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Abstract
Definition of programming languages consists of the formal definition of syn-
tax and semantics. One of the most popular semantic methods used in various
stages of software engineering is structural operational semantics. It describes
program behavior in the form of state changes after execution of elementary
steps of program. This feature makes structural operational semantics useful for
implementation of programming languages and also for verification purposes. In
our paper we present a new approach to structural operational semantics. We
model behavior of programs in category of states, where objects are states, an
abstraction of computer memory and morphisms model state changes, execution
of a program in elementary steps. The advantage of using categorical model is its
exact mathematical structure with many useful proved properties and its graphical
illustration of program behavior as a path, i.e. a composition of morphisms. Our
approach is able to accentuate dynamics of structural operational semantics. For
simplicity, we assume that data are intuitively typed. Visualization and facility
of our model is not only a new model of structural operational semantics of
imperative programming languages but it can also serve for education purposes.
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1. Introduction

An important part of the formal definition of a programming language is a definition of
its semantics. In this paper we deal with one of the known method, structural operational
semantics that provides a simple and direct method for describing meaning of programs
written in some programming language. Its advantage is that it requires minimal
knowledge of mathematics and it is easily understandable by practical programmers
[1], [2], [3]. We present a new approach how to define a model of simple imperative
language in the category of states.

There are several semantic methods used simultaneously with structural operational
semantics. They differ in used mathematical equipment and the area of usage. One of
the first formulated semantic methods is denotational semantics formulated by Scott
Strachey in [4] and later by David Schmidt [5]. It requires quite deep knowledge of
mathematics because the meaning of programs is expressed by functions from syntacti-
cal domains to semantic domains which can be non-trivial mathematical structures, e.g.
lattices. Categorical models for denotational semantics is based on category of types
[6], [7]. Therefore we cannot be surprised that structural operational semantics gained
much more attention in community of programmers than denotational semantics [8].

A simpler semantic method similar to structural operational semantics is natural
semantics formulated by Gilles Kahn [9] and is often called semantics of big steps. The
author followed two aims:

• to simplify semantic description for software engineers instead of difficult mathe-
matical notations of currying and continuation functions in denotational seman-
tics; and

• to abstract from elementary steps of execution in structural operational semantics.

Natural semantics describes a change of states caused by execution the whole statements
[10] and can be useful for specification languages or in program verification [11].

There are known several other semantic methods less or more used in various
areas of programming. Axiomatic semantics [12] is based on satisfying postconditions
after executing of statements from truth preconditions before this action. The triples
precondition, statement and postcondition are called Hoare’s formulae. Algebraic
semantics [13], [14] specifies abstract data types possibly with parameters and it models
them by heterogeneous algebras. Game semantics [15], [16] describes the meaning of
programs in the form of game trees and game arenas.

As the author of structural operational semantics is regarded Gordon Plotkin. In his
work [17] he formulated this semantic method as a formal tool for describing detailed
execution of programs by transition relations between configurations before and after
performing elementary steps of operations. The main ideas about his approach and his
motivation is explained in [18].

Structural operational semantics generates a labeled transition system for a program
written in programming language [19]. This transition system consists of transition
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rules describing modification of states. A state is a basic notion of structural operational
semantics and it can be considered as some abstraction of computer memory. Every
transition rule has its premise or premises and one conclusion. Premises and a conclu-
sion are transitions. The rules can be decorated by additional conditions in premisses in
the form of predicates. A rules has a form

premise1, . . . , premisen, condition(s)
conclusion

If all premises and all conditions (if exist) are valid before execution of a statement in
the conclusion, then a conclusion is valid [20].

As it has been published in [19], structural operational semantics is essentially a
description of program behavior. Because it provides a detailed description of program
performing, its main application area is in implementation of programming [21]. By the
years, this semantic method became very popular among software engineers because of
its simplicity. To avoid some restrictions of this method many extensions have been
worked out.

Structural operational semantics expresses context dependencies using a new notion
of environment. Context dependencies describe the relationships required between the
declarations of variables and their usage in nested blocks with respect to scope rules.

In the last decades many new results were published about structural operational
semantics. Turi [22] in his PhD. thesis formulated coalgebraic categorical model of
this method and he showed its duality with denotational approach. New approaches
to operational semantics were published in [23], [24]. Among new research results
in the area of this semantic methods belongs also formulation of modular structural
operational semantics published in [25], [26], [27].

2. The language Jane

Categorical model of structural operational semantics we define for a sample imper-
ative language Jane. It consists of traditional syntactic constructions of imperative
languages, namely arithmetic and Boolean expressions, variable declarations and state-
ments. For defining formal syntax of Jane we introduce the following syntactic
domains:

n ∈ Num - digit strings;
x ∈ Var - variable names;
e ∈ Expr - arithmetic expressions;
b ∈ Bexpr - Boolean expressions;
S ∈ Statm - statements;
D ∈ Decl - sequences of variable declarations.

The elements n ∈ Num have no internal structure from semantic point of view.
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Similarly, x ∈ Var are only variable names without internal structure significant for
defining semantics.

The syntactic domain Expr consists of all well-formed arithmetic expressions
constructed by the following production rule:

e ::= n | x | e+ e | e− e | e ∗ e.

A Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

The variables used in programs have to be declared. We consider D ∈ Decl as a
sequence of declarations:

D ::= var x;D | ε
where ε is the empty sequence. We assume that variables are implicitly of type integer.
This restriction enables us to focus on main ideas of our approach.

We consider five Dijkstra’s statements as statements in language S ∈ Statm:
assignment, empty statement, sequence of statements, conditional statement and cycle
statement together with block statement and input statement:

S ::=
x := e | skip | S;S | if b then S else S |
while b do S | begin D;S end | input x.

3. Specification of states

A state is a basic concept of structural operational semantics. It can be considered as
some abstraction of computer memory. Every variable occurring in a program has to be
allocated, i.e. some memory cell is reserved for a declared variable and a name of it is
assigned to the allocated memory cell. We can assign and modify a value of allocated
variable inducing change of state. Because of block structure of Jane, we have to
consider also a level of block nesting.

According to previous ideas we formulate the signature ΣState for states. We
define abstract data type State using types V ar and V alue of variables and values. A
signature ΣState consists of types and operation specifications on the type State:

ΣState =
types : State, V ar, V alue

opns : init :→ State

alloc : var, State → State
get : V ar, State → V alue
del : State → State

The operation specifications have the following intuitive meaning:



207

JIOS, VOL. 40, NO. 2 (2016), PP. 203-219

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

• init creates a new state, the initial state of a program;

• alloc reserves a new memory cell for a variable in a given state (and nesting
level);

• get returns a variable value in an actual state;

• del deallocates (releases) all variables together with their values on a given
nesting level.

The signature ΣState serves as a basis for constructing our model of Jane as the
category of states.

4. Representation of states

We construct operational model of Jane as the category CState of states. First, we
assign to states their representation. We assign to the type name V alue the set of integer
numbers set Z:

Value = Z.

For undefined values we use the symbol ⊥. The type name V ar is represented by
the set Var of variable names. Our representation of an element of type State has to
express a variable name and its value with respect to actual nesting level. Let Level be
a finite set of nesting levels denoted by natural numbers l:

l ∈ Level, Level = N.

We assign to the type State the set State of states. Now, we can represent every state
s ∈ State as a function

s : Var× Level ⇀ Value. (1)

This function is partially defined, because a declaration does not assign a value to
declared variable. Every state s expresses one step of program execution. Our definition
of states can be also considered as a table with possibly empty cells denoted by ⊥.

Every state s can be expressed as a sequence:

s = 〈((x, 1) , v1) , . . . , ((z, l) , vn)〉

of ordered triples
((x, l) , v) ,

where (x, l) is declared variable x on a nesting level l with actual (possibly undefined)
value v. Another representation of state is a table which contains names of variables,
the level of their declarations and actual values stored in the variables (Figure 1).
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variable level value

x 1 v1

z l vn

...

Figure 1: Representation of a state by table

The first declared variable x in this table has nesting level 1 and value v1. Remaining
declared variables have corresponding identifications in this state.

Now, we can define the representation of operations from ΣState as follows. The
operation �init� defined by

�init� = s0 = 〈((⊥, 1) ,⊥)〉

creates the initial state s0 of a program with no declared variable. Its role is to set
nesting level to value 1 (Figure 2).

variable level value

⊥ 1 ⊥

Figure 2: Initial state of the program

The operation �alloc� is defined by

�alloc�(x, s) = s � 〈((x, l) ,⊥)〉 ,

where ’�’ is concatenation of sequences. This operation sets actual nesting level to
declared variable. Because of undefined value of a variable within declaration, the
operation �alloc� does not change the state (Figure 3).

variable level value

x l ⊥
... ... ...

Figure 3: Allocation of a new variable
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The operation �get� returns a value of a variable declared on the highest nesting level
and can be defined by

�get�(x, 〈. . . , ((x, li) , vj) , . . . , ((x, lk) , vk′) , . . .〉) = vk′ ,

where li < lk.
The operation �del� deallocates (forgets) all variables declared on the highest nesting
level lj (Figure 4):

�del�(s � 〈((xi, lj) , vk) , . . . , ((xn, lj) , vm)〉) = s.

variable level value

x lj−1 v

... ... ...

xi lj vk
... ... ...

xn lj vm

Figure 4: Deallocation of all variables declared on the level lj

We construct the category CState as a category of states. Category objects are states
s defined above with special object s⊥ = 〈((⊥,⊥) ,⊥)〉 expressing an undefined state.

Category morphisms express change of states caused by execution of statements
and they will be defined later.

5. Arithmetic and Boolean expressions

Arithmetic and Boolean expressions serve for computing values of two implicit types of
the language Jane. In defining semantics of both types of expressions, an actual state
is used but not changed in the process of evaluation. The following tables (Table 1 and
Table 2) define semantic functions together with corresponding semantic operations for
arithmetic and Boolean expressions over the semantic domain of states.

�e� : State → Value.

We note that ⊕, � and ⊗ occurring on the right of these equations are the usual
arithmetic operations, whilst on the left they are just pieces of syntax.

�b� : State → Bool.
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[[n]]s = n

[[x]]s = [[get]](x, s)

[[e1 + e2]]s = [[e1]]s⊕ [[e2]]s

[[e1 − e2]]s = [[e1]]s� [[e2]]s

[[e1 ∗ e2]]s = [[e1]]s⊗ [[e2]]s

Table 1: Semantics of arithmetic expressions

[[true]]s = true

[[false]]s = false

[[e1 = e2]]s =

{
true if [[e1]]s=[[e2]]s
false otherwise

[[e1 ≤ e2]]s =

{
true if [[e1]]s≤[[e2]]s
false otherwise

[[¬b]]s =
{

true if [[¬b]]s=false
false otherwise

[[b1 ∧ b2]]s =

{
true if [[b1]]s=[[b2]]s=true
false otherwise

Table 2: Semantics of Boolean expressions

Evaluation of expressions has no effect on states, i.e. objects of our category CState.
Value and Bool are semantic domains for integers and Booleans, resp.

Value = Z, Bool = B,

where B is the set containing Boolean values, i.e. B = {true, false}.
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6. Declarations

Every variable occurring in a Jane program has to be declared. Declarations are
elaborated, i.e. a memory cell is allocated and named by a declared variable. Therefore
elaboration of a declaration

var x

is represented as an endomorphism:

[[ ]]D : s → s

for a given state s and defined by

[[var x]]s = �alloc�(x, s).

A sequence of declarations is represented as a composition of corresponding endomor-
phisms:

[[var x;D]]s = [[D]] ◦ �alloc�(x, s).
If we consider a state as a table, a declaration creates new (raw) entry for a declared
variable with the actual level of nesting and undefined value

((x, l) ,⊥) .

7. Statements

Statements are the most important constructions of imperative languages. They execute
program actions, i.e. they take values from the actual state and provide new values. A
state is changed only if a value of allocated variable is modified. This change of state
we model in category CState by morphisms between objects. Let S be a statement. Its
semantics is a morphism in category CState:

�S� : State → State, (2)

where s and s′ are objects in category CState. Statements are executed in sequence, as
they are written in program text. In this contribution we do not consider the statements
breaking sequential execution, e.g. goto statement or exceptions.

Assignment statement x := e stores a value of arithmetic expression e in a state
s in a memory cell allocated for the variable x on maximal (highest) level of nesting.
This condition ensures that local variable visible in given scope is used.
The semantics is as follows

[[x := e]]s =

{
s [((x, l), v) �→ ((x, l), �e�s)] , for ((x, l), v) ∈ s
⊥, otherwise
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s s′

�x := e�

Figure 5: Morphism for assignment

and it is expressed by a morphism in the Fig. 5.
The notation

s′ = s [((x, l), v) �→ ((x, l), [[e]]s)] (3)

describes a new state s′ that is an actualization of the state s in its entry for the variable
x which value is changed to [[e]]s.

The empty statement skip does nothing, i.e. it does not change state. Clearly, it is
identity on state s (Fig. 6).

[[skip]] = ids or equivalently [[skip]]s = s

s

�skip�

Figure 6: Morphism for empty statement

A sequence of statements is executed one by one and can be modeled as composition
of morphisms (Fig 7)

[[S1;S2]] = [[S2]] ◦ [[S1]]

and defined for a state s by

[[S1;S2]]s = [[S2]] ([[S1]]) s.

Because the body of a program is a sequence of statements, program semantics is a
path in category CState. If the state s is undefined, i.e. s = s⊥, then execution of any
statement in s provides also undefined state:

�S�s⊥ = s⊥.

From this definition follows that achieving undefined state s⊥ is similar as falling
into "black hole". It means that execution of program is immediately stopped without
resulting state.
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s

s′

s′′

�S1�

�S2�

�S1;S2�

Figure 7: Composition of morphisms

Conditional statement
if b then S1 else S2

causes branching of execution depending on a value of Boolean expression:

[[if b then S1 else S2]]s =

{
[[S1]]s, if [[b]]s = true
[[S2]]s, otherwise

The path of a program can follow either to the state [[S1]]s or to the state [[S2]]s, resp.,
deterministically as it is illustrated in Figure 8.

s s′

Figure 8: Execution of conditional statement

A cycle
while b do S

also depends on a value of Boolean expression b. If b is true in initial state, i.e.
[[b]]s = true, the body S of a cycle is executed, then again b is evaluated in modified
state. If a value b is not valid, [[b]]s = false, then execution of a cycle statement is
finished without execution of the body S. Cycle statement is semantically equivalent
with the following conditional statement:

[[while b do S]]s =
[[if b then (S; while b do S) else skip]]s

The proof can be found in [21]. Therefore, the semantics of the cycle statement is
represented in CState as a (possibly infinite) sequence of morphisms.
When modeling execution of this statement in the category CState, two situations can
appear. The first situation depicted in Figure 9 comes when the execution of cycle
statement finishes in some state sn.
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s0 s1 s2 sn−1 sn

�S� �S� �S� �S�

�while b do S�

Figure 9: Terminated execution of cycle statement

However, if the condition b has always value true, the cycle statement is executed as
infinite path in category CState. In this case, no result state is provided by the cycle
statement.

Input statement input x serves for reading input value that is stored in the given
variable x. Because the value of variable is changed, execution of input statement
causes modification of state. If a variable x is not declared, the final state is undefined:

[[input x]]s =

{
s [((x, l), v) �→ ((x, l), v′)] , for ((x, l) , v′) ∈ s;
⊥, otherwise.

Programs in Jane can have nested blocks together with declarations of local
variables. Execution of block statement

begin D;S end

follows in the following steps:

• nesting level l is incremented. We represent this step by fictive new entry in state
table

((begin, l + 1) ,⊥)

i.e. endomorphism s → s;

• local declarations are elaborated on new nesting level l + 1;

• the body S of block is executed;

• locally declared variables are forgotten at the end of block. We model this
situation using operation [[del]].

From the previous points, the semantics of block statement is the following composition
of morphisms:

[[begin D;S end]]s =
[[del]] ◦ [[S]] ◦ [[D]](s � 〈((begin, l + 1) ,⊥)〉)

It follows from the construction of category of states fulfilling of its base properties:
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statement.

Input statement input x serves for reading input value that is stored in the given
variable x. Because the value of variable is changed, execution of input statement
causes modification of state. If a variable x is not declared, the final state is undefined:

[[input x]]s =

{
s [((x, l), v) �→ ((x, l), v′)] , for ((x, l) , v′) ∈ s;
⊥, otherwise.

Programs in Jane can have nested blocks together with declarations of local
variables. Execution of block statement

begin D;S end

follows in the following steps:

• nesting level l is incremented. We represent this step by fictive new entry in state
table

((begin, l + 1) ,⊥)

i.e. endomorphism s → s;

• local declarations are elaborated on new nesting level l + 1;

• the body S of block is executed;

• locally declared variables are forgotten at the end of block. We model this
situation using operation [[del]].

From the previous points, the semantics of block statement is the following composition
of morphisms:

[[begin D;S end]]s =
[[del]] ◦ [[S]] ◦ [[D]](s � 〈((begin, l + 1) ,⊥)〉)

It follows from the construction of category of states fulfilling of its base properties:

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

• each object has identity morphism defined;

• for any two composable morphisms there exists such a morphism which is their
composition.

We can state that CState constructed above is a category.

8. Modeling a simple program execution in CState

We show our approach on a simple example. We consider here a trivial program
written in J ane. An absolute value of subtracting two numbers stored in variables is
calculated. The program tests whether the first number is greater than the second one.
If not, then local block is created with one auxiliary declared variable and the values in
variables are exchanged. After that, the subtraction is executed.

var x; var y; var d;
input x;
input y;
if (x ≤ y) then

begin

var z;
z := x;
x := y;
y := z;

end;
else

skip;
d := x− y;

Following the definitions in the sections 6 and 7, states changes during execution of this
program are in Figure 10. Figure 11 shows the path how the given program is executed
step-by-step from the initial state s0 to the final state s7.

Program starts from the initial state with the declaration of three variables: x, y
and d. This is expressed by the composition of the endomorphisms over state s0 (Fig.
10, part a)). After initial declarations two statements for user input are being executed.
Here we assume that user inputs value 2 into variable x (Fig. 10, part b)) and value 7
into variable y (Fig. 10, part c)).
The next step is the evaluation of Boolean condition in if-statement. Because the
condition is true, [[x ≤ y]]s2 = true, program continues by creating a new block: the
fictive entry with the new level of declaration is written into state table. After that, a
new variable z is being declared, represented by new endomorphism over the state s2.
These two steps appear still in state s2 and no new state is created.
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Figure 10: State changes during the program execution

The next three steps are morphisms which represent three assignment statements. New
states become: state s3 after the first assignment (Fig. 10, part d)), state s4 after the
second assignment (Fig. 10, part e)) and state s5 after the third assignment (Fig. 10,
part f)) inside the block.
When the next step is finishing of the local block, an operation for deleting all locally
declared variables is being call represented by morphism [[del]] and the resulting state
is s6 (Fig. 10, part g)). We notify that semantics of the whole conditional statement
is a composition of morphisms starting in state s2 and finishing in state s6 when the
condition of conditional statement is true (in this case).
Finally, the last statement of assignment is executed and output of this morphism is also
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Figure 11: The path of execution of given program

the resulting state of the whole program - state s7 (Fig. 10, part h)).

9. Conclusion

This paper contains our new approach to operational semantics by categories. We
constructed the category of states CState where states of memory are objects and state
changes (computations) are morphisms. The semantics of program is defined as path
that is composition of morphisms from initial state into final state. We have illustrated
behavior of program on a sample example written in programming language Jane.

Categories have beautiful illustrative power when expressing some relations graph-
ically, our approach is very good understandable for students and also for software
engineers. In the future, we would like to focus on types of data structures, exceptions,
jumps and procedures. We assume that computation by procedure shall be defined
in separate category. Each category that represents computation of procedure will be
defined as object of total category for procedure environments.

Acknowledgments

This work has been supported by Grant No. FEI-2015-18: Coalgebraic models of
component systems.

References

[1] S. Ristić, S. Aleksić, M. Čelikovic, V. Dimitrieski, and I. Luković, “Database
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