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Abstract. Definition of programming languages consists of the formal definition of syntax and
semantics. One of the most popular semantic methods used in various stages of software engi-
neering is structural operational semantics. It describes program behavior in the form of state
changes after execution of elementary steps of program. This feature makes structural opera-
tional semantics useful for implementation of programming languages and also for verification
purposes. In our paper we present a new approach to structural operational semantics. We model
behavior of programs in category of states, where objects are states, an abstraction of computer
memory and morphisms model state changes, execution of a program in elementary steps. The
advantage of using categorical model is its exact mathematical structure with many useful proved
properties and its graphical illustration of program behavior as a path, i.e. a composition of mor-
phisms. Our approach is able to accentuate dynamics of structural operational semantics. For
simplicity, we assume that data are intuitively typed. Visualization and facility of our model is not
only a new model of structural operational semantics of imperative programming languages but
it can also serve for education purposes.
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1. Introduction

Definition of a programming language is completized by formal definition of its semantics. In
this paper we deal with one of the known method, structural operational semantics that provides
a simple and direct method for describing meaning of programs written in some programming
language. Its advantage is that it requires minimal knowledge of mathematics and it is easily
understandable by practical programmers [17, 10, 24]. We present a new approach how to define
a model of simple imperative language in the category of states.

There are several semantic methods used simultaneously with structural operational seman-
tics. They differ in used mathematical equipment and the area of usage. One of the first formu-
lated semantic methods is denotational semantics formulated by Scott Strachey in [23] and later
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by David Schmidt [18]. It requires quite deep knowledge of mathematics because the meaning of
programs is expressed by functions from syntactical domains to semantic domains which can be
non-trivial mathematical structures, e.g. lattices. Categorical models for denotational semantics is
based on category of types [13, 14]. Therefore we cannot be surprised that structural operational
semantics gained much more attention in community of programmers than denotational semantics
[8].

A simpler semantic method similar to structural operational semantics is natural semantics
formulated by Gilles Kahn [9] and is often called semantics of big steps. The author followed two
aims:

• to simplify semantic description for software engineers instead of difficult mathematical
notations of currying and continuation functions in denotational semantics; and

• to abstract from elementary steps of execution in structural operational semantics.

Natural semantics describes a change of states caused by execution the whole statements [19] and
can be useful for specification languages or in program verification [3].

There are known several other semantic methods less or more used in various areas of pro-
gramming. Axiomatic semantics [6] is based on satisfying postconditions after executing of state-
ments from truth preconditions before this action. The triples precondition, statement and post-
condition are called Hoare’s formulae. Algebraic semantics [5, 27] specifies abstract data types
possibly with parameters and it models them by heterogeneous algebras. Game semantics [1, 4]
describes the meaning of programs in the form of game trees and game arenas.

As the author of structural operational semantics is regarded Gordon Plotkin. In his work
[15] he formulated this semantic method as a formal tool for describing detailed execution of
programs by transition relations between configurations before and after performing elementary
steps of operations. The main ideas about his approach and his motivation is explained in [16].

Structural operational semantics generates a labeled transition system for a program written in
programming language [26]. This transition system consists of transition rules describing modifi-
cation of states. A state is a basic notion of structural operational semantics and it can be consid-
ered as some abstraction of computer memory. Every transition rule has its premise or premises
and one conclusion. Premises and a conclusion are transitions. The rules can be decorated by
additional conditions in premisses in the form of predicates. A rules has a form

premise1, . . . , premisen, condition(s)

conclusion

If all premises and all conditions (if exist) are valid before execution of a statement in the conclu-
sion, then a conclusion is valid [2].

As it has been published in [26], structural operational semantics is essentially a description
of program behavior. Because it provides a detailed description of program performing, its main
application area is in implementation of programming [12]. By the years, this semantic method
became very popular among software engineers because of its simplicity. To avoid some restric-
tions of this method many extensions have been worked out.

Structural operational semantics expresses context dependencies using a new notion of envi-
ronment. Context dependencies describe the relationships required between the declarations of
variables and their usage in nested blocks with respect to scope rules.

In the last decades many new results were published about structural operational semantics.
Turi [25] in his PhD. thesis formulated coalgebraic categorical model of this method and he
showed its duality with denotational approach. New approaches to operational semantics were
published in [20, 21]. Among new research results in the area of this semantic methods belongs
also formulation of modular structural operational semantics published in [7, 11, 22].
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2. The language Jane

Categorical model of structural operational semantics we define for a sample imperative language
Jane. It consists of traditional syntactic constructions of imperative languages, namely arith-
metic and Boolean expressions, variable declarations and statements. For defining formal syntax
of Jane we introduce the following syntactic domains:

n ∈ Num - digit strings;
x ∈ Var - variable names;
e ∈ Expr - arithmetic expressions;
b ∈ Bexpr - Boolean expressions;
S ∈ Statm - statements;
D ∈ Decl - sequences of variable declarations.

The elements n ∈ Num have no internal structure from semantic point of view. Similarly,
x ∈ Var are only variable names without internal structure significant for defining semantics.

The syntactic domain Expr consists of all well-formed arithmetic expressions constructed by
the following production rule:

e ::= n | x | e + e | e− e | e ∗ e.

A Boolean expression from Bexpr can be of the following structure:

b ::= false | true | e = e | e ≤ e | ¬b | b ∧ b.

The variables used in programs have to be declared. We consider D ∈ Decl as a sequence of
declarations:

D ::= var x;D | ε

where ε is the empty sequence. We assume that variables are implicitly of type integer. This
restriction enables us to focus on main ideas of our approach.

We consider five Dijkstra’s statements as statements in language S ∈ Statm: assignment,
empty statement, sequence of statements, conditional statement and cycle statement together with
block statement and input statement:

S ::=
x := e | skip | S;S | if b then S else S |
while b do S | begin D;S end | input x.

3. Specification of states

A state is a basic concept of structural operational semantics. It can be considered as some ab-
straction of computer memory. Every variable occurring in a program has to be allocated, i.e.
some memory cell is reserved for a declared variable and a name of it is assigned to the allocated
memory cell. We can assign and modify a value of allocated variable inducing change of state.
Because of block structure of Jane, we have to consider also a level of block nesting.

According to previous ideas we formulate the signature ΣState for states. We define abstract
data type State using types V ar and V alue of variables and values. A signature ΣState consists
of types and operation specifications on the type State:
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ΣState =
types : State, V ar, V alue

opns : init :→ State

alloc : var, State→ State
get : V ar, State→ V alue
del : State→ State

The operation specifications have the following intuitive meaning:

• init creates a new state, the initial state of a program;

• alloc reserves a new memory cell for a variable in a given state (and nesting level);

• get returns a variable value in an actual state;

• del deallocates (releases) all variables together with their values on a given nesting level.

The signature ΣState serves as a basis for constructing our model of Jane as the category of
states.

4. Representation of states

We construct operational model of Jane as the category CState of states. First, we assign to
states their representation. We assign to the type name V alue the set of integer numbers set Z:

Value = Z.

For undefined values we use the symbol ⊥. The type name V ar is represented by the set Var of
variable names. Our representation of an element of type State has to express a variable name and
its value with respect to actual nesting level. Let Level be a finite set of nesting levels denoted
by natural numbers l:

l ∈ Level, Level = N.

We assign to the type State the set State of states. Now, we can represent every state s ∈ State
as a function

s : Var× Level ⇀ Value. (1)

This function is partially defined, because a declaration does not assign a value to declared vari-
able. Every state s expresses one step of program execution. Our definition of states can be also
considered as a table with possibly empty cells denoted by ⊥.

Every state s can be expressed as a sequence:

s = 〈((x, 1) , v1) , . . . , ((z, l) , vn)〉

of ordered triples
((x, l) , v) ,

where (x, l) is declared variable x on a nesting level l with actual (possibly undefined) value v.
Another representation of state is a table which contains names of variables, the level of their
declarations and actual values stored in the variables (Figure 1).

The first declared variable x in this table has nesting level 1 and value v1. Remaining declared
variables have corresponding identifications in this state.
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variable level value

x 1 v1

z l vn

...

Figure 1: Representation of a state by table

variable level value

⊥ 1 ⊥

Figure 2: Initial state of the program

Now, we can define the representation of operations from ΣState as follows. The operation
JinitK defined by

JinitK = s0 = 〈((⊥, 1) ,⊥)〉
creates the initial state s0 of a program with no declared variable. Its role is to set nesting level to
value 1 (Figure 2).
The operation JallocK is defined by

JallocK(x, s) = s � 〈((x, l) ,⊥)〉 ,

where ’�’ is concatenation of sequences. This operation sets actual nesting level to declared
variable. Because of undefined value of a variable within declaration, the operation JallocK does
not change the state (Figure 3).

variable level value

x l ⊥
... ... ...

Figure 3: Allocation of the new variable

The operation JgetK returns a value of a variable declared on the highest nesting level and can be
defined by

JgetK(x, 〈. . . , ((x, li) , vj) , . . . , ((x, lk) , vk′) , . . .〉) = vk′ ,

where li < lk.
The operation JdelK deallocates (forgets) all variables declared on the highest nesting level lj
(Figure 4):

JdelK(s � 〈((xi, lj) , vk) , . . . , ((xn, lj) , vm)〉) = s.

We construct the category CState as a category of states. Category objects are states s defined
above with special object s⊥ = 〈((⊥,⊥) ,⊥)〉 expressing an undefined state.

Category morphisms express change of states caused by execution of statements and they will
be defined later.
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variable level value

x lj−1 v

... ... ...

xi lj vk
... ... ...

xn lj vm

Figure 4: Deallocation of all variables declared on the level lj

5. Arithmetic and Boolean expressions

Arithmetic and Boolean expressions serve for computing values of two implicit types of the lan-
guage Jane. In defining semantics of both types of expressions, an actual state is used but not
changed in the process of evaluation. The following tables (Table 1 and Table 2) define semantic
functions together with corresponding semantic operations for arithmetic and Boolean expressions
over the semantic domain of states.

JeK : State→ Value.

[[n]]s = n

[[x]]s = [[get]](x, s)

[[e1 + e2]]s = [[e1]]s⊕ [[e2]]s

[[e1 − e2]]s = [[e1]]s	 [[e2]]s

[[e1 ∗ e2]]s = [[e1]]s⊗ [[e2]]s

Table 1: Semantics of arithmetic expressions

We note that ⊕, 	 and ⊗ occurring on the right of these equations are the usual arithmetic opera-
tions, whilst on the left they are just pieces of syntax.

JbK : State→ Bool.

Evaluation of expressions has no effect on states, i.e. objects of our category CState. Value and
Bool are semantic domains for integers and Booleans, resp.

Value = Z, Bool = B,

where B is the set containing Boolean values {true, false}.

6. Declarations

Every variable occurring in a Jane program has to be declared. Declarations are elaborated,
i.e. a memory cell is allocated and named by a declared variable. Therefore elaboration of a
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[[true]]s = true

[[false]]s = false

[[e1 = e2]]s =

{
true if [[e1]]s=[[e2]]s
false otherwise

[[e1 ≤ e2]]s =

{
true if [[e1]]s≤[[e2]]s
false otherwise

[[¬b]]s =

{
true if [[¬b]]s=false
false otherwise

[[b1 ∧ b2]]s =

{
true if [[b1]]s=[[b2]]s=true
false otherwise

Table 2: Semantics of Boolean expressions

declaration
var x

is represented as an endomorphism:
[[ ]]D : s→ s

for a given state s and defined by

[[var x]]s = JallocK(x, s).

A sequence of declarations is represented as a composition of corresponding endomorphisms:

[[var x;D]]s = [[D]] ◦ JallocK(x, s).

If we consider a state as a table, a declaration creates new (raw) entry for a declared variable with
the actual level of nesting and undefined value

((x, l) ,⊥) .

7. Statements

Statements are the most important constructions of imperative languages. They execute program
actions, i.e. they take values from the actual state and provide new values. A state is changed
only if a value of allocated variable is modified. This change of state we model in category CState

by morphisms between objects. Let S be a statement. Its semantics is a morphism in category
CState:

JSK : State→ State, (2)

where s and s′ are objects in category CState. Statements are executed in sequence, as they are
written in program text. In this contribution we do not consider the statements breaking sequential
execution, e.g. goto statement or exceptions.
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Assignment statement x := e stores a value of arithmetic expression e in a state s in a memory
cell allocated for the variable x on maximal (highest) level of nesting. This condition ensures that
local variable visible in given scope is used.
The semantics is as follows

[[x := e]]s =

{
s [((x, l), v) 7→ ((x, l), JeKs)] , for ((x, l), v) ∈ s
⊥, otherwise

and it is expressed by a morphism in the Fig. 5.

s s′

Jx := eK

Figure 5: Morphism for assignment

The notation
s′ = s [((x, l), v) 7→ ((x, l), [[e]]s)] (3)

describes a new state s′ that is an actualization of the state s in its entry for the variable x which
value is changed to [[e]]s.

The empty statement skip does nothing, i.e. it does not change state. Clearly, it is identity on
state s (Fig. 6).

[[skip]] = ids or equivalently [[skip]]s = s

s

JskipK

Figure 6: Morphism for empty statement

A sequence of statements is executed one by one and can be modeled as composition of
morphisms (Fig 7)

[[S1;S2]] = [[S2]] ◦ [[S1]]

and defined for a state s by
[[S1;S2]]s = [[S2]] ([[S1]]) s.

s

s′

s′′

JS1K

JS2K

JS1;S2K

Figure 7: Composition of morphisms
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Because the body of a program is a sequence of statements, program semantics is a path in cate-
gory CState. If the state s is undefined, i.e. s = s⊥, then execution of any statement in s provides
also undefined state:

JSKs⊥ = s⊥.

From this definition follows that achieving undefined state s⊥ is similar as falling into "black-
hole". It means that execution of program is immediately stopped without resulting state.

Conditional statement
if b then S1 else S2

causes branching of execution depending on a value of Boolean expression:

[[if b then S1 else S2]]s =

{
[[S1]]s, if [[b]]s = true
[[S2]]s, otherwise

The path of a program can follow either to the state [[S1]]s or to the state [[S2]]s, resp., determinis-
tically as it is illustrated in Figure 8.

s s′

Figure 8: Execution of conditional statement

A cycle
while b do S

also depends on a value of Boolean expression b. If b is true in initial state, i.e. [[b]]s = true, the
body S of a cycle is executed, then again b is evaluated in modified state. If a value b is not valid,
[[b]]s = false, then execution of a cycle statement is finished without execution of the body S.
Cycle statement is semantically equivalent with the following conditional statement:

[[while b do S]]s =
[[if b then (S; while b do S) else skip]]s

The proof can be found in [12]. Therefore, the semantics of the cycle statement is represented
in CState as a (possibly infinite) sequence of morphisms.
When modeling execution of this statement in the category CState, two situations can appear. The
first situation depicted in Figure 9 comes when the execution of cycle statement finishes in some
state sn.

s0 s1 s2 sn−1 sn

JSK JSK JSK JSK

Jwhile b do SK

Figure 9: Terminated execution of cycle statement

However, if the condition b has always value true, the cycle statement is executed as infinite path
in category CState. In this case, no result state is provided by the cycle statement.

Input statement input x serves for reading input value that is stored in the given variable
x. Because the value of variable is changed, execution of input statement causes modification of
state. If a variable x is not declared, the final state is undefined:
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[[input x]]s =

{
s [((x, l), v) 7→ ((x, l), v′)] , for ((x, l) , v′) ∈ s;
⊥, otherwise.

Programs in Jane can have nested blocks together with declarations of local variables. Exe-
cution of block statement

begin D;S end

follows in steps:

• nesting level l is incremented. We represent this step by fictive new entry in state table

((begin, l + 1) ,⊥)

i.e. endomorphism s→ s;

• local declarations are elaborated on new nesting level l + 1;

• the body S of block is executed;

• locally declared variables are forgotten at the end of block. We model this situation using
operation [[del]].

From the previous points, the semantics of block statement is the following composition of mor-
phisms:

[[begin D;S end]]s =
[[del]] ◦ [[S]] ◦ [[D]](s � 〈((begin, l + 1) ,⊥)〉)

It follows from the construction of category of states fulfilling of its base properties:

• each object has identity morphism defined;

• for any two composable morphisms there exists such a morphism which is their composi-
tion.

We can state that CState constructed above is a category.

8. Modeling a simple program execution in CState

We show our approach on a simple example. We consider here a trivial program written in J ane.
An absolute value of subtracting two numbers stored in variables is calculated. The program tests
whether the first number is greater than the second one. If not, then local block is created with one
auxiliary declared variable and the values in variables are exchanged. After that, the subtraction
is executed.

var x; var y; var d;
input x;
input y;
if (x ≤ y) then

begin

var z;
z := x;
x := y;
y := z;

end;
else

skip;
d := x− y;
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Following the definitions in the sections 6 and 7, states changes during execution of this program
are in Figure 10. Figure 11 shows the path how the given program is executed step-by-step from
the initial state s0 to the final state s7.

s1
x 1 2

s2
x 1 2

y 1 7

s3
x 1 2

y 1 7

s4
x 1 7

y 1 7

s5
x 1 7

y 1 2

a) b) c)

d)

e) f )

s0
x 1 ⊥

s6
x 1 7

y 1 2

g)

y 1 ⊥ y 1 ⊥

begin 2 ⊥
z 2 ⊥

begin 2 ⊥
z 2 2

begin 2 ⊥
z 2 2

begin 2 ⊥
z 2 2

d 1 ⊥ d 1 ⊥ d 1 ⊥

d 1 ⊥ d 1 ⊥ d 1 ⊥

d 1 ⊥

s7
x 1 7

y 1 2

h)

d 1 5

Figure 10: State changes during the program execution

Program starts from the initial state with the declaration of three variables: x, y and d. This is
expressed by the composition of the endomorphisms over state s0 (Fig. 10, part a)). After initial
declarations two statements for user input are being executed. Here we assume that user inputs
value 2 into variable x (Fig. 10, part b)) and value 7 into variable y (Fig. 10, part c)).
The next step is the evaluation of Boolean condition in if-statement. Because the condition is
true, [[x ≤ y]]s2 = true, program continues by creating a new block: the fictive entry with the
new level of declaration is written into state table. After that, a new variable z is being declared,
represented by new endomorphism over the state s2. These two steps appear still in state s2 and
no new state is created.
The next three steps are morphisms which represent three assignment statements. New states
become: state s3 after the first assignment (Fig. 10, part d)), state s4 after the second assignment
(Fig. 10, part e)) and state s5 after the third assignment (Fig. 10, part f)) inside the block.
When the next step is finishing of the local block, an operation for deleting all locally declared
variables is being call represented by morphism [[del]] and the resulting state is s6 (Fig. 10, part
g)). We notify that semantics of the whole conditional statement is a composition of morphisms
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s0

s1
Jvar yK

Jvar xK

s2

Jin
pu
t
yK

Jvar zK

s3Jz := xK
s4

Jd := x− yK

s5

JdelK

s7

Jx := yK

Jinpu
t xK

Jy := zK

s6

Jvar dK

Figure 11: The path of execution of given program

starting in state s2 and finishing in state s6 when the condition of conditional statement is true (in
this case).
Finally, the last statement of assignment is executed and output of this morphism is also the
resulting state of the whole program - state s7 (Fig. 10, part h)).

9. Conclusion

This paper contains our new approach to operational semantics by categories. We constructed the
category of states CState where states of memory are objects and state changes (computations) are
morphisms. The semantics of program is defined as path that is composition of morphisms from
initial state into final state. We have illustrated behavior of program on a sample example written
in programming language Jane.

Categories have beautiful illustrative power when expressing some relations graphically, our
approach is very good understandable for students and also for software engineers. In the future,
we would like to focus on types of data structures, exceptions, jumps and procedures. We assume
that computation by procedure shall be defined in separate category. Each category that represents
computation of procedure will be defined as object of total category for procedure environments.
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