
173

JIOS, VOL. 35, NO. 2 (2011), PP. 173-196

JIOS, VOL. 35, NO. 2 (2011) SUBMITTED 11/11; ACCEPTED 12/11

The Modeling and Complexity of Dynamical Systems
by Means of Computation and Information Theories

Robert Logozar ROBERT.LOGOZAR@VELV.HR
Polytechnic of Varazdin
J. Krizanica 33, HR-42000 Varazdin, Croatia

Alen Lovrencic ALEN.LOVRENCIC@FOI.HR

Faculty of Organization and Informatics
Pavlinska 2, HR-42000 Varazdin, Croatia

Abstract
We present the modeling of dynamical systems and �nding of their complexity indicators by

the use of concepts from computation and information theories, within the framework of J. P.
Crutch�eld’s theory of �-machines. A short formal outline of the �-machines is given. In this
approach, the dynamical systems are analyzed directly from the time series that is received from
a properly adjusted measuring instrument. The binary strings are parsed through the parse tree,
within which morphologically and probabilistically unique subtrees or morphs are recognized
as system states. The outline and precise interrelation of the information-theoretic entropies and
complexities emanating from the model is given. The paper serves also as a theoretical foundation
for the future presentation of the DSA program that implements the �-machines modeling up to
the stochastic �nite automata level.
Keywords: modeling, dynamical systems, time series, stochastic �nite automata, deterministic
and statistical complexity, epsilon-machines, DSA program.

1. Introduction

In this work we illustrate an innovative approach in which computation theory1 and information
theory are used in analyzing and modeling of dynamical systems. These new and highly success-
ful theories and their concepts are used for investigating the problems that belong in the domain
of natural sciences. The basic idea is to build models "solely" from the data that are received from
the observed systems. Speci�cally, here we expose the J. P. Crutch�eld’s theory of �-machines
as a sub�eld of computational mechanics [2]. The area can be interpreted as an extension of the
statistical mechanics, in the sense that it is concerned with the structural aspects of dynamical
systems that go beyond the mere probabilistic and statistical analysis. The aim is to �nd out regu-
larities, structure and computation analogues of a system by use of the computation theory model
classes as a foundation. And to make the computational models capable for the description of
natural processes, they should be enriched and empowered by introduction of stochasticity and
spatiality as inherent features of natural phenomena.

In the theory of �-machines the hierarchically more and more complex computation entities
are introduced. The fundamentals of the theory applied to the chaotic systems were introduced
as early as 1989 [8], and matured ever since among a group of physicists and computer scientists
interested in describing the structure and complexity of natural systems in a new way. Instead of

1. We use the term Computation Theory as a synonym for the Theory of Computation.
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stating differential equations and using mathematical tools, we analyze the process directly from
a time series emitted by a suitably adjusted measuring instrument. The model is presented by
using automata with added statistical indicators, such as Stochastic Finite Automata in our case,
or String Production machines on the higher level.

Another well known example of the use of computation modeling for the spatially extended
dynamical systems is that of cellular automata— the computation entities that operate in one or
more dimensional spaces [17]. The new concepts led Stephen Wolfram to postulate his Principle
of Computational Equivalence, which can be shortly stated as: All processes, whether they are
produced by human effort or occur spontaneously in nature, can be viewed as computations. Many
underlying natural systems, with the exception of those which are obviously simple, can perform
computations up to a maximal, universal level of computational power, and are equivalent in that
sense [18].

The modeling from a time series and the theory of �-machines were invented primarily to
explore the nonlinear and chaotic dynamical systems, but can serve also as a general modeling
scheme for a much broader range of processes that are generated by natural, technical and human
systems. The new concepts emanating from the computation and information theory can shed
new light on the properties and behavior of dynamical systems and thus af�rm the above stated
Principle. Although the theory of �-machines is now two decades old, it can still be considered
as a novelty. In our opinion, it deserves greater attention of broader scienti�c community.

Another aim of this paper is to give a theoretic foundation for the presentation of Dynamical
Systems Automata (DSA) program that is developed to reconstruct the stochastic �nite automata
from the input binary time series [14]. The description of the program will be given elsewhere.

2. Modeling of dynamical systems

As we have announced in the introduction, the theory of �-machines builds scienti�c models
by seeking for structure within the data itself, and by trying to "understand" the language of a
system with imposing as little presumptions as possible. Following the idea of the principle of the
computational equivalence, we are estimating the system’s computational power and present the
resulting model by means of modi�ed automata from the computation theory.

2.1 Epistemological foundation

Before giving the speci�cs of our approach, let us outline the general features that scienti�c mod-
eling must provide. Those are:

Meaning and Knowledge. The extraction of meaning and knowledge refers to our ability of
recognizing different structures and substructures in the data received from a system, to which
we then appoint a certain "meaning". The meaning emerges from the mutual relationships of the
extracted structures. For example, if some substructure A leads to a substructure B with certainty,
and never leads to some third substructure C, this behavior establishes a certain meaning of A for
us. It can be described as: "A means that the following state is B, and never C". If we succeed
to systematically analyze the meanings found out from system data, we are on a way to build
knowledge about the system.

Compression. The compression of data needed to describe a system is essential for the abstraction
of the important notions in our modeling. Once we can speak in the "language of the substruc-
tures", and not only in the "language of the data" itself, we will be able to describe states and
behaviors of the system in a shortened and abstracted form. The compression enables saving of
the (storage) space and (processing) time complexity of the calculations needed to reproduce the
system generated data, and thus to reduce the model size. The compression is not possible with-
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out introduction of meaning and knowledge, and only all of these together enables the modeler to
infer progressively better and better models.

Prediction. The prediction of system behavior gives us knowledge on the system future states,
based on some initial conditions or presumptions. The ability to predict future states can be
assumed as a part of the knowledge about the system, but is stressed separately because of its
obvious importance. The scienti�c prediction is accurate in the sense that the error or tolerance
margin must be known, and that the model must reproduce the behavior of the real system within
that margin.

The above points also re�ect the key steps in producing a scienti�c theory. For the sake of
completeness, we shall ad a few remarks to the original epistemological theory [6]. A totally
ignorant observer may end up in receiving erroneous or irrelevant data. The necessary epistemo-
logical foundation, which obviously cannot be avoided, can be summarized in the three modeling
prerequisites:
1. The Basic Knowledge. Some basic knowledge about the system under investigation and its
broader context must exist, in order to organize a proper experimental setting and to choose a
relevant measuring instrument with suf�cient precision. Also, the knowledge of broader context
is necessary to exclude the effects that may not be a subject of our interest. On the modeling side,
this basic knowledge presents the modeler’s familiarity with the procedures required for extracting
information out of the collected data and for building the model. In short, we cannot conduct a
successful modeling from the condition of tabula rasa. We can change the modeling tools from
the mathematical to the computational, but we still need to know how to operate with whatever is
used. In the same time we try to make our models with as little theoretical bias as possible. The
measuring can be started with some elementary experimental setup and the modeling with the
simplest computation entities, so that in general we can still begin with rather basic knowledge
and simple data processing.
2. Reduction. The reduction is a common principle in scienti�c modeling that is connected to the
Occam’s razor. When we decide what we shall investigate in our theory and pick an appropriate
measuring instrument to collect data, more often than not we are forced to select what is and what
is not relevant for the system itself, or for the aspects of the system we are interested in. This
includes the elimination of the side phenomena which complicate our investigation or blur the
true picture. For a successful reduction, the basic knowledge of the system and its broader context
is needed.
3. Iterative Adjustment. Except providing the initial experimental setting and the basic knowl-
edge on the processing of the received data, we must also provide an adequate feedback to enable
iterative adjustment of the measuring instrument and improvement of the modeling scheme if
needed. We must track the information quantity of the received data by measuring their entropy,
and see if the entropy can be enlarged by adjusting the instrument. The process is not trivial,
since we must try to exclude the erroneous measurements and �ght the noise introduced into the
communication channel, which can all enlarge the total received information. In our case, the
instrument adjustment has to do with �nding the right partition of the phase space (confer 2.3).
Also, if the obtained model diverges, the modeling scheme should be improved to assure proper
compression of the model.

It is interesting to note how close the theory of �-machines is to the fundamental questions of
philosophy of science. In its genuine attempt to build the model from the collected data itself, it
constantly forces us to question the steps that we make in the process. This is in contrast to the
measuring and modeling process used in the established scienti�c areas, where one seeks the data
of prede�ned physical values within a given theoretical framework. While this classical approach
is, by all means, successful when the basic knowledge is relatively big, when the theoretical
concepts are clear and the equations mathematically solvable, the proposed computation modeling
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can be of great interest in the opposite situations — when the basic knowledge is low, when the
theoretical framework is unknown and the equations avoid analytical solution, or in other words,
when all we have are "raw data" collected from a measuring instrument.

2.2 Dynamical systems

Dynamical systems and their evolution over time are usually described by iterative processes [10].
We start with a general deterministic iterative process with ��� dimensions2 for which the value
of a new point � ������ in time �� after some moment � is given in terms of the previous
point � ��� as

� ������ 	 � �� ���� � � � �� � � � (1)

� is a vector function that presents the equations of motions of an iterative process on its phase
space, which is a set ����� � �

��� of all possible points � ��� , � ������ . The above expres-
sion (1) is known as a difference equation.

It is usual to introduce the discrete time and to change the time variable with discrete nonneg-
ative indices, � � �� �� 	 
 , � � ��� . Now the new point ���� in the system trajectory is
calculated on the basis of the previous point �� as

���� 	 � ���� � � � ��� � (2)

This simpli�ed form of the difference equation (1) is also known as the recurrence relation. At the
time �� 	 � the dynamical system is in its initial point �� called the iteration seed. By denoting
the �-th iteration of the system as ��, we can calculate the �-th trajectory point as

�� 	 �� ���� � (3)

The �-th iteration �� is an identity function �� ��� 	 � .
For 
-dimensional iterative processes we write the scalar version of (2):

���� 	 � ���� � (4)

By knowing the function � ���� , all the equations can be simply implemented on the digital
computers. We can also note that the numerical solving of the system’s differential (difference)
equations is equivalent to the formalism of the iterative processes. As is well known, even the
simplest nonlinear differential equations, like the famous logistic map

���� 	 	���
� ��� � (5)

cannot be solved analytically [11]. On the other hand, the observation of their iterations on
computers is straightforward, and thanks to that the �eld of deterministic chaos �ourished since
the 1970s. Furthermore, according to the agenda of the theory of �-machines, we shall make
another step forward: the discrete computing and descrete-state machines will be used not only to
simulate the evolution of dynamical systems through the above recurrence relations, but also as
the basic blocks of their models.

2. Here the notion of dimensionality is taken in the general and abstract mathematical sense, not necessarily connected
to its direct physical interpretation as the spatiality of dynamical systems. The modeling of spatially extended
systems is brie�y commented in 4).
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Figure 1: The Measuring and Modeling Channel. The modeling results should enable iterative adjustment
of the instrument through the provided feedback (the lines going to the left). After [3].

2.3 The Measuring and Modeling Channel

The whole our endeavor of setting an experiment, adjusting the instrument and building a model
as a representation of a dynamical system, as described in 2.1, can be viewed in the context of the
Measuring and Modeling Channel (Figure 1). In order to make the experimental and modeling
process physically realistic, we must make a few generalizations of the description of deterministic
dynamical systems in 2.2. The system can generally be nonstationary, and hence dependent on
time � or iteration index � . Furthermore, to more realistically depict the real natural and technical
systems, we must account for the noise that can be of inherent nature or added in the information
channel, here formally presented by 
� . Finally, since the goal of our modeling is to �nd out the
system states, instead of points �� we shall de�ne the system by its states �� . The change of
states can then be put in correspondence to the trajectory points in the system’s phase space. The
equation of a general iterative process � that presents a dynamical system in a multidimensional
space governed by a vector function � can now be written as:

���4� 	 � ��� � 
� � �� � � � �� � � � (6a)
���� 	 � ��� � 
� � �� � � � � � (6b)

In the second equation the time is made discrete in the same way as in 2.2.
As is shown in Figure 1, the process state �� must be found out by the measuring instrument

I as a projection S of the state �� on the measuring space R��� (e.g. Euclidean space). The
dimension ��� is equal to the number of the experimental probes of the instrument I , which is
some transducer. As was emphasized in the previous subsection, the instrument is expected to be
adjustable during the experiment.
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Depending on the instrument resolution �, we have a division ������� of the measuring
space on the set of cells (intervals, notches), or simply measuring signals:

������� 	 {
� 
 
� � R���� � � �� }� (7)
��� � � � �� � �
�� 	 {�� 
� � � � � �I � 
}� �I 	 � ����� � �

For example if � � 
��� and ��� 	 � , there will be �I 	 
�	 cells. Every cell 
� is
an equivalence class of the set of states �� projected on R��� that are unresolvable for the
given instrument. �� presents the set of all possible indices �� as a set of all possible effective
measurement results.

The function of the instrument I is to �nd out the measuring signal interval or notch 
� to
which the projection S ���� corresponds. This can be written as:

I 
 R��� � � � (8)
I �S ����� 	 � � with S ���� � 
� �

� 	 
� �� ���� �I �

2.4 Time series

The resulting output of the measuring channel is a suitably encoded value of the index � of the
interval 
� . The sequence of such encoded values forms a string of symbols, or a time series.
Thus, instead of tracking the evolution of a dynamical system in its phase space, we read discrete
data from the instrument in a form that can be directly analyzed by computation tools like the
parse tree.

The set �� with �I elements can be interpreted simply as a code alphabet A with � 	
���� �A� 	 �I symbols. Thus, the series of measurement values is formally translated into the
series of symbols, i.e. the time series � :

� 	 ���� � � � �� � � � � �� � A � (9)

Within the time series � the substrings � can be analyzed as words of some formal language,
as will be done in 4. The substrings are taken out of the received strings according to some criteria,
and this will result in the investigation of the language transmitted by the process. The alphabet
A can be arbitrary, but the most elementary and the most computationally appealing choice is
that of binary alphabet. In order that our instrument transmits directly in the binary form with the
alphabet A 	 {�� 
}� the measuring partition of a 1-dim phase space should also be binary, with
only two measuring intervals 
� � � 	 �� 
 . For example, a coarse, binary, partition of the unity
interval is { ��� �� � ��� 
� } . If � is set as the system critical point �� de�ned by � 0 ���� 	 � ,
usually the generating partition of the phase space is de�ned [14] ch. 2, [11]. For the logistic map
(5) it would be � ' �� 	 
�� . Now the time series like (9) is equivalent to the �nite itinerary of
a dynamical system.

From the course partition we get a coarse measurement. However, if the instrument is well
tuned — that is, if � is adjusted to re�ect the generating partition — for large enough number of
emitted symbols we get arbitrary accurate trajectory points. In this way the �-machine theory is
connected to the symbolic dynamics [10].

2.5 Process as a source of information

The measuring instrument is a source of information which can be information-theoretically an-
alyzed. In connection with the process � we introduce the measure � ��� on its con�guration
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space, and the entropy rate �	 ��� of the random variable � as a measure of information quan-
tity produced by the process during time � needed to accomplish the state measurement. The
usual choice is � 	 
. The instrument I that measures the process � represents the information
channel through which the information �	 ��� is transferred to the model builder. The capacity
of that channel presents the maximal information �
 of the process that can be transmitted by the
instrument:

�
 	 � ������� � (10)

Here ����� is the probability distribution:

����� 	 ���� � �� � � � � ����� � (11)
�� 	 � �
�� � 
� � �� ����� � (12)

�� is the probability that a single measurement from the measuring space R��� results within
the interval 
� . The measure � must be normalized as a probability distribution. �������� is
the Shannon entropy:

� ������� 	 �
����
�
�

�� ��� � �� � (13)

For the instrument to transfer all the information about the process, the Shannon theorem for
the noiseless coding must be valid:

�
 � �	 ��� � (14)

If the above expression is not valid, the instrument will cause the loss of information or equivoca-
tion that is equal to: �	 ��� � �
 � � . This will be the lowest limit of the noise introduced in
the reconstructed model.

To get the information received from the process we observe sequences �� 	 ���� � � � ����
with � symbols, which are in the context of dynamical systems also called �-cylinders [9]. The
information measure for such a source is de�ned as the entropy of the strings �� per one symbol,
or as the entropy for the next symbol after the �� 
 previous symbols. The two quantities are the
same for the stationary ergodic processes as � � 	 , and are known as the source entropy rate
�	 [1]:

�	 	 ���
���




�
�
�
��
�
��
��

� (15a)

�	 	 ���
���

�
��� �

�� �������
�
�� ��� |�����

�
� (15b)

��
�
��
�

denotes the probability distribution for the strings of the length � , and �� ��� |�����
denotes the conditional distribution for the appearance of the next symbol �� � A , after the string
���� of � � 
 previous symbols. � is the Shannon entropy over each distribution. The entropy
rate is the "speed" at which the system emits the information, i.e. the average information per
symbol.

3. Complexity measures

The metrics of computation capabilities is generally expressed through the concept of complexity.
The automaton with greater computation capabilities has greater complexity. The source capable
of producing more elaborate and intricate time series is considered to be more complex. If we
observe a general object � described with the vocabulary of some formal language � � then we
talk about the "presentation of � by �”. This can be presented as a scalar product h�|�i of the
vectors h�| and |�i from the mutually dual vector spaces, i.e. the spaces which depict a state of
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the object on one hand, and the words of the chosen language on the other. Our preposition is that
the former ��� can be expressed with the latter ���� The �rst can present the measurements of
the system, and the second our current choice of the modeling class.

Let ���� h�|�i denote the minimal presentation with regard to the vocabulary � . Then the
complexity � ��� is a certain measure of it:

� ��� 	 ||���� h�|�i || � (16)

The complexity de�ned as above depends on the choice of language � , or, in other words, on the
choice of the automata class applied for the modeling. Thus, for example, the presentation and
the corresponding complexity will generally be of different size for a modeling based on the class
of stochastic �nite automata, and for a modeling based on the stack automata.

3.1 Deterministic complexity

To �x the notion of complexity, a standard representation language or computation machine is
needed. The natural choice for the standard computer is Universal Turing Machine (UTM). In
information theory the Kolmogorov-Chaitin (K-C) complexity, also called algorithmic complexity,
� ��� is equal to the length of the shortest program on the UTM that produces the observed �
(or some equivalent of it) as output, and stops the machine. This is written as:

� ��� 	 ���

��� 
 ����
����
�

������ ��	 �� � (17)

In our context the K-C complexity is named deterministic complexity, because the work of
UTM is fully determined, as is the outcome of all the programs run on it. Deterministic complexity
has a property that it is small for the time series which are easy to describe algorithmically. On
the other hand, for randomly generated symbols, it diverges with the length of the series. The K-C
complexity growth ratio converges to the entropy rate (15) for long sequences:




�
×� ����� � � � ����� ��

���
�	 � (18)

so that the previous statement about the K-C complexity divergence can be written as:

� ����� � � � ����� ��
���

� × �	 	 � ��� � (19)

This is a consequence of the formal equivalence of the K-C complexity theory and the in-
formation theory based on the Shannon entropy [1]. The main conceptual novelty of the K-C
complexity comparing to the entropy is that its de�nition is independent of the probability distri-
bution and the system stochasticity. It can be calculated also for the deterministic systems, like
computer programs, thus expanding the notion of the information quantity. But, as shown above,
for stochastic systems with internal randomness that cannot be unriddled by observer, the K-C
complexity does not bring quantitatively new measure of the system information comparing to
the Shannon entropy. For them the divergence of deterministic complexity in (19) may happen
despite of the system’s possible structural (physical) simplicity. The K-C complexity will, be-
sides the true algorithmic complexity of the object—which generally does not depend crucially
on the series length — measure also its stochastic component which is linearly dependent on the
number of symbols. For big � the stochastic component of the complexity prevails over the bits
contributed by the algorithmic complexity. Thus, if a simple but fully stochastic system, like the
coin toss, is run for a long time, it will be immensely complex in the terms of the K-C complexity.

The problem, of course, is in the underlying deterministic concept and the requirement to
search for the shortest program that will accurately reproduce the series � . In the coin toss there
are no deterministic components and the pure randomness prevail (see 3.2 and eq. 20). The end
result is that the shortest program needed to reproduce such a series on the UTM will be the series
itself, and it diverges with the sequence length.
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3.2 Statistical complexity

All dynamical systems that are of interest to us are supposed to be intrinsically unknown. Their
"computation program" is yet to be discovered. With a limited length time series we may never
get the full knowledge of their underlying mechanisms. A system may be deterministic but very
intricate, or can have some inherent source of randomness. Upon that the noise from information
channel will be superimposed, introducing more stochasticity in the model. So we can ask the
following question: Can we �nd a measure of the system structure in which the pure random
processes will not be included?

To answer this, J. P. Crutch�eld proposed statistical complexity [3, 7]. Its main difference
from the deterministic complexity is that the amount of bits used for the computation effort to
simulate randomly generated symbols in � are not accounted for. We can say that we give up
from the (futile) effort of describing the random pattern in a precise, algorithmic, manner. But
nevertheless, the random patterns are statistically analyzed by appropriately modi�ed computer
language tools, as are binary parse trees (see 4.1), and are simulated in the resulting model with
the causal and statistical accuracy (4.2, 4.3).

There are three intuitively clear postulates that de�ne the statistical complexity �	 :

1. It vanishes for the trivial periodic systems, as is for example ���� 	 


 � � � 
 , �	������ 	
� . Such objects are fully monotone and hence structureless. Their statistical complexity is
in compliance with the K-C complexity (� ������ 	 � ).

2. It also vanishes for completely stochastic systems �����:, so that �	 ������� 	 � . Such
systems lack structure and are "simply" random (like the motion of gaseous particles). This
is different from the K-C complexity, which diverges for such systems with the string length
(� ������� 
 � × �	 ).

3. For systems different from the above two boundary cases, the statistical complexity is gen-
erally greater than � , �	 ��� � � . It measures the system structure, and is, again, generally
different from the K-C complexity. Furthermore, since we require �	 ��� to be a contin-
uos and nontrivial function, it must reach its maximum for certain system parameters in
between the two limit cases.

The essential relationship between the deterministic and statistical complexity is given by the
following approximate expression [7]:

� ����� � � � ����� � �	 ����� � � � ����� � � × �	 � (20)

As it was announced, to obtain the statistical complexity the "stochastic bits" must be subtracted
from the K-C complexity, so that only the structurally relevant bits remain. The relationship is
shown in Figure 2 where � ��� and �	 ��� are drawn as arbitrary functions of the process
stochasticity which is expressed by the entropy rate �	 . � ��� rises monotonously with �	 and
does not present qualitatively new information. Contrary to that, �	 ��� has a maximum between
the points of the zero and maximum stochasticity of the process. For the binary alphabet or a
two-state process, as shown on the �gure, �	 ���� 	 
���� which can be considered as ideal
randomness, or random oracle. The maximal complexities for the �-cylinders are � × ���� � ���.

Another suggestive interpretation of the statistical complexity is the following: the statistical
complexity is the minimal quantity of information which is to be gathered in the system’s history
that is suf�cient for optimal prediction of the symbols (bits) in object � with the uncertainty (and
the underlying probabilities of prediction error) that is not bigger than the entropy rate �	 .

If the system entropy is �	 	 ����, it is fully deterministic (case 1 above). No structure needs
to be found in the past since the behavior is fully monotonous, so that we can predict without error
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Figure 2: (a) Deterministic (Kolmogorov-Chaitin) complexity � and (b) Statistical complexity �	 , as
functions of the stochasticity of the process measured by the entropy rate �	�!� [3, 7]. The
maximal value of the complexities is � ���� � , i.e. the string length � multiplied by the maximal
entropy of the alphabet with � symbols, which is 
 ��� for � 	 �.

that the system will stay in the same state forever. On the other hand, for a fully stochastic system
like the coin toss (case 2), the entropy rate is �	 	 
��� � The quantity of information that must
be gathered in the past to predict the future states of the coin toss with the uncertainty of 
 ���
is again �	 ��� 	 � , because the allowed uncertainty is already the maximal possible for the
two-state system. In other words, we can give up searching the structure in the past since there is
none. The system is fully random and the best we can do is to guess its state with the prediction
error of �

� �

The true, structural, complexity lies between these two extremes (case 3). If, for example,
�	 	 ���� ���� we must browse through the system’s past symbols to �nd out its statistical com-
plexity. The past should provide us the knowledge to guess the future state with uncertainty of at
most �	 	 ���� ��� � This entropy corresponds to the two-state probability distribution �� ��� 	
	 ��� 	 �����
�� ���� !� , or the inverse one. Our prediction accuracy must be bigger than
���� ! or, equivalently, the prediction error must be less than ����
�.

The statistical complexity can be formally connected to the computation theory in the same
manner as the K-C complexity. In order to effectively simulate the system randomness, the Turing
machine is upgraded by a "guessing unit" for the generation of random symbols. The new machine
is called "�	� #���-Turing Machine (BTM) and is shown in Figure 3. It has a "particle-velocity
probe" emerged in a heat bath as a genuine source of random numbers. Now we can de�ne the
statistical complexity �	 ��� of a time series � as

�	 ��� 	 ���

��� 
 ����
����
�

������ ��	 �� � (21)

It is equal to the length of the shortest program on the BTM which will produce the output equiv-
alent to � . By introducing the vocabulary vectors |
��i and |
��i for the Universal and
the Bernoulli-Turing Machine, we can summarize the expressions for deterministic and statistic
complexity:

� ��� 	 ||���� h�|
��i || � (22)
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Figure 3: The Bernoulli-Turing Machine is made by adding a source of randomness to the Universal
Turing Machine (UTM).

�	 ��� 	 ||���� h�|
��i || � (23)

The above de�nitions are not immediately useful in practice except in the simple boundary
cases discussed above. Only then it was easy to distinguish between the stochastic and algorithmic
system components. The operational expressions for statistical complexity will emanate from the
concrete reconstruction model and the corresponding stochastic matrices (sec. 4.4).

We can conclude that the statistical complexity is complementary to the K-C complexity and
the Shannon entropy. It brings qualitatively and quantitatively new measure of complexity for
dynamical systems, connecting them explicitly to the computationally-based models.

4. Modeling by �-machines

�-machines are hierarchically structured computation models that resemble the original system
within an accuracy parameter �. In the modern science in�uenced by quantum physics, the exper-
imental error is not just a defect of our measuring devices or a failure of the observing procedure
that could and should be mended somehow. It is a fundamental parameter of every epistemolog-
ical process. Furthermore, the computation science explicates that every computing effort has its
unavoidable error, since it is bounded within the �nite space-time frame.

To apply the theory of formal languages and automata theory to the modeling of the real world
systems, the following three new features must be added [7, 5]:

i. Stochasticity – to account for the system randomness;

ii. Inductive inferring – to include the invention step during modeling;

iii. Spatiality – to enable description of the spatial phenomena in 1D or more dimensional spaces
if needed.
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The requirement (i) is already met on the axiomatic level by introduction of the BTM, and
on the concrete level by the means of Stochastic Finite Automata (SFA) [3, 4], with its formal
explication in [14]. In short, the SFA are obtained from the standard Finite Automata (FA) by
adding the probability for each possible transition. The requirement (iii) is not needed for the
modeling from the time series, but in the modeling of spatial problems. The latter are generally
solved by the concept of connected cells [15], and particularly by the already mentioned cellular
automata [17, 13].

To provide the inductive inferring (ii), the reconstruction of �-machines is hierarchically or-
ganized in the following two steps.

I. Finding of the SFA as the basic modeling blocks, with the following levels:

0. Data string. This is �-th model level on which received data represent themselves. In
practice, we shall always have to limit the number of the received symbols to some �� � � .
The model size is also �� (symbols, bits), the same as the length of the time series. There
are in total ��� different sequences.

1. The parse tree. The tree of the depth (height) $ � �� is built by extracting all the possible
words �� with $ symbols out of the received sequence, and by feeding them into the tree.
With the usual restriction to the binary symbol alphabet, the parse tree becomes a special
kind of binary tree (see 4.1).

2. Stochastic Finite Automata. The SFA are deduced from the trees, by recognizing mor-
phologically and stochastically similar subtrees, called morphs, within the parse tree from
the level 
. The subtrees are of height % with the usual choice % � $�� . The size of the
model is here denoted as a measure obtained from the tensor &� in which the information
on all the system states and their corresponding transitions is contained (see 4.4).

II. Innovative step. If the step I results in a divergent model — despite the use of bigger and
bigger computation resources and enlargement of the model (e.g. by increasing the tree depth
$ ) — then it is necessary to make an innovation step and use a higher computation model with
in�nite memory capacity. However, in accordance to the principle of computational equivalence
(sec. 1) and as shown by the modeling of chaotic systems [8], it need not be the UTM. It can be:

3. String Production Machine (PM), or a type of Stack Automaton (1NnSA, one-way non-
deterministic nested stack automaton). It should be deduced from the SFA class when the
number of the �nite memory automata diverges. The size of the model is proportional to
the number of the string production rules [7, 5].

4.1 The parse tree

The parse tree is a �rst computation step in our modeling scheme. It is a tool for recognizing all
the different words and for providing the statistics necessary for the next step of �nding the SFA.

The binary tree of the �xed depth $ is fed by the words of length $ or $-cylinders

�� 	 ������ � � � ���� � (24)

extracted from the string of �� symbols, following the ideas already exposed in 2.4 and 2.5 [3].
Figure 4 in sec. 5 can serve as an illustration. The modeler tries to make the model minimal by
choosing $ ¿ �� . On the other hand, $ must be big enough to capture all the structure, that is,
longer than the longest correlations in the time series. There are in total �� 	 ���$�
 words
of length $ , each starting with the next symbol in the time series.
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Together with the empty string � and the word �� itself, every word de�nes $�
 pre�xes.
Each pre�x de�nes exactly one tree node. The pre�x � de�nes the root node at the zero depth,
the pre�x �� de�nes the left (right) node if the symbol is � �
� , on the tree depth 
 . The pre�x
���� de�nes one of the four nodes on the tree depth � , etc..., up to the word �� which de�nes
the node on the depth $ � All the nodes presented by the pre�xes of the word �� de�ne the
feed path "����. Since our parse tree is always fed with the words of the same length, all the
leaves are on the same depth $ . There are �� possible different words, and the corresponding
paths and leaves. Every leaf in the tree can either exist or not exist, so that there are ��

� � 

morphologically different trees of depth $ .

During the tree feeding process, if some node on the path "���� does not exist, it is created
and its counter is initialized to 
 . If the node already exists, then the counter is incremented. Thus,
besides the possible correlations which are recognized as different paths to the leaves and recorded
in the morphology of the tree, we also capture a precise statistics of the symbol appearance.

4.2 Causal states

Before moving on to the de�nition of �-machines, the notion of the system and conditional states
must be explicated. The encoded measurements received from an instrument in the form of a time
series � 	 ���� � � � �� � � � � provide the data from which the model states '� :

'� � # 	 {'�� '�� � � � � '�} � (25)

are to be inferred. # is the set of all found states, with ( 	 ���� �#� . This is our model repre-
sentation of the system deterministic and noise components �� , 
� from 2.3. In our modeling
up to the level of SFA, the states '� will correspond to some subtrees of the given depth, found
within the main parse tree.

The goal of the modeler is to �nd out:

i. The unknown system states from the series of measurements � 	 ������ � � � � by assigning
the corresponding automaton states to them;

ii. The possible transitions between the system states by establishing the equivalent transitions
between the automaton states;

iii. The probabilities for the state transitions.

The faithful model will be the one in which the assigned automaton states, the transitions
between them, and the probabilities for the transitions, correspond well to the real states, or at least
simulate them in a way good enough to produce the same or similar (analogous) output strings.
Of course, the real states for closed systems may never be truly discovered, but, by comparison of
the predictions given by the model to the behavior of the real system we can get the �-estimate of
the model quality. This provides a foundation for the necessary rigor in the modeling process.

What follows next is a short review of the crucial de�nitions of the theory of �-machines:
causal states, equivalent states, morphs, and morphological equivalence of states. The original
elaboration of the topic can be found in [3, 9, 7, 4]. Another formal approach to this is given in
[14] ch. 4.

Causal states. For each discrete moment in time � in the observed time series

� 	 � � � ���� ���� �� ���� ���� � � � � (26)

we de�ne the forward string of symbols ��� 	 ���� ���� ���� � � � � presenting the future of the
process, and the backward string ��� 	 � � � ���� ���� �� , presenting its past. For the backward
string ��� , we say that it is a causal state for the forward string ��� .



186

JIOS, VOL. 35, NO. 2 (2011), PP. 173-196

LOGOZAR AND LOVRENCIC THE MODELING AND COMPLEXITY OF DYNAMICAL SYSTEMS...

)�equivalence of states. Two causal states � 	 ��� and �0 	 ���� de�ned by the times �� �0 � � �
are )-equivalent for some ) � � � ) � � � if their conditional probability distributions are equal
within the chosen ) parameter:

� 

�
�0 �


�������� | �� � ������ | �0�
�� � ) �

� ��� � A�� (27)

Morphs. The set ��
��

of all forward strings ��� which are possible from the state '� � # �

��
��

	 { ����� 
 ��������| ��� � � � } � (28)

is called future morph, or simplymorph and is denoted as ���
. The set of all backward sequences

��� which led to the state '� � # :

��
��

	 {��� 
 �������� | ��� � � � } � (29)

is called the past morph.

Morphologically equivalent states. The states which in general need not to be )-equal according
to (27), but have the equal structure of nodes, or simply, equal morphs, are morphologically
equivalent:

'� 

�

'� � (30)

% is the characteristic length parameter of the morph presentation and its approximation level. It
presents the depth of a corresponding subtree within the main parse tree (see 5).

4.3 Formal de�nition of �-machines

Once we have established all the different causal states — by checking the equivalence relation
between them — the temporary evolution of the process is de�ned by transitions from one state to
another. This is described by operator T :

T 
 # ��
���

# � '��� 	 T �'� � �
�
� � � (31)

T is found out by the morph analysis. By reading the conditional probabilities ������ | ��� � , the
full insight into the possible transitions and their probabilities can be obtained. The operator can
be connected to the transition tensor � , which is de�ned by the probabilities for the possible
transitions described for the SFA class (see e.g. [3], [14] ch. 3).

The formal de�nition is now simple: �-machine is an ordered pair �# �T �� , with parameter
� reminding us that it is:

i. A construction dependent on the measuring instruments and its resolution or accuracy ��� � and
the number of experimental probes ��� $

ii. An approximation of the computing structure of the process by means of a certain computation
automaton.

4.4 Complexity measures from the modeling results

Here we shall brie�y sketch how to �nd out the complexity measures from the parameters of the
reconstructed �-machines. The state topological complexity or simply topological complexity ��
of the process can be taken as a �rst approximation. It is derived simply from the size of the state
set [3, 4]:

�� 	 ���� k#k 	 ���� ( � (32)
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where k#k 	 ���� �#� . The topological complexity has the meaning of the average information
needed to establish the process state if the states’ probability distribution is uniform. According to
the theorem of maximal entropy, this is also the maximal information for the set with ( members.

The �-machine reconstruction gives us the operator T and the corresponding transition tensor
� with elements & �

  0 . The elements denote a probability for transition from the SFA state with
index * to the state with index *0, *� *0 	 
� �� � � � � ( , upon reception (emission) of the symbol
� � A , and satisfy the standard normalizing property:

& �
  0 	 � �

�
 � �
�
 �

�
��A

� �
�
 � 	 
 � (33)

Figure 6 and 7 in sec. 5 illustrate such SFAs with transitions marked as directed labeled edges
from one state to another, together with the triggering symbols and transition probabilities. With
the usual choice of the binary alphabet the tensor � is simply the two matrices: & �
� and
& �
� .

The nonzero elements from � form the set + of the SFA graph edges,

+	
�
� 
 � 
 � �

�
 � � �
	

� (34)

From the number of edges we can derive the transition topological complexity �! :

�! 	 ���� k+k � (35)

By summing the tensor elements & �
  0 over all symbols of the alphabet A , we get the elements

&  0 of the transition matrix & . The elements are the total probabilities &  � 	 � � � for a
transition * � *0 regardless of the initiating symbol. The analogous matrix operation is summing
of the & � matrices. This can be summarized as follows:

& 	 �&  0� � &  0 	
�
��A

& �
  0 � & 	

�
��A

& � � (36)

Obviously, the matrix & presents a Markov process transition matrix of dimension ( × ( , with
the row normalization property:



 � &  0 	



 � � � � 	 
 .

Another "rough" complexity measure can be de�ned from the structure of the machine by
disregarding its probability details. In tensor � we exchange the nonzero elements corresponding
to the graph edges with unities, and get the connection tensor �� with elements:

����
�
  0 	

�

� � �

�
 � � �

� � & �
  0 	 � �

� � � A � (37)

From �� we can get the connection matrix

&� 	
�
��A

����
�
  0 � (38)

Now the connection topological entropy ��� is calculated from the principal eigenvalue ,��� of
&� as

��� 	 ���� ,��� �&�� � (39)

��� shows the grow rate of the number of sequences produced (accepted) by our �-machine [3, 4].
The full information-theoretic analysis of our model starts by �nding out the full entropy of

the reconstructed SFA. This is the transition or edge entropy � ���!� of the edge probability
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distribution ��! 	
�
������� �� � � � � �� ����� ��

�
for every existing edge, where � � * 	 
� � � � � ( ,

are the state probabilities (to be determined below). Now the edge entropy is [3, 9]:

� ���!� 	 �
�
 

�
 �

�
��A

� � �
�
 � ���� � � �

�
 � � (40)

This can be expanded to an information-conservation expression:

� ���!� 	 � ��� � � �	 � (41)

where � ��� � is the entropy of the distribution of the SFA states, and �	 is the source entropy
rate (15b). In the terms of our reconstructed machine �	 is a conditional entropy for the next state
*0 and the accepted (emitted) symbol � , given the previous state * :

�	 	 �
�
 

� 
�
 �

�
��A

� �
�
 � ���� � �

�
 � � (42)

The probability distribution �� that gives the probabilities � for the SFA states is most
naturally recognized as the stationary (asymptotic) probability distribution 	���� for the time
invariant Markov processes. It is the crucial statistical parameter de�ned by the condition of
stationarity:

	���� & 	 	���� � (43)

Here 	���� 	 ���� ��� � � � � ��� is a left eigenvector of & with eigenvalue 
 , with its components
being normalized to 1:


�
�
� �� 	 
 .

The entropy � �	����� of this distribution was shown to represent the structural complexity
of the reconstructed �-machine [8, 9], i.e. the statistical complexity �	 , as it was introduced in
3.2:

�	 	 � �	����� � (44)

�	 quanti�es the information stored in the model’s states, or in other words, it gives the amount
of the model’s memory.

In analogy to the statistical complexity, the full entropy � ���!� of the model can be named
edge complexity �!

	 . Now from eq. (41) we have:

�!
	 	 �	 � �	 � (45)

For the Markov chain of states presented by the transition matrix (36), the entropy (rate)
�	�& � is

�	 �& � 	 �
�
 

� 
�
 �

� � � ���� � � � � (46)

It can be shown that the total entropy rate �	 from (42) can be expressed via �	�& � as

�	 	 �	 �& � � �	 �-�� � (47)

The last term presents the remaining uncertainty from the tensor � , that is, the uncertainty for
the same transition * � *0 to be triggered by more than one symbol � � A , with the averaging
being done over all possible state pairs:

�	 �-�� 		 �
�
 

� 
�
 �

� � �
�
��A

� �
�
 � ���� � �

�
 � � (48)
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Figure 4: Feeding of the binary tree. The state of the ��� tree of depth $ 	 �, after it was fed by the
time series � 	 �

�
�

�



�

�
�
���, generated by the rule "no consecutive zeros".
The paths that are allowed by the rule, but are not traversed by the words from the string �, are
denoted by dotted lines.

In (48) - ���  � is the weight factor that connects the probabilities from the tensor � and matrix
& :

� �
�
 � 	 - �

�
 � � � � �

�
��A

- �
�
 � 	 
 � (49)

�	 �-�� may by interpreted as the "symbol-per-transition" entropy, with the upper boundary of
���� ����. This entropy vanishes if every transition * � *0 , *� *0 	 
� �� � � � � ( , is triggered
by only one symbol, as is often the case (see sec. 5). A careful reader will note that then the
connection matrix &� in (38) will have elements not larger than 
.

After eq. 47 the edge complexity (45) can be rewritten as

�!
	 	 �	 � �	 �& � � �	 �-�� � (50)

This equation generally expresses the conservation of information quantities, and in our case, it is
the conservation of complexity measures and entropy rates.

The modeling by �-machines insists on the minimality of the model. If the reconstruction is
successful regarding this criterion, and if the model size ||# || does not diverge with the enlarge-
ment of the cylinder length � , then �	 presents the memory needed for the modeler to predict
the process state with the given �-accuracy.

A newer comprehensive and formal outline of the �-machines theory, which more rigorously
addresses the key issues of the model optimality, uniqueness and its relations to other representa-
tive schemes can be found in [16].

5. A few simple examples

To illustrate the above theoretical concepts and the building of an �-machine up to the SFA level,
we start with a simple but quite general process that includes both, a structure with nonzero com-
plexity, and a source of randomness. It will then be contrasted with a few elementary processes
which generate the periodic sequences, and the purely random time series.
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Figure 5: Subtrees of depth % 	 � found as unique morphs or system states in the parse tree in Fig. 4.
A branch (transition) from a node is designated by a binary symbol leading to the child node, �
for the left and 
 for the right child, and by the transition probability. The subtrees . and �
are morphologically equivalent, but with different transition probabilities upon generation of �
and 
.

5.1 Structure within randomness

Let us consider the time series � emitted by a process "generate 
 if � preceded, otherwise
randomly generate � or 
", or shortly "no consecutive �s",

� 	 �

�
�

�



�

�
�
 ��� � (51)

Its regular expression is
�� � ���
 � 
��� � (52)

where � denotes the choice of equal probability, and asterisk is the Kleene closure.3 This and
similar time series can be generated by the DSA program introduced in section 1.

Here we shall take the tree depth $ 	 �� From the �� symbols in � we can extract in total

% words of length � and parse them through the binary tree of Figure 4. The �rst word de�nes
the path "��

�
� which is marked with the bold line. The second word 

�
� de�nes the 5-th
leaf from the right. The last �-letter word is 
�
�
 � In the true modeling process, much longer
symbol sequences would be required in order to obtain suf�cient statistical relevance.

The subtrees of depth % 	 � will enable tracking of only short correlations, but long enough
for the simple rule of our system (Figure 5). The �rst subtree or morph growing from the root of
the main tree is .. As a �rst morph, it is always unique and it de�nes a new equivalence class.
After emitting � with probability 
�! the system goes from . to ". " has a form different from
., and it also de�nes a new equivalence class. After emitting 
 with probability ��! the process
goes from . to a morphologically equal state because the two subtrees of depth � are equal in
their structure. However, the two morphs have different transition probabilities, as can be proved
by a simple argumentation (see e.g. [14] ch. 4). Hence, that is a new state � .

To connect this with the theory from 4.2, let us repeat that each morph de�nes a class of
equivalence for the past-independent causal state from which it emanates, by having determined
transition possibilities (the morph shape) and their probabilities. By proclaiming the found morphs
(subtrees) to be the system states, the system model in the form of a SFA can be deducted (Figure
6).

3. For some word � consisting of the symbols � from the alphabet A, the Kleene closure is de�ned as �� ���
��� �

� . �� � � is the empty string (word), with no symbols. A� is the set of all possible words of the alphabet
A .



191

JIOS, VOL. 35, NO. 2 (2011), PP. 173-196

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 6: Stochastic Finite Automata for the process "No Consecutive Zeros". The states are circles, the
initial state has an additional inner circle. A transition between states is labeled with the symbol
that initiates it, and with the transition probability.

The above model can also be automatically reconstructed by the DSA program. Besides
showing the engaged nodes and paths, it provides the full statistics of every node of its parse
tree. Also, it enables showing of the found subtrees. If long enough time series are read, the )
parameter from 4.2 can go very small while still exactly reproducing the process (e.g. ) / 
���,
[14] ch. 6).

Formally, we can say that the process "no consecutive zeros" is presented by an �-machine
�# � T �� � with the set of states # 	 {.�"��}, and the operator T , which is fully de�ned by
the corresponding SFA graph in Figure 6. The system starts in the initial state . corresponding to
the subtree .. After � is emitted the system goes to the state ", from where only the deterministic
transition to � is allowed upon emission of 
. From � the system can emit both symbols with
equal probabilities, going either to " after emitting �, or back to � after emitting 
.

The tensor � is presented by the two matrices:

& �
� 	

�

 � �

� �
� � �
� �

� �

�
� � & �
� 	

�

 � � �

�
� � 

� � �

�

�
� �

E.g. the probability for the transition triggered by � from . to " is & �
�
�� 	 �

� , for the transition
triggered by 
 from " to � is & �
�

�� 	 
, etc.
From the number of states and the number of the SFA edges (the nonzero elements in tensor

�), we get the topological complexity �� and the transition topological complexity �!:

�� 	 ���� ||# || 	 ���� ! 	 
�� �� ��� �

�! 	 ���� � 	 ��!�
� ��� �

The topological matrix

&�	

�

 � 
 


� � 

� 
 


�
�

gives the connection topological entropy ��� from its maximal eigenvalue of ,��� 	
�
�

�
� � �

� :

��� 	 ���� 
�%
 � 	 ��%��� ��� �

It is easy to note that . is a transient state, since there is no transition and no "connection"
to its 1st column in � and &� above. The system leaves the state after emitting the �rst symbol
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and never returns back to it. Generally, a system leaves the transient states as soon as it "catches
the phase". Then it turns into the recurrent states that describe its stationary behavior. In our case
the recurrent states " and � form the set #� 	 {"��}. The corresponding recurrent topological
complexity is ���� 	 ���� � 	 
��� �

The statistical properties are summarized in the transition matrix & obtained from eq. (36):

& 	

�

 � �

�
�
�

� � 

� �

�
�
�

�
� � (53)

Here the information about the triggering symbols is lost, and we track just the state transitions.
A straightforward calculation gives the stationary probability distribution (the left eigenvector):

	���� 	

�
��




!
�
�

!

�
� (54)

Again, as a consequence of . being a transient state, its probability in the stationary probability
distribution 	���� is zero: �� 	 �� �.� 	 � . So, we can exclude the state . from the matrix &
and present the system with the recurrent state transition matrix:

&� 	

�
� 

�
�

�
�

�
� (55)

&� has effectively the same eigenvector: 	����� � 	
�
�
� �
�
�

�
, because the transient states do not

contribute to the statistical complexity of the system.
The statistical complexity is now:

�	 �#�T � 	 � �	����� 	 � �	����� ��

� ���
 !� ��� � (56)

After having found the state probabilities, the edge probability distribution follows:

��! 	
�
�" �"��

�
"� � � � � �# �#��

�
#

�
	
�
�× �

� � �×
�
� �

�
� × 
� �� ×

�
� �

�
� ×

�
�

�
	
�
�� �� �� �

�
� �

�
�

�
� (57)

The corresponding entropy (edge complexity) is:

�!
	 	 � ���!� 	 ���� ! 	 
�� �� ��� � (58)

The transitions emanating from the transient states with zero-probability — in our case the two
transitions from the state .— do not contribute to the entropy. The joint state-transition proba-
bilities for the rest ! transitions from the two recurrent states give a uniform distribution and the
complexity �!

	 that is the same as the topological complexity �� .
The entropy rate �	 �& � follows directly from the transition matrix & (or &� ) according to

(46):
�	 �& � 	

�
� ×� ��� 
� � �

� ×�
�
�
� �
�
�

�
	 �
� ��� � (59)

The symbol-per-transition entropy �	 �-�� from (48) is zero, so that, according to (47) we have:

�	 	 �	 �& � � ��%%%� ��� (60)

The same result could be obtained from the limes �	 	 ���
���

�
�
��
�
��
��

� � (15a). The prob-

ability distributions ��
�
��
�

on the tree depth � follow from the probabilities of the nodes in the
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Figure 7: Stochastic Finite Automata for: (a) Period 1 process, (b) Period 2 process, (c) Bernoulli time
series.

parse tree according to the system rules (or by inspecting them in the the parse tree of the DSA
program). From there one calculates the entropies for the �-cylinders. With � 	 
� �� !� �� �� % ,
the values are ���
 !� ������ ������ ����%� ��
��� ��� %� ���, showing the convergence to the
value in (59). Similarly, by applying (15b) and by calculating the conditional entropies for the
next symbol after the �� � 
� previous ones in the same way — that is, directly from the parse
tree — the result �	 	 ��! ��� is obtained immediately for � � �, showing that the system has
the �rst order memory. The results are easily veri�able directly from the system rule, showing the
consistency of the reconstructed machine.

Now we can con�rm the complexity-entropy rate conservation law (45, 50):

�!
	 	 �	 � �	 	 
�� �� ��� � (61)

In this system the statistical complexity prevails over the entropy rate: �	 � �	. Namely, the
former is close to 
 ��� which is the maximal value for the two states. And the latter is diminished
by the fact that the second row in & (the �rst in &� ) is a degenerate distribution with zero entropy
because of the certainty in the " � � transition. Thus the average in (59) is lowered.

By recognizing the deterministic transition, our model correctly distinguished the system’s
inner rule (organization) from the inherent random processes. It also gave us the statistical com-
plexity �	 � ���� ��� as a measure of the system’s memory. Computationally, we need 
 ��� of
memory to record the present recurrent state, and statistically, a bit less because of the prevalence
of the state �.

5.2 Structure from periodicity

Period 1 process is the simplest periodic process, as was already mentioned in 3.2. It can be
described as �� (or 
�), and it generates a fully monotonous sequence ���� � � � (or 



 � � � ).
Such a string de�nes only one path in the parse tree, �lling only the left most (right most) leaf. All
the subtrees that originate from the lower nodes are identical to the whole, degenerate, tree. The
system has just one morph and the corresponding single state. Also, it is fully deterministic. The
SFA of the system is shown in Figure 7a. The trivial transition tensor and matrix & 	 �
� lead to
zero topological, statistical, and all other complexities and entropies that are listed in Table 1.
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Stochastic Finite Automaton (SFA) D y n a m i c a l S y s t e m
Statistical and Information-Theoretic Period � Regular Expression
Quantities (Complexities) 1 2 3 � ��
 � 
��� �� � 
��

Number of states ( 	 ||# || 
 ! � ��� 
 ! 

Number of transient states ( � ||#�|| 0 1 2 �� 
 1 0
Number of recurrent states ||#�|| 1 2 3 � 2 1
Topological complexity �� / bit 0 1.585 2.322 �� ( 1.585 0
Topol. complx. of recurr. st. ��� � / bit 0 1.000 1.585 ��� 1.000 –
Number of SFA edges �!	 ||+ || 1 4 7 !�� � 5 2
Transitional topolog. complx. �!/ bit 0 2.000 2.807 ���! 2.322 1
Topological entropy ��� / bit 0 0 0 0 0.694 1
Statistical complexity �	 / bit 0 1.000 1.585 ��� 0.918 0
Markov chain entr. rate �	 �& � / bit 0 0 0 0 0.667 0
Symb.-per-trans. entr. rt. �	 �-�� / bit 0 0 0 0 0 1
Tot.entr. ��		 �	 �& ���	 �-��� / bit 0 0 0 0 0.667 1
Edge complexity

�
�!

		 �	��	

�
/ bit 0 1.000 1.585 ��� 1.585 1

Table 1: The SFA statistics for: (i) periodical dynamical systems with period n, (ii) for the systems with
a source of randomness, "no consecutive 0s" [ (0+e)(1+10)* ], and for the Bernoulli series of
random 0s and 1s [ (0+1)* ]. The complexities and entropies are in bits. "Logaritmus dualis" is
abbreviated as ���� 	 �� .

Period 2 process is described by the regular expression ��
�� or �
��� which generate the time
series �
�
 � � � or 
�
� � � �. The subsequences from either of them �ll two paths in the parse tree.
There are in total three states corresponding to three morphologically different morphs (subtrees):
the �rst growing from the root node, and the other two growing from the left and the right node
(Figure 7b). After the model catches the phase (decides which of the two series it receives), it
leaves the transient state . and oscillates deterministically between the two recurrent states " and
� . Its topological state and edge complexities are �� 	 ���� ! 	 
�� �� ��� , �! 	 ���� � 	
���� . The transition matrix

& 	

�

 � �

�
�
�

� � 

� 
 �

�
� (62)

leads to the left eigenvalue 	���� 	
�
�� �� �

�
�

�
and the statistical complexity �	 	 
���. The

reduced topological complexity for the recurrent states is the same, ���� 	 
���. The full edge
complexity is also �!

	 	 �	 	 
���, since the entropy rate �	 	 � . The topological entropy is
��� 	 ���� because the topological matrix &� has the principal eigenvalue 
. The vanishing ���

entropy tells us that the growth rate of the number of sequences emitted from the system is zero,
since there are just two different "starting-phase versions" of one and the same periodic sequence.
All these results can be easily veri�ed by following the procedure given for the �rst example.

The analogous conclusions are valid for the general period � processes. From them we ob-
serve the repeating blocks of � symbols 0� 	 ���$ �
�% , with 1 �s and 2 
s , 
 � 1� 2 / � ,
1 � 2 	 � , in which the symbols can be permuted in such a way that the period is not re-
duced. The SFA statistics and complexities for this generalized case are presented in the fourth
column of the Table 1, after our two simple examples and the period-! system. The proof of the
results and further consideration of the periodic systems will be omitted from here. An advanced
information-theoretic elaboration of the periodic sequences is given in [12].
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5.3 Pure randomness

Our last elementary example is the Bernoulli series— the randomly generated �s and 
s with
equal probability, described as �� � 
�� (confer also 3.2). By feeding the words of length $ from
such a series into the parse tree, all the tree nodes on the same level will have equal probability,
and from every node the probability that the next symbol is either � or 
 is 
��. This means that
the resulting SFA has just one state as is shown in Figure 7c. The system topological complexity
�� 	 ����.

The transition tensor can be described with its two matrices � 	
�
& ��� 	
�
�
�

�
� & ��� 	

�
�
�

��
,

which give the topological matrix &� 	 ��� and the topological entropy ��� 	 
���. So,
although there is just one state, the system’s growth rate of the number of sequences it can produce
is maximal for the binary alphabet.

The transition matrix & 	 �
� yields the eigenvector 	���� 	 �
� and the statistical com-
plexity �	 	 ���� � We see no structure in this system, just the randomness. It is the symbol-
per-transition entropy �	 �-�� 	
 ��� that solely contributes to the entropy rate �	 and to the
full edge entropy �!

	 of the model because there is just one state, and the Markov chain entropy
�	 �& � 	 � . The SFA statistics of this "random oracle" can be compared to the statistics of the
"no consecutive zeros" model by inspecting the last two columns of the Table 1.

Similar and several other examples can be found in the references in [2], as well as in the
tutorials and lecture notes that can be found on the same Web site by following the sublinks:
Computational Mechanics and Tutorials.

6. Conclusion

Building of a dynamical system model from a time series by means of computation theory ma-
chines is an iterative and inductive process. It requires an appropriate measuring instrument which
is adjusted in a way to provide the transmission of relevant and suf�cient data, coded in a suit-
able way. Although the basic idea is to build the model from scratch, without many theoretical
presumptions, it is obvious that the basic knowledge is needed for both, the instrument setup and
adjustment, and for the computation of the model parameters. From the (partial) modeling results
the entropy of the received data should be checked. If needed, the measuring instrument should
be readjusted to obtain the maximal quantity of information from the system.

The information received in the form of a time series is then used to build the hierarchical �-
machine model. The build starts with parsing of the symbol strings through the binary tree of the
�xed depth (modeling level 1). From there the stochastic �nite automaton follows (modeling level
2) for all the systems with �nite internal memory. To enable a proper minimization of the model
through �nding of the equivalent states that are probabilistically equal within some ) parameter,
the modeler must provide suf�cient computing resources. Within the framework of �-machines
a new complexity measure is introduced — the statistical complexity. Besides that, several other
information-theoretic quantities follow from the SFA model. They were formally interrelated to
each other in our brief theoretical approach and then illustrated by a few typical examples.

The theoretical foundations of the �-machines modeling that are laid down in this paper should
also serve to the future exposition of the DSA program capabilities and computational aspects.
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