
145

JIOS, VOL. 40, NO. 1 (2016), PP. 145-152

UDC 004.777
Preliminary Communication

JIOS, VOL. 40, NO. 1 (2016) SUBMITTED 10/15; ACCEPTED 03/16

The Investigation of TLC Model Checker Properties

Vadym Viktorovych Shkarupylo vadshkar@yandex.ua
Computer Systems and Networks Department
Zaporizhzhya National Technical University,
Zaporizhzhya, Ukraine

Igor Tomičić igor.tomicic@foi.hr
Faculty of Organization and Informatics
University of Zagreb, Varaždin, Croatia

Kostiantyn Mykolaiovych Kasian konst_k@yahoo.com
Computer Systems and Networks Department
Zaporizhzhya National Technical University,
Zaporizhzhya, Ukraine

Abstract

This paper presents the investigation and comparison of TLC model checking
method (TLA Checker) properties. There are two different approaches to method
usage which are considered. The first one consists of a transition system states
attendance by breadth-first search (BFS), and the second one by depth-first search
(DFS). The Kripke structure has been chosen as a transition system model. A case
study has been conducted, where composite web service usage scenario has been
considered. Obtained experimental results are aimed at increasing the effectiveness
of TLA+ specifications automated verification.
Keywords: Composite Web Service, Model Checking, WS-BPEL, BFS, DFS,
TLA+, TLC.

1. Introduction

Model checking methods are being widely used in different spheres of engineering
such as distributed software systems, embedded systems, and similar [1]. One of the
most topical spheres of such methods usage is checking the correctness of software
design solutions to avoid subsequent errors and inconsistencies. A demonstrative
example of the practical implementation of this approach can be observed in
Amazon Web Services [2].

A numerous modern web-oriented distributed software systems are based on
Service-oriented Architecture (SOA) principles: loose coupling, composability, etc.
[3]. Such systems are typically involved in the diverse business processes (tickets
booking, logistics scenarios, etc.) maintaining and/or implementing. To perceive the

146

JIOS, VOL. 40, NO. 1 (2016), PP. 145-152

SHKARUPYLO, TOMIČIĆ AND KASIAN THE INVESTIGATION OF TLC MODEL CHECKER...

advantages of SOA-principles, Google Maps services can be took into consideration
[4].

In general, web services are typically considered to be a loosely coupled
software components, which can be atomic, or coupled entities. This paper focuses
on coupled ones which are better known as composite web services, and which
functioning can be implemented in centralized or decentralized manner. Authors of
this paper consider centralized orchestration model, described in WS-BPEL-
specification [5].

One of the distinctive features of model checking methods consists of the
orientation on temporal logic or process calculi, e.g. Linear Temporal Logic (LTL)
and the appropriate SPIN (Simple Promela Interpreter) model checker,
Computational Tree Logic (CTL), paired with modern NuSMV (New Symbolic
Model Verifier) tool, which can be successfully applied to CTL- as well as to LTL-
based specifications [6, 7]. Well-known examples of process calculi are Calculus of
Communicating Systems (CCS, by R. Milner) and Communicating Sequential
Processes (CSP, by C.A.R. Hoare) [8, 9]. The CCS itself is the basis of LOTOS
(Language of Temporal Ordering Specification) formalism [10]. Its specifications
are typically verified with CADP (Construction and Analysis of Distributed
Processes) toolkit [11].

Despite the broad range of available different formalisms and model checking
techniques, we were inspired by the success of rigid TLA+ (Temporal Logic of
Actions, by L. Lamport) formalism adoption in Amazon Web Services engineering
process [12, 2]. This formalism is incorporated with corresponding model checking
method, TLA Checker (TLC) [13]. At the same time, in order to leverage more
effectiveness from automated TLC-verification, depending on specifications
properties, some tweaking may be conducted. To this end, this paper is aimed at
increasing the effectiveness of TLC model checker practical usage.

2. Technique Description

We have considered two approaches to TLC method usage: the breadth-first search
(BFS) of transition system states and the depth-first search (DFS).

As effectiveness criterion we used the relation between time spent on automated
BFS-driven verification, and time spent on automated DFS-driven one.

The Kripke structure has been chosen as a transition system model [14]:

  LRsS ,,, 0 ,(1)

where S – finite set of states, Ss 0 – initial state, 2SR  – set of transitions,
APSL 2:  – states labeling function, AP – atomic prepositions set.

Let

DVAP  ,(2)

147

JIOS, VOL. 40, NO. 1 (2016), PP. 145-152

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

where  nivV i ,...,2,1 – state variables set: Vn  is the amount of atomic

web services intended to be composed by orchestration-driven coordination;

 2,1,0D – set of state variables values. Each state variable represents

corresponding atomic web service.

Let us assume that current state Ss change in structure (1) is a representation

of some atomic web service invocation, denoted in WS-BPEL-description with
corresponding <invoke> tag. As a result of such invocation the subsequent state

  SsRs  should be achieved. In this context the elements of AP set should be

interpreted as following:

   APvi 0, – the invocation of thi service hasn't yet been conducted;

   APvi 1, – the invocation of thi service has already been accomplished;

service functioning started;

   APvi 2, – thi service functioning completed.

Composite web service WS-BPEL-description provides input data. An

appropriate content can be parsed on two distinct groups – basic activities and
structured activities. We took one representative from each group: the <invoke> tag
– from basic activities group – and the <sequence> tag – from structured activities
group (Appendix A). Despite the <sequence> tag, which is a sequence invocation
template, the corresponding group also includes formalizations of switch/case- and
flow-constructs. The additional constructs are being considered by the authors of
this paper as a ground for future research.

Our technique to TLA+ specifications’ synthesis is based on the following
atomic prepositions’ interpretation:

specify the initial state  nsssSs  2100 ,...,, – Init statement – as a

conjunction from the elements of  0sL set, where

        0,,...,0,,0, 210 nvvvsL  ;

specify 12  n transient states from  nssS 20 ,\ set;

specify n2 transitions   Rss , , where Sss , ;

specify the Next statement as a disjunction from transitions specifications;
compose the resulting temporal formula from Init and Next statements.

The approach to the conduction of the experiment is described hereafter:

synthesize 210 TLA+ specifications for 821 2,...,2,2n ;

148

JIOS, VOL. 40, NO. 1 (2016), PP. 145-152

SHKARUPYLO, TOMIČIĆ AND KASIAN THE INVESTIGATION OF TLC MODEL CHECKER...

conduct synthesized specifications BFS- and DFS-driven automated TLC-
verifications, measuring the corresponding time costs;

analyze obtained results and formulate conclusions/recommendations.

Let's consider a synthetic example, where composite web service functional

property is implemented by way of two atomic web services sequential invocation.
As a case study, the  value calculation with John Machin's formula can be
contemplated: one atomic service is used for the pair of arctangents calculation
(which can itself be a composite entity), and another one for corresponding
multiplications and subtraction.

In this case  21, vvV  , 2n ,

            2,,1,,0,,2,,1,,0, 222111 vvvvvvAP  ,  43210 ,,,, sssssS  , where

Ss 0 – initial state:       0,,0, 210 vvsL  ; Ssss 321 ,, – transient states;

Ss 4 – final state to be reached:       2,,2, 214 vvsL  .

The appropriate TLA+ specification is given in Appendix B, where Spec is the

resulting temporal formula to be checked.

TLA+ specifications for 12n are obtained in the same manner. For instance,

for 82n it should reach exactly 51312  n states, including initial and final
ones.

3. Results Analysis

The experiment was conducted in an automated single-threaded manner (Figure 1,
Table 1).

The platform that was used for the purpose of conducting the experiment has the
following configuration:

CPU: AMD K10, 3 GHz;
RAM: DDR3, 2 GB, dual channel;
OS: MS Windows 7;
Java Runtime Environment: version 1.7.

In Figure 1, each reference point (given in Table 1) represents the average of

210 measures.

For relatively small numbers of state variables (421 2...,2,2n), in terms of

corresponding time costs, we have contemplated the preference of DFS-driven

approach: its effectiveness gains estimations (DFSBFS tt /) ranged from 1,5 to 2,23.

Such approach automation, though, is affected by a necessity to denote the depth of
search, which is not the case for BFS-driven verification.

149

JIOS, VOL. 40, NO. 1 (2016), PP. 145-152

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 1. Time costs of BFS- and DFS-driven automated TLC-verifications

n BFSt , s DFSt , s DFSBFS tt /

2 0,934 0,42 2,23

4 0,952 0,45 2,13

8 1,029 0,54 1,91

16 1,154 0,77 1,50

32 1,412 3,17 0,45
64 2,97 35,75 0,08

128 19,21 - -

Table 1. BFS- and DFS-approaches comparison

In Table 1, BFSt represents time spent on the BFS-driven automated TLC-

verification, and DFSt represents time spent on the DFS-driven one.

From Figure 1 we can conclude that for 20n the BFS-driven approach to

TLC-verification is more preferred. For instance, for 64n this approach is about
12 times faster (more efficient) than the DFS-driven alternative – based on the
automatically generated TLA+ specifications with solely sequential structure. We
characterized this effectiveness difference as significant enough as to not conduct

the DFS-devoted experimentation for 72n .

When trying to conduct the BFS-driven verification for 82n , the limitation of
random access memory volume has been faced.

150

JIOS, VOL. 40, NO. 1 (2016), PP. 145-152

SHKARUPYLO, TOMIČIĆ AND KASIAN THE INVESTIGATION OF TLC MODEL CHECKER...

4. Conclusion and Further Research

In this paper authors have conducted the investigation of TLC model checking
method properties. The following conclusions were obtained:

1.Using TLA+ specifications with 41 2,...,2 state variables to increase TLC

method effectiveness, it is recommended to adopt the depth-first search
approach. The effectiveness increase factor ranges from 2.23 to 1.5,
respectively, in comparison to alternative breadth-first search approach. The
DFS-based verification also involves the necessity to previously specify the
depth of the state space, which can impose certain inconveniences with
automation in mind.

2.Using TLA+ specifications with more than 20 state variables to increase TLC
method usage effectiveness, the BFS-driven approach is recommended, with
no need to specify state space depth.

3.When trying to verify TLA+ specifications with 82 state variables, the lack of
random access memory quantity (2GB) has been faced.

In order to get a more complex picture about TLC method properties, further

research will be aimed at expanding proposed technique to TLA+ specifications
synthesis by adopting not only sequential WS-BPEL-constructs, but also
switch/case- and flow-structured activities.

Appendix A: WS-BPEL-description template

<bpel:sequence>
 <bpel:invoke.../>
 <bpel:invoke.../>
</bpel:sequence>

Appendix B: TLA+ specification for WS-BPEL-template

EXTENDS Naturals
VARIABLES v1, v2
Invariant == /\ v1 \in (0..2) /\ v2 \in (0..2)
Init == (v1=0) /\ (v2=0)
S1 == (v1=1) /\ (v2=0)
S2 == (v1=2) /\ (v2=0)
S3 == (v1=2) /\ (v2=1)
R_01 == /\ v1' = IF Init THEN v1+1 ELSE v1

 /\ UNCHANGED <<v2>>
R_12 == /\ v1' = IF S1 THEN v1+1 ELSE v1

 /\ UNCHANGED <<v2>>
R_23 == /\ v2' = IF S2 THEN v2+1 ELSE v2

151

JIOS, VOL. 40, NO. 1 (2016), PP. 145-152

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

 /\ UNCHANGED <<v1>>
R_34 == /\ v2' = IF S3 THEN v2+1 ELSE v2

 /\ UNCHANGED <<v1>>
Next == R_01 \/ R_12 \/ R_23 \/ R_34
Spec == Init/\[][Next]_<<v1,v2>>

References

[1]S.A. Seshia et al., “Formal Methods for Semi-Autonomous Driving”, In
Proceedings of the 52nd Annual Design Automation Conference, San
Francisco, CA, USA, June 07–11, 2015. DOI: 10.1145/2744769.2747927

[2]C. Newcombe et al., “How Amazon Web Services Uses Formal Methods”,
Communications of the ACM, 58(4): 66–73, 2015. DOI: 10.1145/2699417

[3]M.P. Papazoglou et al., “Service-Oriented Computing: State of the Art and
Research Challenges”, IEEE Computer, 40(11): 38–45, 2007.

[4]S. Hu and T. Dai, “Online Map Application Development Using Google
Maps API, SQL Database, and ASP.NET”, International Journal of
Information and Communication Technology Research, 3(3): 102–110,
2013.

[5]M. Fahad et al., “Dynamic Execution of a Business Process via Web Service
Selection and Orchestration”, In Proceedings of the International
Conference On Computational Science, pages 1655–1664, Reykjavik,
Iceland, 2015. DOI: 10.1016/j.procs.2015.05.299

[6]A.R. Espada et al., “Using Model Checking to Generate Test Cases for
Android Applications”. In Proc. of 10th Workshop on Model-Based
Testing, pages 7–21, London, UK, 2015. DOI: 10.4204/EPTCS.180.1

[7]M. Norouzi and S. Parsa, “Verification of the Protection Services in Antivirus
Systems by Using NuSMV Model Checker”. International Journal in
Foundations of Computer Science & Technology, 4(5): 57–67, 2014.

[8]C.A.R. Hoare, “Communicating Sequential Processes”. Communications of
the ACM, 21(8): 666–677, 1978.

[9]R. A Milner, “Calculus of Communicating Systems”. ECS-LFCS-86-7
Report, Department of Computer Science, University of Edinburgh, The
King's Buildings, Edinburgh, 1986.

[10]J. Schot, “Addressing performance requirements in the FDT-based design of
distributed systems”. Computer Communications, 15(4): 235–242, 1992.
DOI: 10.1016/0140-3664(92)90106-O

[11]H. Garavel et al., “CADP 2011: A Toolbox for the Construction and
Analysis of Distributed Processes”. International Journal on Software

152

JIOS, VOL. 40, NO. 1 (2016), PP. 145-152

SHKARUPYLO, TOMIČIĆ AND KASIAN THE INVESTIGATION OF TLC MODEL CHECKER...

Tools for Technology Transfer, 15(2): 89–107, 2013. DOI:
10.1007/s10009-012-0244-z

[12]M. Cristia, “A TLA+ Encoding of DEVS Models”. In Proceedings of the
International Modeling and Simulation Multiconference, pages 17–22,
Buenos Aires, Argentina, 2007.

[13]L. Lamport, “Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers”. Addison-Wesley, Boston, 2002.

[14]E.M. Clarke et al., “Model Checking”. MIT Press, Cambridge,
Massachusetts, 2001.

