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Abstract 
"Young measure" is an abstract notion from mathematical measure theory.  Originally, 
the notion appeared in the context of some variational problems related to the analysis 
of sequences of “fast” oscillating functions.  From the formal point of view the Young 
measure  may be treated as a continuous linear functional defined on the space of 
Carathéodory integrands satisfying certain regularity conditions. Calculating an explicit 
form of specific Young measure is a very important task.  However, from a strictly 
mathematical standpoint  it is a very difficult problem not solved as yet in general. Even 
more difficult would be the problem of calculating Lebasque’s integrals with respect to 
such measures. On the other hand in many real-world applications it would be enough 
to learn only some of the most important probabilistic  characteristics  of the Young 
distribution or learn only approximate values of the appropriate integrals. In such a case 
a possible solution is to adopt Monte Carlo techniques. In the paper we propose three 
different algorithms designed for simulating random variables distributed according to 
the Young measures  associated with piecewise functions.  Next with the help of 
computer simulations we compare their statistical performance via some benchmarking 
problems. In this study we focus on the accurateness of the distribution of the generated 
sample.   
Keywords: Young measure, random numbers, piecewise functions, simulations. 

1. Mathematical Background of the Young Measures  
The very roots of the idea of the Young measures are in the twentieth problem in the 
famous list of twenty three open mathematical problems proposed by David Hilbert 
in the last year of the XIX century. The problem was: Do all variational problems 
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with certain boundary conditions have solutions? The following problem is attributed 
to Oscar Bolza: minimize the functional function u: 
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The minimizing sequence for the functional J  is of the following form: 
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It can be seen that these elements oscillate more and more ‘wildly’ as the indices of 
the elements of this sequence grow. 

 The infimum of J is zero, but there is no function vanishing almost everywhere 
(with respect to the Lebesgue measure) in [0,1] with the derivative equal at the same 
time ±1 almost everywhere in this interval. Therefore J does not attain its infimum. 
Such functionals are often met in nonlinear elasticity, where minimization of the 
energy concerning multiple-well (i.e. nonconvex)  potentials is considered. We often 
say that this is where microstructure appears; microstructure is then associated with 
the (not necessarily attained) minimizers of the functional J. 

 We can look at this problem from a bit more general point of view. Consider  a 
sequence  nu  of bounded functions defined on an open subset Ω � �� with positive 
Lebesgue measure and taking values in a compact subset � � ��. Assume further, 
that these functions belong to a suitable function space (e.g. L ) and that the sequence 
is weakly* convergent to u0 while divergent in the norm topology. Moreover, let the 
elements of this sequence be oscillating functions, oscillating more and more rapidly 
around the weak* limit. It can be shown, that for any continuous function   the weak* 
limit of the sequence   nu  is not equal to )0(u  unless  is affine. It was Laurence 
Chisolm Young who in 1937, while considering nonconvex variational problem of 
that type, proposed to enlarge the space of admissible limits to the objects which he 
called ‘generalized curves’ (see [1]). These generalized curves are today commonly 
called ‘Young measures’ (other names are ‘relaxed trajectories’, ‘transition 
probabilities’). 

More precisely, Young proved that there exists a subsequence of   nu , not 
relabelled, and a family ������� with support in K, such that for any continuous 
function � on �� and any function � � ���Ω� there holds  
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lim���� �������������� � � � ������������� ������

≔ � ������������    
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It is seen, that the Young measure is indeed a generalized limit of the sequence under 
consideration (analogically, as in calculus a non-continuous function can be 
understood as a generalized limit of a sequence of continuous functions).  
Today Young measures are widely used in many areas of pure and applied 
mathematics, engineering and even economics. There are also monographs devoted 
entirely or in part to them. For general theory the interested reader may consult e.g. 
the monograph [2] that is  devoted entirely to the Young measures and treats this broad 
topic from  general point of view. The title chapter  starts with almost ten-page long 
part concerning abstract form of disintegration of measures. There is a whole chapter 
devoted to the Young measures on Banach spaces; the next one describes their 
applications in control theory, namely differential inclusions in Banach spaces are 
analyzed. Another interesting  book [3] also provides the reader with abstract 
theoretical foundation of the Young measures, the title chapters deal exclusively with 
the Young measures in the topological framework of Souslin spaces. One may also 
find there, important in optimization, parts devoted to gradient Young measures. The 
monograph [4]  is a classic book written by one of the most prominent authors in the 
field. Variational problems are treated with an emphasis on the quasiconvexity of 
integrands of minimized functionals. There is an entire chapter devoted to phase 
transition and microstructure, where the effects described by Young measures can be 
observed physically. In [5] a reader may find interesting facts related to optimization 
theory and variational calculus treated there  in an abstract way. The third chapter of 
this work is crucial for our present article: Young measure is described there as an 
object associated with any measurable function, rather than a generalized limit 
generated by a proper sequence, like in [4]. For applications in differential equations 
and optimization the interested reader is referred to  [6] – a massive treatise on 
contemporary calculus of variations with applications in PDE’s, mechanics, computer 
vision, shape optimization, to mention some topics.  Young measures basics are 
treated in the fourth chapter ‘Complements on measure theory’. They are used in the 
sequel, especially in paragraphs investigating problems in nonlinear elasticity. 
Another important book  devoted to the application of the Young measure theory is 
[7] where Young measures are used for investigating those evolution PDE’s of the 
hyperbolic and parabolic type, which arise in nonlinear fluid mechanics. In this book 
the Young measures are introduced in the context of scalar conservation laws. There 
are also interesting articles devoted to  engineering applications, see e.g. [8] or [9] as 
well as the numerical aspects of  the usage of Young measures in differential equations 
and engineering, see e.g. [10] and [11]. References cited in these works lead to the 
more specialized topics. 

As it has already been mentioned, Young measures can be looked at as 
generalized limits of the sequences   nu , where  nu  is a sequence of bounded 
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functions and   is a continuous function. Calculating weak* limit of   nu  is rather 
difficult and usually requires some more advanced functional analytic tools. In the 
present work we will use another approach described in detail in [5]. It enables us to 
associate a Young measure with any single measurable function defined on the 
nonempty, open, bounded subset Ω of R  with finite Lebesgue measure and values in 
the compact set RK  . Roughly speaking, having measurable function �� Ω � �, we 
consider the space � of mappings � defined  on Ω with values being regular 
probability measures on K. We assume that each element � � � satisfies certain 
regularity conditions. This is the space of all Young measures. Next we imbed the 
function u in � via Dirac mapping: we assign to any u the probability measure 
������ � � Ω. It can be proved that there exists isometric isomorphism between the 
space � and the space Y of the limits of kind described by (1). We refer the reader to 
[5] for detailed presentation of this approach. 

It turns out that it is useful to introduce somewhat simpler objects than Young 
measures, namely the quasi-Young measures. Moreover, in many cases, important 
both from theoretical and practical points of view, the quasi-Young measures 
associated with functions under consideration, are exactly the Young measures 
associated with them, see [13]. 

The first advantage of this approach is the possibility of avoiding the use of 
advanced functional analytic tools while calculating their explicit form. The second 
advance is the possibility of the Monte Carlo simulating the (quasi-)Young measures  
associated with considered functions.  

For the purpose of this presentation we will restrict ourselves to the case of 
piecewise affine functions of one real variable. More precisely, let RI   be an open 

interval with Lebesgue measure   normed to unity and let n
ii

I
1

}{


 be an open 

partition of I. We will consider the functions  that are affine on Ii, i.e. the functions of 
the form: 

)(1 )(:)( x
iI

n
i bxaxu ii     

with ai,bi R , where 
A

  denotes the characteristic function of the set A. Moreover, 

assume that for any i=1,2,…, the closure of the set  }:{ iIxibxia   is compact. Let 
RK   be a compact set with Lebesgue measure dy. 

Definition 1. We say that a family of probability measures 
Ixx 

 )(   is a quasi-

Young measure associated with the measurable function KIw :  if for every 
continuous function RK :  there holds an equality 
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In many cases the quasi-Young measure associated with the function under 
interest does not depend on the variable x. The family Ixx  )(  of probability 
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measures is then in fact a single measure   and we say in this case that the (quasi)-
Young measure is homogeneous. Quasi-Young measures associated with all the 
functions considered in this article are of this type. 

Recalling that a function taking only finitely many values is called a simple (or 
step)  function, definition 1 together with the change of variables theorem yields the 
following results (see [13]): 
Theorem 1 
(a) Young measure associated with a piecewise constant function, that  is the function 

of the form   n
i x

iIiaxw 1 )()(   is a convex combination of Dirac measures 

concentrated in  the points ai, i=1,2,…,n. that is   n
i

iaimM 1)/1(  , where M, 

mi are Lebesgue measures of the intervals I and Ii respectively; 
(b) Young measure associated with a piecewise strictly monotonic affine function w 

on I, that is,     n
i

n
i x

iIxiwx
iIibxiaxw 1 1 )()(:)()()(   with 0

i
a and 

R
i

b   and additionally such that w is continuous on I with clwi(Ii) compact, is 

absolutely continuous with respect to the Lebesgue measure dy on K.  In this case 
the Young measure is of the form 

.1 )(/1)/1( dyn
i

iIiwiaM     

Note that a function w(.) of the form given in the point (a) of Theorem 1 is a simple 
function. 

2. Generating of Young Measures Associated with Simple Functions 
The idea underlying any Monte Carlo simulation is to draw a sample i.e. a realization 
of the stochastic process {Z1, Z2, . . .Zm} composed of independent random variables 
with the same distribution as the random phenomenon under study. Based on this 
sample, important  information concerning stochastic characteristics of the examined 
distribution can be derived with the help of statistical-inference tools. Indeed, by the 
strong law of large numbers, for any Borel function f for which the expected value 
Ef(Z) exists, the average )(1

1  m
i im Zf

m
f  will almost surely (a.s.) converge to Ef(Z). 

In particular, when the sample size m tends to infinity, we can quite precisely evaluate 
all moments of the investigated distribution (e.g. expected value, variance etc.) as well 
as probabilities of related random events. The latter can be used for evaluating the 
theoretical frequencies of various intervals, so we can also obtain a histogram that 
approximates  the distribution density function. The approximation of the density 
function is the better, the longer is the observation sequence.   

Now let us consider simple functions f defined on a bounded interval I, and such 
that their values have inverse images being the intervals or their unions.  By Theorem 
1 (point (a)) the Young measures associated with such functions are the discrete 
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probability distributions which can be easily simulated by computer procedures.  In 
Monte Carlo simulations, the sample of  random variables having such distributions 
can be generated according the following  routine DYM(f , I, N).  

 
Set k=1; 
While n≤N Do Step 1 to Step 3  

Step 1. Set t=Random(I) 
Step 2. Set z[k]=f(t) 
Step 3. Set k=k+1 

Set sample=(z[1],...,z[N]) 
Return sample  
  
The procedure DYM is called with three arguments: the formula f that defines the 

simple function, its domain, i.e. the interval I, and the sample size N 
 The subroutine  Random(I) returns a pseudorandom number generated according to 
the uniform probability distribution defined on I.  

3. Generating of Young Measures Associated with Piecewise Affine 
Functions 

The mathematical idea underlying the routine DYM can also be adopted to 
approximate Young measures in cases that are a bit more sophisticated. It is well 
known from the measure theory, that any Borel function can be approximated with 
the simple function (more precisely it is a limit of a sequence of the simple functions) 
Thus it can be expected, that for a large class of functions, we can approximate related 
Young measures by a properly chosen simple function. In this paper, such an 
approximation of any function f will be addressed to as  simple approximation, and 
denoted as SA(f). Here we propose the following general steps of the construction of 
such a simple approximation for any piecewise function f determined on the interval 
I.  
GS 1. Split the interval I=(a,b)  into n equal in length subintervals I1,...,In.  
GS 2. Choose the sequence Y={yi}, where yi =f(xi), i=1,...,n, and  xi is the centre of 
the subinterval Ii.   
GS 3. As SA(f) choose the following simple function u: 

 )(:)( 1 xyxu
kI

n
k k   

Below we present a routine AYM1(f , a, b, N, n) that realizes the above general steps 
GS 1-3, and returns a sample from the (approximated) Young measure related to any 
piecewise function f. 
 

Set k=1; 
Set jump=(b-a)/n 
While k≤n Do Step 1 to Step 3  
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Step 1. Set t=a+(k-1/2)*jump 
Step 2. Set y[k]=f(t) 
Step 3. Set k=k+1 

Set i=1; 
While i≤N Do Step 4 to Step 6 

Step 4. Set k=RandomI({1,..,n}) 
Step 5. Set z[i]=y(k) 
Step 6. Set i=i+1 

Set sample=(z[1],...,z[N]) 
Return sample  
 
The arguments  for the AYM1 are the following: the formula f that defines the 

simple function, the endpoints of the interval I=(a,b), the number n of subintervals  
I1,...,In, and the sample size N.  

 The subroutine  RandomI(A) returns a pseudorandom integer number generated 
according to the uniform probability distribution defined on A - a finite subset of 
integers. The procedure  AYM1 was introduced in [14]. However it turns out, that, 
although rarely, in some cases the AYM1 fails to generate distributions that satisfy 
the benchmarking tests. Thus we propose here to modify this procedure by changing 
the GS2. Instead of choosing the sequence yi =f(xi), i=1,...,n, where xi is the centre of 
the subinterval Ii, we adopt the following definition: yi = f (Random(Ii)), i=1,...,n. 
Consequently,  the only difference now is that the argument xi is a random number 
belonging to Ii. As a result we get at the following routine AYM2: 

 
Set k=1; 
Set jump=(b-a)/n 
While k≤n Do Step 1 to Step 3  

  Step 1. Set t=a+(k-Random([0,1])*jump 
Step 2. Set y[k]=f(t) 
 Step 3. Set k=k+1 
Set i=1; 
While i≤N Do Step 4 to Step 6 
 Step 4. Set k=RandomI({1,..,n}) 
 Step 5. Set z[i]=y(k) 
 Step 6. Set i=i+1 
Set sample=(z[1],...,z[N]) 
Return sample  
 
Both introduced procedures for generating Young measures  are based on the 

steps GS1-GS3 which allow as to construct a simple approximation of the function f. 
In the case of the AYM1 it is done deterministically whilst in the case of  AYM2 the 
numbers ai=yi, i=1,...,n, necessary for the simple approximation are taken at random. 
As a result in both cases we end up with specific sequence Y={yi}, i=1,...,n, that 
“represents” the values of f taken on within each related interval Ii. One may ask 
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however, why we should confine ourselves to this specific choice of the 
“representatives”. It seems appealing to consider yet another version of the random-
number generator. To describe the idea underlying this new routine let us note that in 
the AYM2 at first we draw a sequence Y and then, by drawing an interval (its number), 
we draw the representative for the value of f . It seems worth considering to  change 
of the order of these two random drawings in a new generating procedure. Namely, in 
such a procedure at first we will draw the interval, and next the argument xi belonging 
to this interval will be randomly chosen. Such idea is interesting because  in such a 
way, we can significantly enrich the set of possible values Y, i.e. the set of the 
“representatives” of the f. Consequently,  we propose to verify the usefulness the 
following computer routine AYM3: 

 
Set k=1; 
Set jump=(b-a)/n 
While k≤N Do Step 1 to Step 4 
 Step 1. Set k=RandomI({1,..,n}) 

 Step 2. Set t=a+(k-Random([0,1])*jump 
 Step 3. Set z[k]=f(t) 
 Step 4. Set k=k+1 
Set sample=(z[1],...,z[N]) 
Return sample 
 

Both new routines are called with the same arguments as AYM1.  
Finally, let us note that the intervals  I1,...,In considered in the routine AYM3 are 

of equal length. Thus the drawing of the number of the interval (Step 1) is equivalent 
to the drawing of a number x according to uniform distribution on (a,b) and checking 
to which interval it belongs.  This remark together with the Complete Probability 
Formula  yields the following equivalent yet very simple form of AYM3 

 
Set k=1; 
While k≤N Do Step 1 to Step 3  

Step 1. Set t=Random(I) 
Step 2. Set z[k]=f(t) 
Step 3. Set k=k+1 

Set sample=(z[1],...,z[N]) 
Return sample 
 
The structure of the above procedure is exactly the same as the form of the 

procedure DYM. The only difference now is that the function f does not have to be 
the simple one and thus the underlying generated measure does not have to be discrete.  

 In the next section we compare the three above generators as tools for simulating 
of the Young distribution related to piecewise functions. 
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4. Comparison of the Random-Number Generators 
The main objective of the comparison is to identify a generator which produces 
distributions that best approximate the true underlying Young measures. In order to 
achieve our goal we have analyzed dozens of  benchmarking  problems, i.e.  problems 
where the explicit form of the Young measure is known. Here we present just two 
examples of such ones. 

As an index of quality of the generated distributions we use the Pearson goodness-
of-fit chi-square statistic (as usual denoted by 2).  

 
Example 1.  
In this benchmarking problem we use a function f defined on the interval I = [0,4]  
given by the formula:  


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Such a function f was considered in [14]. With the help of the theoretical results from 
Section 1, one can find the formula defining Young measure v related to this function.  
It is concentrated on the interval [0,2], and its probability density function g is given 
by:  
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The graph of the above function g is shown in Fig.1. 
 

Fig. 1.  Graph of the  probability density function g given by (4) 
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In our comparison studies we perform simulation experiments assuming different 
values of the parameters N, n that are necessary to call the routines. In order to make 
the results more trustful, while applying the Pearson test we split the domain (i.e. the 
interval [0,2]) into 200 equal classes. Thus the sample size has to be large enough to 
ensure sufficient number of observation in each of the classes.  Some exemplary 
results are presented in Table 1.  

Now, let as assume the significance level of the goodness-of-fit test as= 0.1. 
Such a value of  - bigger than usually assumed -  results in relatively smaller values  
of the probability of the type II errors, and these errors are of our primal interest.  The 
critical value of the test in this situation is   224.957. So, if the values of the statistic 
2 are less than that, the empirical distribution generated in the experiment can be 
considered as similar or even  identical with the theoretical one given by (4). On the 
other hand the smaller the values of 2 , the greater is the similarity. Apart from the 
2 criterion in Table 1 we also present the value of mean relative  error, MRE, i.e. the 
distance between the theoretical frequencies computed on the basis of the probability 
density function g and the empirical frequencies received with the help of examined 
generator. However it should be emphasized that from the statistical theory point of 
view  the  2 criterion is of our primal interest, because it not only indicates the best 
generator but also tells whether the generated sample can be considered as drawn from 
the hypothetical theoretical distribution.       

 
Routine Number of Intervals n Sample size N  Statistic 2 Mean 

Relative 
Error 

AYM1 250 2000 1038 3.3% 
AYM2 250 2000 1028 3.5% 
AYM3 250 2000 194 3.0% 
AYM1 1000 2000 219 3.1% 
AYM2 1000 2000 331 3.5% 
AYM3 1000 2000 172 3.0% 
AYM1 2500 5000 192 1.9% 
AYM2 2500 5000 226 2.2% 
AYM3 2500 5000 188 1.9% 

Table 1. Comparison of AYM1,AYM2, and AYM3-  results received for the functions 
described in Example 1. 

When analyzing Table 1, one can see that the generator AYM3 manifests the 
greatest correspondence with the true Young measure considered in our benchmark. 
Its dominance is confirmed not only by the smallest values of the  2 –statistic, but 
also by the fact that it is the only generator which produces a sample which passes the 
Pearson test in each presented case – the corresponding value of 2  is less than the 
critical value. The values of mean relative errors are also  the smallest in case of 
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AYM3.  Figure 2 presents a histogram of a data generated with the help of AYM3 
routine. Comparing it with the graph of the true theoretical distribution presented in 
Fig.1, we can see how accurate is the shape of the simulated distribution. 

 

 
 
 
 

 

        

 

 

Fig. 2. The histogram based on a sample generated with the help of AYM3 with N=100000.  

Example 2.  
In this benchmarking problem we use a function f defined on the interval I = [0,6]  
given by the formula:  
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Again, by Theorem 1, we can find the explicit formula for the following probability 
density function g of the related Young measure. If is given by:  
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To save the article space this time we omit the presentation of the graph of the 
above function g as well as the histograms of generated samples. We only present 
Table 2, which, similarly as Table 1, shows the values of  the index 2 as well as the 
mean relative errors.  As in Example 1 we assume  the significance level of the 
goodness-of-fit test as= 0.1. The critical value of the test is the same as previously:   
224.957.   The results presented in Table 2 confirm the dominance of  the generator 
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AYM3. It again manifests the greatest correspondence with the true Young measure 
considered in our benchmark.  

 
Routine Number of Intervals 

n 
Sample size 

N  
Statistic2 Mean 

Relative 
Error 

AYM1 250 2000 919.8 3.65% 
AYM2 250 2000 1118.4 4.10% 
AYM3 250 2000 206.9 3.63% 
AYM1 1000 2000 269.9 3.75% 
AYM2 1000 2000 302.6 3.65% 
AYM3 1000 2000 186.2 3.55% 
AYM1 2500 5000 217.6 2.32% 
AYM2 2500 5000 201.2 2.35% 
AYM3 2500 5000 173.9 2.29% 

Table 2. Comparison of AYM1,AYM2, and AYM3- results received for the functions 
described in Example 2. 

 
Routine Number of Intervals 

n 
Sample size 

N  
Statistic2 Mean 

Relative 
Error 

AYM1 250 2000 897.0 8.3% 
AYM2 250 2000 1015.8 8.2% 
AYM3 250 2000 198.5 6.7% 
AYM1 1000 2000 268.1 7.3% 
AYM2 1000 2000 292.0 7.2% 
AYM3 1000 2000 198.9 7.2% 
AYM1 2500 5000 236.8 4.4% 
AYM2 2500 5000 252.7 4.4% 
AYM3 2500 5000 199.9 4.4% 

Table 3. Comparison of AYM1,AYM2, and AYM3- average results received for 50 
randomly chosen  piece-affine functions f . The number of “pieces” in each random function 

f was separately randomly chosen within the range 4 to 10. 

The dominance of the generator AYM3 is also confirmed by other  benchmarking 
problems considered in our studies. We have considered dozens of such, and in each 
case the generator AYM3 proved to be the most accurate one. The summary (average)  
results obtained for 50 randomly chosen  piece-affine functions f  are presented in 
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Table 3. The number of “pieces” in these random functions f was also randomly 
chosen within the range 4 to 10.  

5. Final Remarks 
The performance of  AYM1 and AYM2 looks rather poor.  We see that AYM1 passes 
the Pearson test in only two cases, while the AYM2 only once. However, the quality 
of the samples generated by  AYM1 and AYM2 improves when the number of 
intervals (along with sample size) increases - the AYM1 performs really well  for 
n≥10000 and N~500000, see [14]. Nonetheless, in each situation it performs worse 
than AYM3. 

The AYM3 can be used not only to produce histograms, but obviously it can be 
also helpful in estimating various characteristics of the underlying Young measure 
(from our experience: the relative error in estimating the expected values and standard 
deviations was less than 1% in all our benchmarking problems). What is even more 
important, generating the Young measure enables us to receive very accurate 
approximations  of the values of the integrals given in (1) – a primal and practically 
the most important purpose for which we need the Young measure. It is well-known 
that  the integral  

K
kdk )()(  , with v being the  homogenous  Young measure, can 

be very efficiently approximated by the average of the sample of pseudo-random 
numbers(K), where K is generated according to the Young measure v. 
Consequently, the construction of good Young measure generator is an important task. 
The AYM3 manifests really very good performance, which, especially in relation to 
AYM2 (which at first look, seems to be very similar), may be a bit surprising. 
However a more profound analysis of the differences between  these two algorithms 
leads us to very interesting and important theoretical conclusions. Our research 
hypothesis is the following: a Young measure related to any Borel function f defined 
on the interval I is the distribution of the random variable  f(U), where U has got the 
uniform distribution on I.  If the statement is true then no other generator could better 
simulate the Young measures than the AYM3. We hope to present the proof of our 
hypothesis very soon. However it requires usage of many notions and tools from the 
functional analysis. So when it is completed, it will be published in separate paper. 
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