥𝑥 [𝐴𝐴𝑛𝑛(𝑉𝑉 − 𝑥𝑥) + 𝑛𝑛𝑛𝑛
𝑛𝑛! 𝐵𝐵𝑛𝑛(𝑉𝑉 − 𝑥𝑥)]

𝑉𝑉

0
𝑑𝑑𝑑𝑑(𝑥𝑥). 

It is clear that, for fixed n, we can easily calculate 𝑄𝑄loss in the case of exponentially 
distributed service time (see Section 3). 

Generally, 𝑄𝑄loss can be also obtained from the stability conditions, i.e. from the 
fact that (in steady state) the mean total volume of customers accepted to the system 
during some time interval must be equal to the mean total volume of customers 
completing their service during the same interval. However, in this case, appropriate 
calculations are significantly more complicated than in the case of 𝑃𝑃loss ones. 

Denote by 𝐄𝐄(𝜁𝜁|𝐴𝐴) a conditional mean of RV 𝜁𝜁 under condition that an event A  
(𝐏𝐏{𝐴𝐴} > 0) takes place (see e.g. [18, p. 70]). 

Using theory of regenerative processes [5], [19], we can prove the following 
statement. 

Theorem. Assume that, for a system under consideration, stochastic processes 
𝜎𝜎(𝑡𝑡) and 𝜂𝜂(𝑡𝑡) are regenerative with finite mean value of regeneration cycle. Let A be 
a random event that means a loss of arriving customer. Then, characteristics 𝑄𝑄loss 
and 𝑃𝑃loss are connected by the relation 𝑄𝑄loss =

𝐄𝐄(𝜁𝜁|𝐴𝐴)
𝜑𝜑1

𝑃𝑃loss, where 𝐄𝐄(𝜁𝜁|𝐴𝐴) is a 
conditional mean customer’s volume under condition A (i.e. 𝐄𝐄(𝜁𝜁|𝐴𝐴) is a mean volume 
of losing customers). 

  Proof. Let 𝑛𝑛𝑗𝑗 be the number of arriving customers during  jth regeneration 
cycle, 𝑛𝑛𝑗𝑗∗ be the number of losing customers during this cycle, 𝑗𝑗 = 1, 2, ..., 𝑁𝑁, 𝜈𝜈𝑖𝑖𝑗𝑗∗  be 
the volume of ith losing customer within this cycle, 𝑖𝑖 = 1,2, . . . , 𝑛𝑛𝑗𝑗∗, 𝑉𝑉𝑗𝑗∗  be the total 

losing volume within this cycle: 𝑉𝑉𝑗𝑗∗ = ∑ 𝜈𝜈𝑖𝑖𝑗𝑗∗
𝑛𝑛𝑗𝑗∗
𝑖𝑖=1 . 

As it follows from the theory of regenerative processes [19], we have 
𝑁𝑁−1 ∑ 𝑉𝑉𝑗𝑗∗𝑁𝑁

𝑗𝑗=1
𝑎𝑎.𝑠𝑠.

→     𝐄𝐄𝜒𝜒∗ when 𝑁𝑁 → ∞, where RV 𝜒𝜒∗ is the total volume of losing 

customers within arbitrary regeneration cycle, 𝑁𝑁−1 ∑ 𝑛𝑛𝑗𝑗∗𝑁𝑁
𝑗𝑗=1

𝑎𝑎.𝑠𝑠.
→     𝐄𝐄𝜈𝜈∗, where RV 𝜈𝜈∗ 

means the number of losing customers during a regeneration cycle. It is clear that 
𝜒𝜒∗ = 𝐄𝐄𝜈𝜈∗𝐄𝐄(𝜁𝜁|𝐴𝐴). By similar way, we obtain that 𝑁𝑁−1 ∑ 𝑛𝑛𝑗𝑗𝑁𝑁

𝑗𝑗=1
𝑎𝑎.𝑠𝑠.

→     𝐄𝐄𝜈𝜈, where RV 𝜈𝜈 
means the number of arriving customers on arbitrary regeneration cycle. Then,        
𝐄𝐄𝜁𝜁𝐄𝐄𝜈𝜈 is the mean total volume of arriving customers on arbitrary cycle and we obtain: 

𝑁𝑁−1 ∑ 𝑉𝑉𝑗𝑗∗𝑁𝑁
𝑗𝑗=1

𝐄𝐄𝜁𝜁𝐄𝐄𝜈𝜈
𝑎𝑎.𝑠𝑠.

→     𝑄𝑄loss =
𝐄𝐄(𝜁𝜁|𝐴𝐴)
𝐄𝐄𝜁𝜁 ⋅ 𝐄𝐄𝜈𝜈

∗

𝐄𝐄𝜈𝜈 = 𝐄𝐄(𝜁𝜁|𝐴𝐴)
𝐄𝐄𝜁𝜁 𝑃𝑃loss.   

Hence, 𝑄𝑄loss ≥ 𝑃𝑃loss, if 𝐄𝐄(𝜁𝜁|𝐴𝐴) ≥ 𝐄𝐄𝜁𝜁 = 𝜑𝜑1, i.e. the mean volume of losing 
customers is equal or greater than the mean volume of arbitrary ones. It is clear that 
𝑄𝑄loss = 𝑃𝑃loss, if the loss of a customer does not depend on his volume. 

It was proved [20] that the relation 𝑃𝑃loss = 1 − (1 − 𝑝𝑝0 ) 𝜌𝜌⁄  holds for one-server 
systems when service time does not depend on customer’s volume, and the relation 
𝑄𝑄loss=1 − (1 − 𝑝𝑝0 ) 𝜌𝜌⁄  holds when service time is proportional to customer’s volume. 
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We can obtain loss characteristics in explicit form for some queueing systems 
with random volume customers. E.g. from relation (11), we can calculate probability 
𝑃𝑃loss (see relation (6)) for system M/M/1/(∞,V) with independent RVs 𝜁𝜁 and 𝜉𝜉, when 
RV 𝜁𝜁 is distributed exponentially. The same formula takes place for processor sharing 
system with exponential customer’s length1 distribution (with parameter 𝜇𝜇) and 
independent exponentially distributed customer’s volume (with parameter f). For both 
these systems, we can obtain the following relation for 𝑄𝑄loss (using relation (12)) [17]: 

𝑄𝑄loss =
𝑝𝑝0𝑒𝑒−𝑓𝑓𝑓𝑓

𝜌𝜌 [(1 + 𝜌𝜌)𝑒𝑒𝜌𝜌𝜌𝜌𝜌𝜌 − 1],                                   (13) 

where 𝑝𝑝0 is determined by relation (5), 𝜌𝜌 = 𝑎𝑎 𝜇𝜇⁄ . 
If, in processor sharing system, customer’s volume has an exponential distribution 

with parameter f and customer’s length is proportional to his volume (𝜉𝜉 = 𝑐𝑐𝜁𝜁 , 𝑐𝑐 > 0), 
we obtain [17]: 

𝑃𝑃loss = 𝑝𝑝0𝑒𝑒−𝜌𝜌𝜌𝜌cosh(√𝜌𝜌𝑓𝑓𝑓𝑓),                                (14) 

𝑄𝑄loss =
𝑝𝑝0𝑒𝑒−𝑓𝑓𝑓𝑓

√𝜌𝜌 [sinh(√𝜌𝜌𝑓𝑓𝑓𝑓) + √𝜌𝜌cosh(√𝜌𝜌𝑓𝑓𝑓𝑓)],                       (15) 

where 𝜌𝜌 = 𝑎𝑎𝑐𝑐 𝑓𝑓⁄  and 

𝑝𝑝0 =

{ 
 
  

1 − 𝜌𝜌
1 − √𝜌𝜌𝑒𝑒−𝜌𝜌𝜌𝜌[sinh(√𝜌𝜌𝑓𝑓𝑓𝑓) + √𝜌𝜌cosh(√𝜌𝜌𝑓𝑓𝑓𝑓)]

, if 𝜌𝜌 ≠ 1,

4
3 + 2𝑓𝑓𝑓𝑓 + 𝑒𝑒−2𝜌𝜌𝜌𝜌 ,                       if 𝜌𝜌 = 1.

 

 
For systems with 𝑓𝑓 < ∞ and dependent RVs 𝜁𝜁 and 𝜉𝜉 , we, as a rule, cannot exactly 

determine loss characteristics. An exception are some models without waiting places, 
e.g. M/G/n/(0, V) or processor sharing systems  [22], [23]. But, in this case, we often 
can estimate these characteristics with the help of models with unlimited buffer space. 

Let QS be the system with Poisson arrival process and without any limitations 
(there are no losses in it). Let QS𝜌𝜌 be the system, which differs from QS in limitation 
(by V, 𝑓𝑓 < ∞) of buffer space capacity, only. Assume that steady state exists for both 
systems. Denote by 𝐷𝐷(𝑥𝑥) and 𝐷𝐷𝜌𝜌(𝑥𝑥) DFs of the steady-state total volume in systems 
QS and QS𝜌𝜌, respectively.  

It can be proved (see e.g. [17]) that inequality 𝐷𝐷(𝑥𝑥) ≤ 𝐷𝐷𝜌𝜌(𝑥𝑥) holds for all real x. 
Then, we obtain the following inequalities: 

𝑃𝑃loss = 1 − ∫ 𝐷𝐷𝜌𝜌(𝑓𝑓 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)
𝜌𝜌
0 ≤ 1 − ∫ 𝐷𝐷(𝑓𝑓 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)𝜌𝜌

0 = 𝑃𝑃loss∗ , 
𝑄𝑄loss = 1 −

1
𝜑𝜑1
∫ 𝑥𝑥𝐷𝐷𝜌𝜌(𝑓𝑓 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)
𝜌𝜌
0 ≤ 1 − 1

𝜑𝜑1
∫ 𝑥𝑥𝐷𝐷(𝑓𝑓 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)𝜌𝜌
0 = 𝑄𝑄loss∗ . 

 

1 In a processor sharing system, service time of the customer, under condition that there are no other 
customers in the system during his service, is called customer’s length (see e.g. [20]). 
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We can obtain loss characteristics in explicit form for some queueing systems 
with random volume customers. E.g. from relation (11), we can calculate probability 
𝑃𝑃loss (see relation (6)) for system M/M/1/(∞,V) with independent RVs 𝜁𝜁 and 𝜉𝜉, when 
RV 𝜁𝜁 is distributed exponentially. The same formula takes place for processor sharing 
system with exponential customer’s length1 distribution (with parameter 𝜇𝜇) and 
independent exponentially distributed customer’s volume (with parameter f). For both 
these systems, we can obtain the following relation for 𝑄𝑄loss (using relation (12)) [17]: 

𝑄𝑄loss =
𝑝𝑝0𝑒𝑒−𝑓𝑓𝑓𝑓

𝜌𝜌 [(1 + 𝜌𝜌)𝑒𝑒𝜌𝜌𝜌𝜌𝜌𝜌 − 1],                                   (13) 

where 𝑝𝑝0 is determined by relation (5), 𝜌𝜌 = 𝑎𝑎 𝜇𝜇⁄ . 
If, in processor sharing system, customer’s volume has an exponential distribution 

with parameter f and customer’s length is proportional to his volume (𝜉𝜉 = 𝑐𝑐𝜁𝜁 , 𝑐𝑐 > 0), 
we obtain [17]: 

𝑃𝑃loss = 𝑝𝑝0𝑒𝑒−𝜌𝜌𝜌𝜌cosh(√𝜌𝜌𝑓𝑓𝑓𝑓),                                (14) 

𝑄𝑄loss =
𝑝𝑝0𝑒𝑒−𝑓𝑓𝑓𝑓

√𝜌𝜌 [sinh(√𝜌𝜌𝑓𝑓𝑓𝑓) + √𝜌𝜌cosh(√𝜌𝜌𝑓𝑓𝑓𝑓)],                       (15) 

where 𝜌𝜌 = 𝑎𝑎𝑐𝑐 𝑓𝑓⁄  and 

𝑝𝑝0 =
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1 − 𝜌𝜌
1 − √𝜌𝜌𝑒𝑒−𝜌𝜌𝜌𝜌[sinh(√𝜌𝜌𝑓𝑓𝑓𝑓) + √𝜌𝜌cosh(√𝜌𝜌𝑓𝑓𝑓𝑓)]

, if 𝜌𝜌 ≠ 1,

4
3 + 2𝑓𝑓𝑓𝑓 + 𝑒𝑒−2𝜌𝜌𝜌𝜌 ,                       if 𝜌𝜌 = 1.

 

 
For systems with 𝑓𝑓 < ∞ and dependent RVs 𝜁𝜁 and 𝜉𝜉 , we, as a rule, cannot exactly 

determine loss characteristics. An exception are some models without waiting places, 
e.g. M/G/n/(0, V) or processor sharing systems  [22], [23]. But, in this case, we often 
can estimate these characteristics with the help of models with unlimited buffer space. 

Let QS be the system with Poisson arrival process and without any limitations 
(there are no losses in it). Let QS𝜌𝜌 be the system, which differs from QS in limitation 
(by V, 𝑓𝑓 < ∞) of buffer space capacity, only. Assume that steady state exists for both 
systems. Denote by 𝐷𝐷(𝑥𝑥) and 𝐷𝐷𝜌𝜌(𝑥𝑥) DFs of the steady-state total volume in systems 
QS and QS𝜌𝜌, respectively.  

It can be proved (see e.g. [17]) that inequality 𝐷𝐷(𝑥𝑥) ≤ 𝐷𝐷𝜌𝜌(𝑥𝑥) holds for all real x. 
Then, we obtain the following inequalities: 

𝑃𝑃loss = 1 − ∫ 𝐷𝐷𝜌𝜌(𝑓𝑓 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)
𝜌𝜌
0 ≤ 1 − ∫ 𝐷𝐷(𝑓𝑓 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)𝜌𝜌

0 = 𝑃𝑃loss∗ , 
𝑄𝑄loss = 1 −

1
𝜑𝜑1
∫ 𝑥𝑥𝐷𝐷𝜌𝜌(𝑓𝑓 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)
𝜌𝜌
0 ≤ 1 − 1

𝜑𝜑1
∫ 𝑥𝑥𝐷𝐷(𝑓𝑓 − 𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)𝜌𝜌
0 = 𝑄𝑄loss∗ . 

 

1 In a processor sharing system, service time of the customer, under condition that there are no other 
customers in the system during his service, is called customer’s length (see e.g. [20]). 
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As it follows from these inequalities, the values 𝑃𝑃loss
∗  and 𝑄𝑄loss

∗  can be interpreted 
as upper boundaries for 𝑃𝑃loss and 𝑄𝑄loss, respectively, when DF 𝐷𝐷(𝑥𝑥) is known. 

Unfortunately, calculation of these characteristics is often very complicated, 
because we have function 𝐷𝐷(𝑥𝑥) very rarely in explicit form. For this function 
approximation, we often can use incomplete Gamma function 𝛾𝛾(𝑝𝑝, 𝑏𝑏𝑥𝑥) and Gamma 
function 𝛤𝛤(𝑝𝑝) = 𝛾𝛾(𝑝𝑝, ∞). E.g. in both inequalities, we sometimes can approximate 
𝐷𝐷(𝑥𝑥) by the function [13]: 

𝐷𝐷∗(𝑥𝑥) = 𝑝𝑝0 + (1 − 𝑝𝑝0) 𝛾𝛾(𝑝𝑝, 𝑏𝑏𝑥𝑥)
𝛤𝛤(𝑝𝑝) . 

The values of parameters p and b we choose so that the first and second moments 
of the approximate distribution are equal to the first (𝛿𝛿1) and second (𝛿𝛿2) moments 
of DF 𝐷𝐷(𝑥𝑥). Then, we have: 

𝑝𝑝 = 𝛿𝛿1
2

(1 − 𝑝𝑝0)𝛿𝛿2 − 𝛿𝛿1
2 , 𝑏𝑏 = (1 − 𝑝𝑝0)𝛿𝛿1

(1 − 𝑝𝑝0)𝛿𝛿2 − 𝛿𝛿1
2 . 

E.g., if RV 𝜁𝜁 is absolute continuous, we obtain for 𝑄𝑄loss
∗  the following 

approximate relation [24]: 

𝑄𝑄loss
∗ ≈ 1 − 1

𝜑𝜑1
∫ 𝑥𝑥 [𝑝𝑝0 + (1 − 𝑝𝑝0) 𝛾𝛾(𝑝𝑝, 𝑏𝑏(𝑉𝑉 − 𝑥𝑥))

𝛤𝛤(𝑝𝑝) ]
𝑉𝑉

0
𝑙𝑙(𝑥𝑥)𝑑𝑑𝑥𝑥, 

where 𝑙𝑙(𝑥𝑥) is density of RV 𝜁𝜁 . To calculate 𝑃𝑃loss
∗  and 𝑄𝑄loss

∗ , we can use methods of 
numerical integration (see e.g. [25]).  

5. Analog of Little’s Formula 
Little’s formula 𝐄𝐄𝜂𝜂 = 𝜆𝜆𝐄𝐄𝑣𝑣, where 𝜂𝜂 is number of customers present in the system in 
steady state, 𝜆𝜆 is intensity of (stationary) arrival process, v is sojourn time of a 
customer in the system, is one of the most significant results of classical queueing 
theory. It holds for arbitrary steady-state system without losing of customers. 

Consider an arbitrary queueing system with random volume customers. Assume 
that RV 𝜁𝜁 means customer’s volume and 𝜉𝜉 his service time. Denote by 𝛼𝛼11 = 𝐄𝐄(ζξ) 
the mixed moment of (1+1)th order of RVs 𝜁𝜁 and 𝜉𝜉 . Assume that arrival process is 
stationary with intensity 𝜆𝜆. Let w be queueing time of a customer, hence,                       
𝑣𝑣 = 𝑤𝑤 + 𝜉𝜉 ,where RVs w and 𝜉𝜉 are independent. Let 𝜎𝜎 be the total volume of 
customers present in the system in steady state. It was proved (see [26], [27]) that the 
following relation named an analog of Little’s formula holds: 

𝐄𝐄𝜎𝜎 = 𝜆𝜆(𝐄𝐄𝑤𝑤 ⋅ 𝐄𝐄𝜁𝜁 + 𝐄𝐄(𝜁𝜁 𝜉𝜉)).                                         (16) 

Consider, as an example, two steady-state systems of M/M/1/∞ type: QS1 and QS2. 
Let a be parameter (intensity) of arrival process in both systems. Assume that 
customer’s volume is distributed exponentially with parameter f in each of them, i.e. 
𝐿𝐿(𝑥𝑥) = 𝐏𝐏{𝜁𝜁 < 𝑥𝑥} = 1 − 𝑒𝑒−𝑓𝑓𝑓𝑓. Assume that customer’s volume and service time are 
independent in QS1. Denote by 𝜇𝜇 parameter of service time in it, i.e. 𝐵𝐵1(𝑡𝑡) = 1 −



32

JIOS, VOL. 45. NO. 1 (2021), PP. 21-38

TIKHONENKO AND ZIÓŁKOWSKI QUEUEING SYSTEMS WITH RANDOM VOLUME… 

  

𝑒𝑒−𝜇𝜇𝜇𝜇. Assume that, in QS2, service time is proportional to customer’s volume:            
𝜉𝜉 = 𝑐𝑐𝑐𝑐 , 𝑐𝑐 > 0. Then, we have for this system: 

𝐵𝐵2(𝑡𝑡) = 𝐏𝐏{𝜉𝜉 < 𝑡𝑡} = 𝐏𝐏{𝑐𝑐𝑐𝑐 < 𝑡𝑡} = 𝐏𝐏{𝑐𝑐 < 𝑡𝑡 𝑐𝑐⁄ } = 1 − 𝑒𝑒−𝑓𝑓𝜇𝜇 𝑐𝑐⁄ . 
Assume that equality 𝜇𝜇 = 𝑓𝑓 𝑐𝑐⁄  holds. Then, we obtain 𝐵𝐵1(𝑡𝑡) = 𝐵𝐵2(𝑡𝑡). It means 

that the systems QS1 and QS2 are identical from classical queueing theory point of 
view, i.e. distributions of all RVs characterizing these systems (e.g. queueing time, 
sojourn time, number of customers present in the system) are the same in both 
systems. But this assertion becomes wrong for mean values 𝐄𝐄𝜎𝜎(1)and 𝐄𝐄𝜎𝜎(2) of total 
volumes for systems QS1 and QS2, respectively. 

Indeed, RVs 𝑐𝑐 and 𝜉𝜉 are independent in QS1. Then, for their mixed moment 𝛼𝛼11
(1), 

we obtain: 

𝛼𝛼11
(1) = 𝐄𝐄(𝑐𝑐𝜉𝜉) = 𝐄𝐄𝑐𝑐 ⋅ 𝐄𝐄𝜉𝜉 = (𝑓𝑓𝜇𝜇)−1. 

Classical characteristic 𝐄𝐄𝑤𝑤 is the same for both systems. It is known [3], [5] that 
𝐄𝐄𝑤𝑤 = 𝜌𝜌 (⁄ 𝜇𝜇(1 − 𝜌𝜌)), where 𝜌𝜌 = 𝑎𝑎 𝜇𝜇⁄ = 𝑎𝑎𝑐𝑐 𝑓𝑓⁄ . Then, for system QS1, we have from 
relation (16): 

𝐄𝐄𝜎𝜎(1) = 𝑎𝑎 [ 𝜌𝜌
𝜇𝜇(1 − 𝜌𝜌) ⋅ 1

𝑓𝑓 + 1
𝑓𝑓 ⋅ 1

𝜇𝜇] = 1
𝑓𝑓 ⋅ 𝜌𝜌

1 − 𝜌𝜌 . 

For mixed moment 𝛼𝛼11
(2) of the system QS2,we have: 

𝛼𝛼11
(2) = 𝐄𝐄(𝑐𝑐 𝜉𝜉) = 𝐄𝐄(𝑐𝑐 ⋅ 𝑐𝑐𝑐𝑐) = 𝑐𝑐𝐄𝐄𝑐𝑐2. 

For the second moment 𝐄𝐄𝑐𝑐2 of customers’ volume, we easily obtain 𝐄𝐄𝑐𝑐2 = 2 𝑓𝑓2⁄  
and finally have: 

𝐄𝐄𝜎𝜎(2) = 𝑎𝑎 [ 𝜌𝜌
𝜇𝜇(1 − 𝜌𝜌) ⋅ 1

𝑓𝑓 + 2𝑐𝑐
𝑓𝑓2] = 1

𝑓𝑓 ⋅ 𝜌𝜌(2 − 𝜌𝜌)
1 − 𝜌𝜌 . 

Therefore, mean total volume is 2 − 𝜌𝜌 times greater in the system QS2. It is 
intuitively clear, because customers of a greater volume are served for a longer time 
in this system.  

This simple example shows that we have to take into account the dependence 
between RVs 𝑐𝑐 and 𝜉𝜉 , if we want correctly determine buffer space capacity while 
communication center (router) designing of a computer or telecommunication network.   

6. Examples of Calculations of Loss Characteristics 
Now, we shall present some exemplary calculations of loss characteristics for the 
chosen queueing systems with random volume customers. 

6.1. Processor sharing system M/M/1/(∞,V)-EPS 

Consider processor sharing system in which customer’s volume is distributed 
exponentially with parameter f . We shall analyze two versions of this system. In first 
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𝑒𝑒−𝜇𝜇𝜇𝜇. Assume that, in QS2, service time is proportional to customer’s volume:            
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volumes for systems QS1 and QS2, respectively. 

Indeed, RVs 𝑐𝑐 and 𝜉𝜉 are independent in QS1. Then, for their mixed moment 𝛼𝛼11
(1), 

we obtain: 

𝛼𝛼11
(1) = 𝐄𝐄(𝑐𝑐𝜉𝜉) = 𝐄𝐄𝑐𝑐 ⋅ 𝐄𝐄𝜉𝜉 = (𝑓𝑓𝜇𝜇)−1. 

Classical characteristic 𝐄𝐄𝑤𝑤 is the same for both systems. It is known [3], [5] that 
𝐄𝐄𝑤𝑤 = 𝜌𝜌 (⁄ 𝜇𝜇(1 − 𝜌𝜌)), where 𝜌𝜌 = 𝑎𝑎 𝜇𝜇⁄ = 𝑎𝑎𝑐𝑐 𝑓𝑓⁄ . Then, for system QS1, we have from 
relation (16): 

𝐄𝐄𝜎𝜎(1) = 𝑎𝑎 [ 𝜌𝜌
𝜇𝜇(1 − 𝜌𝜌) ⋅ 1

𝑓𝑓 + 1
𝑓𝑓 ⋅ 1

𝜇𝜇] = 1
𝑓𝑓 ⋅ 𝜌𝜌

1 − 𝜌𝜌 . 

For mixed moment 𝛼𝛼11
(2) of the system QS2,we have: 

𝛼𝛼11
(2) = 𝐄𝐄(𝑐𝑐 𝜉𝜉) = 𝐄𝐄(𝑐𝑐 ⋅ 𝑐𝑐𝑐𝑐) = 𝑐𝑐𝐄𝐄𝑐𝑐2. 

For the second moment 𝐄𝐄𝑐𝑐2 of customers’ volume, we easily obtain 𝐄𝐄𝑐𝑐2 = 2 𝑓𝑓2⁄  
and finally have: 

𝐄𝐄𝜎𝜎(2) = 𝑎𝑎 [ 𝜌𝜌
𝜇𝜇(1 − 𝜌𝜌) ⋅ 1

𝑓𝑓 + 2𝑐𝑐
𝑓𝑓2] = 1

𝑓𝑓 ⋅ 𝜌𝜌(2 − 𝜌𝜌)
1 − 𝜌𝜌 . 

Therefore, mean total volume is 2 − 𝜌𝜌 times greater in the system QS2. It is 
intuitively clear, because customers of a greater volume are served for a longer time 
in this system.  

This simple example shows that we have to take into account the dependence 
between RVs 𝑐𝑐 and 𝜉𝜉 , if we want correctly determine buffer space capacity while 
communication center (router) designing of a computer or telecommunication network.   

6. Examples of Calculations of Loss Characteristics 
Now, we shall present some exemplary calculations of loss characteristics for the 
chosen queueing systems with random volume customers. 

6.1. Processor sharing system M/M/1/(∞,V)-EPS 

Consider processor sharing system in which customer’s volume is distributed 
exponentially with parameter f . We shall analyze two versions of this system. In first 

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES 
 

  

of them (QS1), customer’s length is independent on his volume and is exponentially 
distributed with parameter μ. In second one (QS2), customer’s length is proportional 
to his volume (𝜉𝜉 = 𝑐𝑐𝑐𝑐, 𝑐𝑐 > 0) i.e. it is distributed exponentially with parameter 𝑓𝑓 𝑐𝑐⁄ . 
If we assume that 𝜇𝜇 = 𝑓𝑓 𝑐𝑐⁄ , we obtain that the systems QS1 and QS2 become identical 
from the classical queueing theory point of view. But, of course, loss characteristics 
are not the same for these systems, because the dependence between RVs 𝑐𝑐 and 𝜉𝜉 has 
a substantial influence on their values. Indeed, in Sections 3 and 4, we obtained 
explicit relations for loss characteristics of the systems QS1 (relations (6) and (13)) 
and QS2 (relations (14) and (15)). Now, we present some numerical computations 
under assumption that 𝑎𝑎 = 1, 𝑓𝑓 = 2 for both systems, 𝜇𝜇 = 2 for QS1 and 𝑐𝑐 = 1 for  
QS2, i.e. 𝜌𝜌 = 0.5 for both systems. The results of computations are presented in       
Fig. 3 (for QS1) and Fig. 4 (for QS2). 
 

           𝑃𝑃loss, 𝑄𝑄loss 

 
                                                                                                                               V 

Fig. 3. Loss characteristics for system M/M/1/(∞,V)-EPS with independent customer’s 

6.2. System M/M/1/(∞,V) 

Consider single-server queueing system in which customer’s volume is distributed 
exponentially with parameter f . We shall also analyze two versions of this system 
(QS1 and QS2). In the first of them, customer’s service time is independent of his 
volume and distributed exponentially with parameter 𝜇𝜇. In the second one, service 
time is proportional to customer’s volume (𝜉𝜉 = 𝑐𝑐𝑐𝑐). If we assume that 𝜇𝜇 = 𝑓𝑓 𝑐𝑐⁄ , these 
two models are also equivalent from the classical point of view. 
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       𝑃𝑃loss, 𝑄𝑄loss 

 
                                                                                                                V   
Fig. 4. Loss characteristics for system M/M/1/(∞,V)-EPS with customer’s 

length proportional to his volume 

It is clear that we can’t calculate exact loss characteristics for the second version 
of the system, because its DF 𝐷𝐷𝑉𝑉(𝑥𝑥) is unknown in explicit form. But, for both 
versions, we can calculate approximations of 𝐷𝐷𝑉𝑉(𝑥𝑥) (see Section 4). These 
approximations are based on the use of incomplete gamma function with parameters 
that depend on the values of the first (𝛿𝛿1) and second (𝛿𝛿2)  moments of analogous 
system M/M/1/∞ with unlimited buffer space, i.e. 𝑉𝑉 = ∞(see Section 3), under 
assumption 𝜌𝜌 = 𝑎𝑎 𝜇𝜇⁄ = ac 𝑓𝑓⁄ < 1. For system QS1 from relation (10), we easily 
obtain: 

𝜹𝜹𝟏𝟏 =
𝝆𝝆
𝒇𝒇 ⋅

𝟏𝟏
𝟏𝟏 − 𝝆𝝆 , 𝜹𝜹𝟐𝟐 =

𝟐𝟐𝝆𝝆
𝒇𝒇𝟐𝟐 ⋅

𝟏𝟏
(𝟏𝟏 − 𝝆𝝆)𝟐𝟐 . 

For system QS𝟐𝟐, we have analogously from relation (8):  

𝛿𝛿1 =
𝜌𝜌
𝑓𝑓 ⋅

2 − 𝜌𝜌
1 − 𝜌𝜌 , 𝛿𝛿2 =

2𝜌𝜌
𝑓𝑓2 ⋅

3 + 𝜌𝜌3 − 𝜌𝜌2 − 2𝜌𝜌
(1 − 𝜌𝜌)2 . 

Now, we present some numerical computations. Assume that 𝑎𝑎 = 1, 𝑓𝑓 = 2. 
Then, 𝜌𝜌 = 0.5. The results of calculation for system QS1 are presented in Fig. 5. 
Proper results for QS𝟐𝟐 are shown in Fig. 6. 

Obtained numerical results show that a character of dependency between 
customer’s service time and his volume has substantial influence on estimators of loss 
characteristics, and we have to take it into account during the process of computer 
systems designing. E.g. if we want to design computer system having the same input 
characteristics and want to have maximal volume unit loss probability less than 10−4, 
then, in the case of QS1, we have to set value V at least equal to 10, and, in the case 
of QS2, to set it equal at least to 12. Of course, we can see that 𝑄𝑄loss characteristics are 
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length proportional to his volume 

It is clear that we can’t calculate exact loss characteristics for the second version 
of the system, because its DF 𝐷𝐷𝑉𝑉(𝑥𝑥) is unknown in explicit form. But, for both 
versions, we can calculate approximations of 𝐷𝐷𝑉𝑉(𝑥𝑥) (see Section 4). These 
approximations are based on the use of incomplete gamma function with parameters 
that depend on the values of the first (𝛿𝛿1) and second (𝛿𝛿2)  moments of analogous 
system M/M/1/∞ with unlimited buffer space, i.e. 𝑉𝑉 = ∞(see Section 3), under 
assumption 𝜌𝜌 = 𝑎𝑎 𝜇𝜇⁄ = ac 𝑓𝑓⁄ < 1. For system QS1 from relation (10), we easily 
obtain: 

𝜹𝜹𝟏𝟏 =
𝝆𝝆
𝒇𝒇 ⋅

𝟏𝟏
𝟏𝟏 − 𝝆𝝆 , 𝜹𝜹𝟐𝟐 =

𝟐𝟐𝝆𝝆
𝒇𝒇𝟐𝟐 ⋅

𝟏𝟏
(𝟏𝟏 − 𝝆𝝆)𝟐𝟐 . 

For system QS𝟐𝟐, we have analogously from relation (8):  

𝛿𝛿1 =
𝜌𝜌
𝑓𝑓 ⋅

2 − 𝜌𝜌
1 − 𝜌𝜌 , 𝛿𝛿2 =

2𝜌𝜌
𝑓𝑓2 ⋅

3 + 𝜌𝜌3 − 𝜌𝜌2 − 2𝜌𝜌
(1 − 𝜌𝜌)2 . 

Now, we present some numerical computations. Assume that 𝑎𝑎 = 1, 𝑓𝑓 = 2. 
Then, 𝜌𝜌 = 0.5. The results of calculation for system QS1 are presented in Fig. 5. 
Proper results for QS𝟐𝟐 are shown in Fig. 6. 

Obtained numerical results show that a character of dependency between 
customer’s service time and his volume has substantial influence on estimators of loss 
characteristics, and we have to take it into account during the process of computer 
systems designing. E.g. if we want to design computer system having the same input 
characteristics and want to have maximal volume unit loss probability less than 10−4, 
then, in the case of QS1, we have to set value V at least equal to 10, and, in the case 
of QS2, to set it equal at least to 12. Of course, we can see that 𝑄𝑄loss characteristics are 
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greater than 𝑃𝑃loss. Numerical computations of loss characteristics and other 
performance ones for various types of queueing systems with random volume 
customers (also with non-identical servers) can be found in [23], [28] and [29]. 
 

                     𝑃𝑃loss∗ , 𝑄𝑄loss∗  

 
                                                                                                                              V 

Fig. 5. Loss characteristics for system M/M/1/(∞,V) with independent customer’s 
volume and his service time (approximation) 

                    𝑃𝑃loss∗ , 𝑄𝑄loss∗  

 
                                                                                                                                                V 

Fig. 6. Loss characteristics for system M/M/1/(∞,V) with service time proportional 
to customer’s volume (approximation) 

7. Conclusion 
In the paper, we focus on models of queueing systems with random volume customers. 
We show that analysis of these models needs some extensions of mathematical tools 
known from the classical queueing theory. 



36

JIOS, VOL. 45. NO. 1 (2021), PP. 21-38

TIKHONENKO AND ZIÓŁKOWSKI QUEUEING SYSTEMS WITH RANDOM VOLUME… 

  

We also discuss the most important problems that are connected with determining 
of  distribution functions of the customers’ total volume in such models and obtaining 
of their loss characteristics. We additionally present results of investigations for some 
models of such systems. We point out that the character of dependency between 
customer’s volume and his service time has incontestable influence on performance 
characteristics of analyzed models that was shown in some numerical examples. 
Moreover, we present some practical approximation methods of calculating 
estimators of loss characteristics in the case when it is not possible to obtain explicit 
formulae. 

These methods can be used in computer systems designing, when we determine 
needed buffer space capacity of the system. 
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