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Abstract 

This paper presents the investigation and comparison of TLC model checking 
method (TLA Checker) properties. There are two different approaches to method 
usage which are considered. The first one consists of a transition system states 
attendance by breadth-first search (BFS), and the second one by depth-first search 
(DFS). The Kripke structure has been chosen as a transition system model. A case 
study has been conducted, where composite web service usage scenario has been 
considered. Obtained experimental results are aimed at increasing the effectiveness 
of TLA+ specifications automated verification. 
Keywords: Composite Web Service, Model Checking, WS-BPEL, BFS, DFS, 
TLA+, TLC. 

1. Introduction 

Model checking methods are being widely used in different spheres of engineering 
such as distributed software systems, embedded systems, and similar [1]. One of the 
most topical spheres of such methods usage is checking the correctness of software 
design solutions to avoid subsequent errors and inconsistencies. A demonstrative 
example of the practical implementation of this approach can be observed in 
Amazon Web Services [2]. 

A numerous modern web-oriented distributed software systems are based on 
Service-oriented Architecture (SOA) principles: loose coupling, composability, etc. 
[3]. Such systems are typically involved in the diverse business processes (tickets 
booking, logistics scenarios, etc.) maintaining and/or implementing. To perceive the 
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advantages of SOA-principles, Google Maps services can be took into consideration 
[4]. 

In general, web services are typically considered to be a loosely coupled 
software components, which can be atomic, or coupled entities. This paper focuses 
on coupled ones which are better known as composite web services, and which 
functioning can be implemented in centralized or decentralized manner. Authors of 
this paper consider centralized orchestration model, described in WS-BPEL-
specification [5]. 

One of the distinctive features of model checking methods consists of the 
orientation on temporal logic or process calculi, e.g. Linear Temporal Logic (LTL) 
and the appropriate SPIN (Simple Promela Interpreter) model checker, 
Computational Tree Logic (CTL), paired with modern NuSMV (New Symbolic 
Model Verifier) tool, which can be successfully applied to CTL- as well as to LTL-
based specifications [6, 7]. Well-known examples of process calculi are Calculus of 
Communicating Systems (CCS, by R. Milner) and Communicating Sequential 
Processes (CSP, by C.A.R. Hoare) [8, 9]. The CCS itself is the basis of LOTOS 
(Language of Temporal Ordering Specification) formalism [10]. Its specifications 
are typically verified with CADP (Construction and Analysis of Distributed 
Processes) toolkit [11]. 

Despite the broad range of available different formalisms and model checking 
techniques, we were inspired by the success of rigid TLA+ (Temporal Logic of 
Actions, by L. Lamport) formalism adoption in Amazon Web Services engineering 
process [12, 2]. This formalism is incorporated with corresponding model checking 
method, TLA Checker (TLC) [13]. At the same time, in order to leverage more 
effectiveness from automated TLC-verification, depending on specifications 
properties, some tweaking may be conducted. To this end, this paper is aimed at 
increasing the effectiveness of TLC model checker practical usage. 

2. Technique Description 

We have considered two approaches to TLC method usage: the breadth-first search 
(BFS) of transition system states and the depth-first search (DFS). 

As effectiveness criterion we used the relation between time spent on automated 
BFS-driven verification, and time spent on automated DFS-driven one. 

The Kripke structure has been chosen as a transition system model [14]: 
 

  LRsS ,,, 0 ,(1) 

 

where S  – finite set of states, Ss 0  – initial state, 2SR   – set of transitions, 
APSL 2:   – states labeling function, AP  – atomic prepositions set. 

 
Let 

DVAP  ,(2) 
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where  nivV i ,...,2,1  – state variables set: Vn   is the amount of atomic 

web services intended to be composed by orchestration-driven coordination; 

 2,1,0D  – set of state variables values. Each state variable represents 

corresponding atomic web service. 
 
Let us assume that current state Ss  change in structure (1) is a representation 

of some atomic web service invocation, denoted in WS-BPEL-description with 
corresponding <invoke> tag. As a result of such invocation the subsequent state 

  SsRs   should be achieved. In this context the elements of AP  set should be 

interpreted as following: 
 

   APvi 0,  – the invocation of thi  service hasn't yet been conducted; 

   APvi 1,  – the invocation of thi  service has already been accomplished; 

service functioning started; 

   APvi 2,  – thi  service functioning completed. 

 
Composite web service WS-BPEL-description provides input data. An 

appropriate content can be parsed on two distinct groups – basic activities and 
structured activities. We took one representative from each group: the <invoke> tag 
– from basic activities group – and the <sequence> tag – from structured activities 
group (Appendix A). Despite the <sequence> tag, which is a sequence invocation 
template, the corresponding group also includes formalizations of switch/case- and 
flow-constructs. The additional constructs are being considered by the authors of 
this paper as a ground for future research. 

Our technique to TLA+ specifications’ synthesis is based on the following 
atomic prepositions’ interpretation: 

 

specify the initial state  nsssSs  2100 ,...,,  – Init statement – as a 

conjunction from the elements of  0sL  set, where 

        0,,...,0,,0, 210 nvvvsL  ; 

specify 12  n  transient states from  nssS 20 ,\  set; 

specify n2  transitions   Rss , , where Sss , ; 

specify the Next statement as a disjunction from transitions specifications; 
compose the resulting temporal formula from Init and Next statements. 
 
 
The approach to the conduction of the experiment is described hereafter: 
 

synthesize 210  TLA+ specifications for 821 2,...,2,2n ; 
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conduct synthesized specifications BFS- and DFS-driven automated TLC-
verifications, measuring the corresponding time costs; 

analyze obtained results and formulate conclusions/recommendations. 
 
Let's consider a synthetic example, where composite web service functional 

property is implemented by way of two atomic web services sequential invocation. 
As a case study, the   value calculation with John Machin's formula can be 
contemplated: one atomic service is used for the pair of arctangents calculation 
(which can itself be a composite entity), and another one for corresponding 
multiplications and subtraction.  

 

In this case  21, vvV  , 2n , 

            2,,1,,0,,2,,1,,0, 222111 vvvvvvAP  ,  43210 ,,,, sssssS  , where 

Ss 0  – initial state:       0,,0, 210 vvsL  ; Ssss 321 ,,  – transient states; 

Ss 4  – final state to be reached:       2,,2, 214 vvsL  .  

 
The appropriate TLA+ specification is given in Appendix B, where Spec is the 

resulting temporal formula to be checked. 

TLA+ specifications for 12n  are obtained in the same manner. For instance, 

for 82n  it should reach exactly 51312  n  states, including initial and final 
ones. 

3. Results Analysis 

The experiment was conducted in an automated single-threaded manner (Figure 1, 
Table 1). 

The platform that was used for the purpose of conducting the experiment has the 
following configuration: 

 
CPU: AMD K10, 3 GHz; 
RAM: DDR3, 2 GB, dual channel; 
OS: MS Windows 7; 
Java Runtime Environment: version 1.7. 

 
In Figure 1, each reference point (given in Table 1) represents the average of 

210  measures. 

For relatively small numbers of state variables ( 421 2...,2,2n ), in terms of 

corresponding time costs, we have contemplated the preference of DFS-driven 

approach: its effectiveness gains estimations ( DFSBFS tt / ) ranged from 1,5 to 2,23. 

Such approach automation, though, is affected by a necessity to denote the depth of 
search, which is not the case for BFS-driven verification. 
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Figure 1. Time costs of BFS- and DFS-driven automated TLC-verifications 

 

n BFSt , s DFSt , s DFSBFS tt /  

2 0,934 0,42 2,23 

4 0,952 0,45 2,13 

8 1,029 0,54 1,91 

16 1,154 0,77 1,50 

32 1,412 3,17 0,45 
64 2,97 35,75 0,08 

128 19,21 - - 

Table 1. BFS- and DFS-approaches comparison 

In Table 1, BFSt  represents time spent on the BFS-driven automated TLC-

verification, and DFSt  represents time spent on the DFS-driven one. 

From Figure 1 we can conclude that for 20n  the BFS-driven approach to 

TLC-verification is more preferred. For instance, for 64n  this approach is about 
12 times faster (more efficient) than the DFS-driven alternative – based on the 
automatically generated TLA+ specifications with solely sequential structure. We 
characterized this effectiveness difference as significant enough as to not conduct 

the DFS-devoted experimentation for 72n . 

When trying to conduct the BFS-driven verification for 82n , the limitation of 
random access memory volume has been faced. 
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4. Conclusion and Further Research 

In this paper authors have conducted the investigation of TLC model checking 
method properties. The following conclusions were obtained: 

 

1.Using TLA+ specifications with 41 2,...,2  state variables to increase TLC 

method effectiveness, it is recommended to adopt the depth-first search 
approach. The effectiveness increase factor ranges from 2.23 to 1.5, 
respectively, in comparison to alternative breadth-first search approach. The 
DFS-based verification also involves the necessity to previously specify the 
depth of the state space, which can impose certain inconveniences with 
automation in mind. 

2.Using TLA+ specifications with more than 20 state variables to increase TLC 
method usage effectiveness, the BFS-driven approach is recommended, with 
no need to specify state space depth. 

3.When trying to verify TLA+ specifications with 82  state variables, the lack of 
random access memory quantity (2GB) has been faced. 

 
In order to get a more complex picture about TLC method properties, further 

research will be aimed at expanding proposed technique to TLA+ specifications 
synthesis by adopting not only sequential WS-BPEL-constructs, but also 
switch/case- and flow-structured activities. 

 

Appendix A: WS-BPEL-description template 

<bpel:sequence> 
     <bpel:invoke.../> 
     <bpel:invoke.../> 
</bpel:sequence> 

Appendix B: TLA+ specification for WS-BPEL-template 

EXTENDS Naturals 
VARIABLES v1, v2 
Invariant == /\ v1 \in (0..2) /\ v2 \in (0..2) 
Init == (v1=0) /\ (v2=0) 
S1 == (v1=1) /\ (v2=0) 
S2 == (v1=2) /\ (v2=0) 
S3 == (v1=2) /\ (v2=1) 
R_01 == /\ v1' = IF Init THEN v1+1 ELSE v1 

  /\ UNCHANGED <<v2>> 
R_12 == /\ v1' = IF S1 THEN v1+1 ELSE v1 

  /\ UNCHANGED <<v2>> 
R_23 == /\ v2' = IF S2 THEN v2+1 ELSE v2 
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  /\ UNCHANGED <<v1>> 
R_34 == /\ v2' = IF S3 THEN v2+1 ELSE v2 

  /\ UNCHANGED <<v1>> 
Next == R_01 \/ R_12 \/ R_23 \/ R_34 
Spec == Init/\[][Next]_<<v1,v2>> 
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