
211

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

JIOS, VOL. 43, NO. 2 (2019) SUBMITTED 06/18; ACCEPTED 05/19

Parallel Simulation of Tasks Scheduling and Scheduling
Criteria in High-performance Computing Systems

Jarmila Skrinarova jarmila.skrinarova@umb.sk
Faculty of Natural Science
Matej Bel University, Banská Bystrica, Slovakia

Michal Povinsky michal.povinsky@umb.sk
Faculty of Natural Science
Matej Bel University, Banská Bystrica, Slovakia

Abstract

This work is focused on the issue of job scheduling in a high performance computing
systems. The goal is based on the analysis of scheduling models of tasks in grid and
cloud, design and implementation of the simulator on the base of GPGPU. The
simulator is verified by our own proposed model of job scheduling. The simulator
consists of a centralized scheduler that is using GPGPU to process large amounts of
data by parallel way. In order to ensure the optimization of the scheduling process we
have implemented a simulated annealing algorithm. GPGPU model was compared to
the CPU when the number of nodes from 32 to 2048. Improving the implementation
based on GPGPU had a significant impact on the system with 512 nodes and with an
increasing number of nodes further accelerates in comparison with sequential
algorithm. In this work are designed new scheduling criteria which are experimentally
evaluated.
Keywords: HPC, grid computing, cloud computing, hybrid computing, elastic
cluster, management of resources, job scheduling, virtual machine scheduling

1. Introduction

Cloud computing is now very popular and is mainly oriented to commercial
purposes. High performance computing has traditionally been done on
supercomputers and high-performance clusters, often related to computational grids.
In this work we have tried to contribute to a gradual transition from the grids, as
relatively fixed network clusters to Grid-based elastic clusters, which elasticity and
ability to lease resources from the external environment leads to the creation of a
virtual computer world. The philosophy of this work is focused on the virtual
machine, which is dedicated mainly to scientific computations and which is able to
elastically expand or reduce according to the dynamic load of the system. The elastic
cluster presents a hybrid computing, which uses appropriate grids and cloud

UDC 004.414.23
Original Scientific Paper

DOI: https://doi.org/ 10.31341/jios.43.2.5
 Open Access

212

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS...

properties. Cooperation of private and public clouds contributes to the key objective
of the quality of services [1].

An elastic cluster represents a unified model of managing HPC (High
Performance Computing) resources and cloud resources. For example, the system
OpenNebula is designed to manage a group of virtual machines. The Elastic clusters
contain comprehensive solutions that provide services for management of dynamic
infrastructure, infrastructure on the cluster level and interconnection between the
dynamic and cluster infrastructure.

The elastic cluster supports both virtual and physical resources. Using virtual
machines in the cloud allows efficient running of HPC jobs. Elastic clusters have to
satisfy the quality criteria related to the latency caused by assignment of virtual
resources. Amazon Elastic MapReduce (Amazon EMR) is a web service that allows
you to handle large jobs with solid scientific data on dynamic web infrastructure
using Amazon Simple Storage Service (Amazon S3).

In summary, the contributions of this work are the following: We design and
create new job scheduling simulator on the base of GPU that takes into account
physical and virtual resources of hybrid system. We implemented and verified it on
real HPC cluster environment that contains physical and virtual machines. We
optimize the schedule by simulated annealing algorithm. The aim is to optimize the
schedule based on the optimization criteria, the time of creation schedule, the
completion time of the last task Cmax.. We designed two new criteria. New criteria are
based on energy functions. The first energy function helps us to effective stop
optimizing algorithms. The second energy function is complex criterion for
evaluation quality of schedule. We designed methodology, created and evaluated
four experiments with goal to find models responsible for the quality of schedule.

The rest of this paper is organized as follows. Related work is discussed in
Section 2. The models of dynamic resource management in computing systems are
described in Section 3. Section 4 outlines Scheduling criteria suitable for elastic
cluster. In this section we designed two new types of energy function as complex
criteria for evaluation quality of schedule. The Compute Unified Device
Architecture is introduced in Section 5. Design of job scheduling simulator is
described in Section 6. In Section 7 computing environment for the implementation
and testing of the scheduling simulator is specified. Section 8 includes testing of the
scheduling simulator design and methodology of measurement and scheduling
algorithm verification focused on requirement achievement specified in Section 4.
This section also describes the obtained scheduling results and their validation.
Finally, Section 9 contains the conclusions of this work.

2. Related Works

This paper is based on our previous work related to the proposal of models for
parallel tasks in workflow, their computing in a distributed environment, and also
from the design of algorithms to support the scheduling [2, 3, 4]. Some approaches
of stochastic and heuristic optimization methods for scheduling in grids are
suggested. Implementation of genetic algorithms and simulated annealing is

213

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

described in [5, 6, 7, 8]. Lim et al. [9] proposed a hierarchical parallel genetic
algorithm (Eng. Grid-Enabled Hierarchical Parallel Genetic Algorithm, GE-HPGA).
Other methods are based on the local search heuristics]. Hybrid model of genetic
algorithm and Tabu search suggested Xhafa et al. [10, 11]. Other approaches focus
on fuzzy PSO optimization [12], artificial neural networks [13], neural trees [2] and
economically based methods [14, 15].

3. Models of Dynamic Resource Management in Computing Systems

In this section we deal with models that are used to manage the workload and
resources in dynamic systems. System resources can be represented as
computational nodes. Workload is defined by batch of tasks to be performed on
certain computing resources using scheduling rules. Resources can be physical or
virtual. There are two basic models approach to resource management [16, 17]:

• Model management workload and resources.
• Model the dynamic infrastructure.

The first model is the management of workload and resources. It is called Workload
and Resource Management Systems, WRMS. Model WRMS provides three kinds of
activities:

• Managing resources, including resource management conditions.
• Managing tasks, including creating, assigning the ranks, waiting and

monitoring.
• Scheduling, mapping tasks to a set of resources and the allocation of

resources for certain tasks at a time.
This is principle of work for resource management systems such as Oracle Grid
Engine [6], Torque and Condor.
The second model is used for dynamic resource management infrastructure
(Dynamic Infrastructure Management System, DIMS). These include systems like
OpenNebula, xCAT or VMware vCenter Server. The DIMS model supports two
types of functions:

• Managing physical resources.
• Managing services, including the creation of services and the subsequent

allocation of resources, monitoring services, migration and cancellations. All of
these services can manage virtual or physical resources.
Typical tasks in the workflow can include precedence dependences. There is a list of
all tasks belonging to the task j that must be completed before task j starts running.
Parallel tasks in the workflow contain subtasks that can communicate together. The
group of tasks need to be scheduled on resources of a single machine with multiple
computational units (a group of processors, gang) to avoid unnecessary waiting.
Tasks in the workflow, which use synchronization, cause also waiting subtasks, but
may slow down other tasks in the system. The task scheduler system is responsible
for finding a suitable group of machines that are able to perform all the subtasks of a
task.

214

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS...

4. Scheduling Criteria Suitable for Elastic Cluster

A schedule means assignment of tasks to recourses for a certain time interval so that
no two jobs are executed simultaneously on the same resource and resource capacity
is not exceeded too. The schedule specifies for each point in time a set of tasks that
are performed at that moment on a particular set of resources [1].

Sj denotes to start processing time of task Jj, and Cj is time of task Jj completion.
The most commonly used criteria for optimization of the schedule φ, that are needed
to be minimized [18]:

• Completion time of the last task Cmax is called the maximal time of end of
task (makespan), Cmax = maxj{C1,…, Cn}. For schedule φ we can define completion
time of schedule (1):

Cmax(φ) = maxj{Cj}. (1)

The criterion deserves serious attention, because processing time represents the
entire input set of tasks, and thus the length of the schedule.

• The total completion time (flowtime) of all jobs is calculated as sum of all
the tasks F = Σ Cj for all j from 1 to n. If the tasks have different weights we
calculate a weighted sum of all tasks Σ wjCj. For schedule φ we can define flowtime
of schedule (2):

F(φ) = Σ Cj (2)

Based on the criteria and (2), we propose two types of energy function (3) and
(4)

E1(φ) =n*Cmax(φ)+F(φ). (3)

E2(φ) =a1*n*Cmax(φ) + a2*F(φ) + a3*TC, (4)

where a1, a2, a3, are weights coefficients and TC are transfer costs. Transfer costs
are caused mainly by transfer files and creating virtual machines.

In our case, we use several evaluation criteria and restrictive conditions for an
elastic cluster.

If rj is the time availability of task j, Sj is time to start processing task j, Cj is
competition time of task j, TjS is the last time for starting task j, Dj is duration of task
j, that is estimated by client, then we can define evaluation criteria for elastic cluster.

The elastic cluster typically supports three types of time requirements of task,
which define:

• Limit for maximum slowdown of task SDmax.
• An advance reservation of resources.
• Last possible time TjS (deadline) for starting the task j.
By equation 5 we calculate slowdown of tasks for the tasks that have required a

limit to the maximum slowdown of task SDmax.

215

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

SD(j)=(Sj -rj + Dj)/Dj. (5)

We guarantee that the slowdown does not exceed the value SDmax. Using
equation 6 the latest start time of the task can be calculated.

Tj
S= rj+ Dj(SDmax-1). (6)

5. Compute Unified Device Architecture

In this section Compute Unified Device Architecture (CUDA) is introduced. To
perform computation using CUDA it is necessary to define a C function, called the
kernel. This function uses specified number of lightweight threads. Threads are
grouped in blocks, and blocks form a grid. This hierarchy is based on the hardware
organization of GPU.

Threads within a block can easily communicate through shared memory. Blocks
of threads can run independently. The GPU hardware contains a number of
processors, and each block can be executed on a different processor. The order in
which blocks are dispatched to processors is managed by the embedded scheduler.
There may be a number of blocks being executed on a processor at the same time, as
long, as sufficient resources are available (e.g. shared memory, registers). There is a
limit to the number of threads per block, since all threads of a block are expected to
reside on the same processor core and must share the limited memory resources of
that core. Currently, the CUDA specification states that each block may contain up
to 1024 threads, organized in 1-, 2- or 3-dimensional array. The number of thread
blocks in a grid is usually specified by the size of the data being processed or the
number of processors in the system.

CUDA threads may access data from multiple memory spaces during their
execution. Each thread has private local memory. Each block of threads has shared
memory visible to all threads of the block and with the same lifetime as the block.
All threads have access to the same global memory.

There are two additional read-only memories accessible by all threads: the
constant and texture memory spaces. The global, constant, and texture memory
spaces are optimized for different memory. For a more detailed description, please
see to the CUDA Programming Guide by NVidia [19].

6. Design of Job Scheduling Simulator

We have created simulator for job scheduling in high performance computing
systems. The simulator is written in C language. We decided to write own simulator
as an experimental environment that we can fill in or change. Internal structure is
based on matrices:

• NODE_LATENCY – communication latency between machines.
• CPU_SPEED – processor speed for every machine.
• JOB_LENGTH – job time consumption in number of operations.
• FILE_SIZE – capacity of files.

216

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS...

• FILE_MIRRORS – time of creating copy of file on the node (0 if file is on
the particular node, -1 if file isn’t on the node).

• JOB_FILES – list of input files for every job.
• FILE_GENBY – for every job includes list of files which are generated by

this job.
• NODE_BANDWIDTH – describes bandwidth between machines in the

system.
• NODEJOBS – list of jobs actually allocated on the machine.
• NODEJOBCOUNT – numbers of job allocated on the machines.
• NODECOMPLETEDJOBS – numbers of completed jobs for every machine.
• NODELASTJOBFINISH – time of completion last job on every machine.
• JOBDEP – contains dependences between jobs.
• JOBFILESLIST – contains actual list of files for every job in process.
• JOBFILESCOUNT – number of files for every job.
• NODEJOBSBEST – copy of matrix NODEJOBS which contains the best

times.
• NODEJOBCOUNTBEST – copy of matrix NODEJOBCOUNT which

contains the best times.
• NODEEDOWNLOADTIMES – time of completion the last file transfer on

the machine.
• NODEFILEDOWNLOADFOR – the job file downloaded for.
• JOBFINISH – completion time of jobs.
• KERNEL_STATUS – output file from GPU kernel.

Input consists of two parts:
First part of input consists of basic information about scheduled system:
• Number of nodes.
• Number of machines.
• Number of jobs.

Second part of input is a generated set of inputs matrix and contains

information:
• Connection characteristics between machines.
• Speed of processors.
• Lengths of jobs.
• Size of files.
• List of input files of jobs.
• List of files which are created by every job.
• Start allocation of files.

In the process of simulation output from simulator is calculated. The output

contains:
• Completion transfer time of every needed file.
• Start time of every job running.
• Completion time for every job.

217

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

• The output from the simulator is in the same time the input for the
optimizing algorithm.

We have prepared two versions of simulator. The simulator of job scheduling
can run as:

• A sequential program on CPU.
• A parallel program on GPU.
In parallel version all matrices are stored in global memory. We used threads

and block of threads in the program. One thread in program is responsible for
creating schedule on one machine. Blocks are consisted of 16 threads.

Basic algorithm of GPU simulator can be described by pseudoalgorithm:
Algorithm 1: Job scheduling GPU simulator

Inputs: number of nodes, number of machines, number of jobs, connection
characteristics between machines, speed of processors, lengths of jobs, size of
files, list of input files of jobs, list of files which are created by every job, start
allocation of files.

Outputs: completion transfer time of every needed file, start time of every job
running, completion time for every job.

 if not completed all jobs or is found better completion time then
 for every machine do kernel function:
 for every job on the machine do
 for every file of job do
1. Search resource machine from whom will transfer file (if it is needed).
2. Compute time for file transfer completion and write it to matrixes

NODEEDOWNLOADTIMES a FILE_MIRRORS.
3. Find out time of last transferred file.
4. Compute start time of running job (maximum of completion time of last

transfer and completion time of last job).
5. Compute v running time of job and completion time of job.
 end for

end for
end for
end if

The output from the simulator is in the same time the input for optimizing

algorithm. Simulated annealing (SA) algorithm is responsible for optimizing created
schedule of jobs.

Schedule optimizing SA pseudoalgorithm:
Algorithm 2: Schedule optimizing SA algorithm

Inputs: completion transfer time of every needed file, start time of every
Outputs: number of iteration, actual Cmax, best Cmax, actual flowtime, best

flowtime, actual E1, best E1, (difference between actual E1 and best E1), probability
function, neighbor function and temperature function

 Generate random initial solution.
 Evaluate current schedule.

218

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS...

 Remember current schedule as the best solution.
 Repeat for the defined number of iterations:
1. Randomly move jobs.
2. Randomly change file download order.
3. Evaluate the new schedule.
4. Calculate current temperature.
5. if the temperature is positive then calculate probability of accepting the new

schedule. else accept the schedule if it isn't worse than the previous schedule. end if
6. if the schedule has been accepted then set the schedule as the best schedule.

else return to the best solution. end if

The algorithm of SA is not difficult to implement. But efficiency of algorithm

for reason of particular problem depends on functions:
 Energy function E, which represents energy of a given state.
 Neighbor function N, which produces the neighbors of a given state.
 Probability of solution acceptance function P, that determines whether

moves should be accepted or not.
 Temperature function T, which computes the cooling schedule.

Investigation of the first function is one goal of our experiments, because may
cause difficulties in implementation depend on the problem specification. See
equations (3) and (4).

7. Computing Environment for the Implementation and Testing of the
Scheduling Simulator

The proposed scheduling simulator is implemented and tested on high-performance
cluster that is allocated in Matej Bel University in Banska Bystrica, Slovakia as
framework of Slovak Infrastructure for High Performance Computing (SIVVP)
project. The main objective of SIVVP is the creation of a Slovak grid and
supercomputing infrastructure in some centers. Specialized centers are gradually
equipped with modern technologies for high-performance computing,
supercomputing and high-capacity data storages. The equipment is situated in
Slovak academy of Sciences in Bratislava and in 4 universities in Slovakia: Slovak
Technical University in Bratislava, University of Zilina, Technical University in
Kosice and Matej Bel University in Banska Bystrica. Infrastructure of local sites is
interconnected on the base of rules of National Grid Initiatives and European Grid
Initiatives. Development and implementation of new technologies shows the need to
focus Slovak infrastructure towards hybrid computing. This means to search and
apply appropriate services, typical for cloud computing and the main advantages
supercomputer clusters and grid computing that can be named as an elastic cluster.

Currently, UMB cluster consists of 49 servers, each server has 12 or 16
computing elements (560 total), 48 - 128 GB of RAM per server and 96 TB of total
data storage capacity. The cluster contains 2 special graphics accelerators nVidia

219

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Tesla M2070 with 448 computing cores per card and 6 nVidia Tesla K20 with 2496
computing cores per card which are designed for general computing GPGPU. The
system includes 2 servers for management, system security and data access, 2 data
storages and high-speed Infiniband network between computing nodes and data
storage arrays.

We use Scientific Linux 6.2 operating system on all computing nodes in the
cluster. Part of the software installation is xCAT (Extreme Cloud Administration
Toolkit) designed to manage computing nodes in the cloud environment and IBM
DS Storage Manager that is intended to manage storage arrays.

The High Performance Computing Centre – HPCC was established in the
context of a national project SIVVP at Matej Bel University, see www.hpcc.umb.sk .
The main objective of the work of Centre is to provide services to scientists who, in
their research work need to use high-performance computing environment.

8. Testing of the Scheduling Simulator Design and Methodology of
Measurement and Scheduling Algorithm Verification

We prepared two main schedulers for experiments. First scheduler is responsible for
creating the schedule by sequential way and runs on CPU. The second one is based
on parallel program and uses GPUs. We prepared generated data for experiments.
The prepared data have the structure typical for high performance computing system
and job characteristics. We designed two load system models. The load system
model #1 represents batch of small load jobs for high performance computing. In the
load system model #1 each machine is in average loaded by 4 jobs and 16 files. For
example, for system with 32 machines it means that load do not exceed 128 jobs for
high performance computing which use 512 files.

The load system model #2 represents batch of big load of high performance
computing jobs. In the load system model #2 each machine is in average loaded by
16 jobs and 32 files. For example, it means that for system with 1024 machines load
do not exceed 16384 jobs for high performance computing which use 32768 files.
Experiments were done for systems with 32, 64, 128, 256, 512, 1024 and 2048
physical or virtual computing machines with different processor speed, differences
between machines, bandwidth and so on.

The first goal of the experiments is to investigate and compare times needed for
creating optimized schedule for both sequential and parallel scheduling algorithms
on different high performance computing systems for both load system models.
Optimization algorithm was stopped after a fixed number of iterations (1000 and
5000).

We can see in table 1 and on the figure 1 that for small load systems with
machines 32 – 256 is better to use sequential job scheduling program. But for more
than 512 machines is better to use parallel scheduling. In system that contains 1024
machines the parallel created schedule reached more than 4 – times improving. It
means that parallel schedule creation process takes only 22.6 % of time then
sequential one.

220

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS...

Numbers of machines Time of schedule

creating on CPU [sec.]
Time of schedule

creating on GPU [sec.]
32 2 29
64 5 60
128 21 144
256 108 344
512 1468 806
1024 8782 1989

Table 1. Time of schedule creating on CPU and GPU for load system model #1 and different numbers
of machines.

Figure 2. Comparison of times of schedule creating on CPU and GPU for load system model #1 for
different numbers of machines.

Numbers of machines Time of schedule
creating on CPU [sec.]

Time of schedule
creating on GPU [sec.]

32 13 184
64 77 298
128 979 751
256 8046 1508
512 N 3654
1024 N 7706

Table 2. Time of schedule creating on CPU and GPU for load system model #2 and different numbers
of machines.

In the table 2 and figure 2 we can see results for big loaded high performance
systems. For systems with 32 – 64 computing machines is convenient to use
sequential scheduling. For systems with more than 128 machines is needed parallel
scheduling. Sequential program did not finished computing of the schedule for 512
and 1024 computing machines.

221

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

In a system that contains 256 machines the parallel created schedule reached
more improving than 5.3 – times. Parallel schedule creation process takes only 18.7
% of time then sequential one.

Figure 2. Comparison of times of schedule creating on CPU and GPU for load system model #2 for
different numbers of machines.

Numbers of machines Completion time of

last job for load
system model #1

Completion time of
last job for load
system model #2

32 48645 91025
64 3460 8692
128 2880 9033
256 3510 9768
512 4620 13234
1024 5980 14520

Table 3. Time of last job completion Cmax in the load system model #1 and #2.

The second goal of experiment was to find an optimal (or pseudo optimal)
schedule for small and big loaded computing systems. Results we can see in the
table 3 and they are specified in numbers of time units.

The parameters of stop the optimizing algorithm were the same for sequential as
for parallel creating schedule. So that the results are the same, except the sequential
program that was no able in particular time limit compute schedule for 512 and 1024
computing machines and big loaded system data model #2. On the figure 3 and
figure 4 are graphically displayed times of completion last job Cmax in the small load
system model #1 and in the big load system model #2. Comparison completion time
of last job Cmax in the small and big loaded system model is on the figure 5.

The third goal of experiment is to investigate and compare times needed for
creating optimized schedule for both sequential and parallel scheduling algorithms
on different high performance computing systems for both load system models.

222

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS...

Optimization algorithm was stopped if last 50 iterations energy function E1, see
equation (3), is not improving (is not decreasing).

Figure 3. Values of completion time job Cmax in the small loaded system model #1.

Figure 4. Values of completion time job Cmax in the small loaded system model #2.

We can see in table 4 that for small load systems with machines 64 – 512 is
better to use sequential job scheduling program. But for more than 512 machines is
better to use parallel scheduling. In system that contains 2048 machines the parallel
created schedule reached more than 4 – times improving. It means that parallel
schedule creation process takes only 21.3 % of time then sequential one.

In the table 5 we can see results for big loaded high performance systems. For
systems with 64 – 256 computing machines is convenient to use sequential
scheduling. For systems with more than 512 machines is needed parallel scheduling.

223

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

In system that contains 2048 machines the parallel created schedule reached more
than 15 – times improving. It means that parallel schedule creation process takes
only 6.6 % of time then sequential one.

Figure 5. Comparison of last job completion time Cmax in the small and big loaded system model.

Numbers of

machines
Time of schedule creating on

CPU [sec.]
Time of schedule

creating on GPU [sec.]
64 8.042 95.868
128 34.799 200.03
256 255.67 496.66
512 1777.00 1236.00
1024 14432.00 2565.00
2048 105625.00 7019.00

Table 5. Time of schedule creating on CPU and GPU for load system model #2 after improving
stopped criterion of algorithm.

In connection with the use of energy function E1 (3), we achieved a reduction in
the number of iterations and shortening time of schedule creation. On the base of
experiment and after analyze measured data we can conclude that average
improvement on CPU is 17.79 % and on GPU is 72.21 % for small load system
model (table 6). For big load system model is average improvement on CPU 11.67
% and on GPU is 84.49 % (table 7).

The fourth goal of experiment is to investigate our proposal of energy function
E2, see equation (4) as a complex criterion of schedule quality. Energy function E2
depends on completion time of schedule, number of nodes, schedule flowtime and
transfer costs. Weight coefficients we set on a1=0.35, a2=0.35, a3=0.3 and transfer
costs on 0, 5, 10 and 25 %. Comparison of energy function E2 with transfer costs 0,
5, 10 and 25 % for load system model #1 we can see on table 8 and figure 6.

224

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS...

Numbers of

machines
Improved
number of
iterations
on CPU

Improved of
schedule
creation

time on CPU
[%]

Improved
number of
iterations
on GPU

Improved of
schedule
creation

time on GPU
[%]

64 982 3.97 924 8.23
128 996 21.39 771 29.70
256 1049 53.38 1199 0.00
512 1018 19.06 879 13.77
1024 3308 6.05 212 371.70
2048 4253 2.92 954 9.85

Table 6. Improving process for schedule creation for load system model #1.

Numbers of

machines
Improved
number of
iterations

CPU

Improved of
schedule
creation

time on CPU
[%]

Improved
number of
iterations

GPU

Improved of
schedule
creation

time on GPU
[%]

64 1388 15.92 218 358.72
128 1352 11.17 1004 0.00
256 2361 4.49 1036 0.00
512 2438 8.24 1068 4.59
1024 4237 21.27 875 14.29
2048 7080 8.93 436 129.36

Table 7. Improving process for schedule creation for load system model #2.

Numbers of

machines
Energy

function E2
with 0%
transfer

costs

Energy
function E2

with 5%
transfer

costs

Energy
function E2
with 10%
transfer

costs

Energy
function E2
with 25%
transfer

costs
64 24714.56 47690.21 109395.26 259951.37
128 65060.84 127329.11 261197.47 611860.92
256 174838,04 138607,04 202695,94 159212,39
512 610780.30 515638.89 728897.45 591133.18
1024 957908.38 881491.50 696758.58 637495.88
2048 3190675.54 3190014.30 2319272.60 2256150.73

Table 8. Energy function E2 with coefficients a1=0.35, a2=0.35, a3=0.3 and transfer costs on 0, 5,
10 and 25 % for load system model #1.

225

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 6. Comparison of energy function E2 with transfer costs 0, 5, 10 and 25 % for load system

model #1.

Comparison of energy function E2 with transfer costs 0, 5, 10 and 25 % for load

system model #2 we can see on table 9 and figure 7.

Figure 7. Comparison of energy function E2 with transfer costs on 0, 5, 10 and 25 % for load system
model #2.

Based on evaluation experiments, we can conclude that the GPU job scheduling
simulator is effective tool for modeling and evaluation different load system models.

226

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS...

With help of simulator we can investigate various models for heterogeneous or
hybrid systems. In the future work is possible to do more precise analysis of virtual
machines and their behavior inside of the physical system. Investigation different
system models, in context of combination of physical and virtual machines, is very
important from point of view managing their images and time of availability for
applications.

Numbers of

machines
Energy

function E2
with 0%
transfer

costs

Energy
function E2

with 5%
transfer

costs

Energy
function E2
with 10%
transfer

costs

Energy
function E2
with 25%
transfer

costs
64 63413.48 61460.27 142046.33 136438.66
128 154334.70 142181.14 305987.45 268544.87
256 306087.08 333765.90 488058.46 511702.10
512 1151302.36 762769.83 1486293.45 927528.72
1024 2565776.98 3145666.38 4658539,32 5759775.81
2048 5417199.06 9260877.29 8723311.99 14700214,62

Table 9. Energy function E2 with coefficients a1=0.35, a2=0.35, a3=0.3 and transfer costs on 0, 5, 10
and 25 % for load system model #2.

9. Conclusion

In this paper we introduced models of dynamic resource management in computing
systems and scheduling criteria suitable for elastic cluster. We designed two new
types of energy function as complex criteria for evaluation quality of schedule.
After brief introduction the Compute Unified Device Architecture and computing
environment we designed, implemented a tested of job scheduling sequential and
parallel simulator. The new job scheduling simulator is on the base of GPU that
takes into account physical and virtual resources of hybrid system. We implemented
and verified it on real HPC cluster environment that contains physical and virtual
machines. We optimize the schedule by simulated annealing algorithm. The aim is
to optimize the schedule based on the optimization criteria, the time of creation
schedule, the completion time of the last task Cmax.. We designed two new criteria.
New criteria are based on energy functions. The first energy function helps us to
effective stop optimizing algorithms. The second energy function is complex
criterion for evaluation quality of schedule. We designed methodology, created and
evaluated four experiments with goal to find models responsible for the quality of
schedule.

Acknowledgements

Computing was performed in the High Performance Computing Center of the Matej
Bel University in Banska Bystrica using the HPC infrastructure acquired in project

227

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

ITMS 26230120002 and 26210120002 (Slovak infrastructure for high-performance
computing) supported by the Research & Development Operational Program funded
by the ERDF.

References

[1] G. Mateescu, W. Gentzsch, G. J. Ribbens, “Hybrid Computing – where
HPC mets grid and cloud computing,” in Future generation Computer
Systems. 27, 2011, s. 440 – 453.

[2] J. Skrinarova, L. Huraj, V. Siladi, “A neural tree model for classification
of computing grid resources using PSO tasks scheduling,” in Neural
networks world. 2013. ISSN 1210-0552

[3] J. Skrinarova., M. Krnac, “Particle Swarm Optimization for Grid
Scheduling: in Eleventh International Conference on Informatics, Rožňava.
pp. 153-158

[4] J. Skrinarova, M. Melichercik, “Measuring concurrency of parallel
algorithms,” in 1st International Conference on Information Technology
Gdansk : IEEE computer society, 2008, pp. 289-292, IEEE Katalog
Number: CFP0825E-PRT. ISBN 978-1-4244-2244-9.

[5] A.Yarkhan, A., J. Dongarra, “Experiments with scheduling using
simulated annealing in a grid environment,” in: Proc. of the 3rd
International Workshop on Grid Computing, 2002, pp. 232–242.

[6] J. Kołodziej, F. Xhafa: “Enhancing the genetic-based scheduling in
computational grids by a structured hierarchical population,” In: Future
Generation Computer Systems, Volume 27, Issue 8, October 2011. pp.
1035-1046.

[7] J. Skrinarova, F. Zelinka, “ The grid scheduling,” GCCP 2010 6th
International Workshop on Grid Computing for Complex Problems,
Bratislava, , 2010.pp. 100-107.

[8] R. Schaefer, R., J. Kołodziej, “Genetic search reinforced by the population
hierarchy: Foundations of Genetic Algorithms VII”. Morgan, 2003, pp.
369–385.

[9] D. Lim, Y. S. Ong, Y. Jin, “Efficient hierarchical parallel genetic
algorithms using grid computing,” in Future Generation Computer Systems
23 (4).2007. pp. 658–670.

[10] F. Xhafa, J.A. Gonzalez, K.P., Dahal, A. Abraham, “GA(TS) hybrid
algorithm for scheduling in computational grids,” HAIS, 2009, pp. 285–
292.

[11] G. Ritchie, J. Levine, A fast effective local search for scheduling
independent jobs in heterogeneous computing environments. Tech. Rep.,

228

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS...

Centre for Intelligent Systems and Their Applications, University of
Edinburgh, 2003.

[12] H. Liu, A. Abraham, A. E Hassanien, “Scheduling jobs on computational
grids using a fuzzy particle swarm optimization algorithm,” in Future
Generation Computer Systems 26 (8) 2010. pp.1336–1343.

[13] J. Skrinarova., M. Krnac, “Particle Swarm Optimization Model for Grid
Scheduling,” in Second International Conference on Computer Modelling
and Simulation, CSSIM 2011. Brno, Czech Republic. pp. 146-153

[14] R. Buyya, M. M. Murshed. “GridSim: a toolkit for the modelling and
simulation of distributed resource management and scheduling for Grid
computing,” Concurrency and Computation: Practice and Experience.2002.
pp. 1175-1220

[15] T. Goyal, A. Singh, A. Agrawal. “Cloudsim: simulator for cloud
computing infrastructure and modeling,” in International conference on
modeling optimisation and computing. Procedia Engeneering (38), 2012.
pp 3566-3572.

[16] A.Beloglazov, J. Abawajy, J. and R. Buyya, “Energy-aware resource
allocation heuristics for efficient management of data centers for Cloud
computing,” in Future Generation Computer Systems. 28, 2012. pp. 755–
768

[17] W. Gentzsch, “Sun Grid Engine: towards creating a compute power Grid,”
in Proceedings of the First IEEE/ACM International Symposium on
Cluster Computing and the Grid, pp. 35–36, 2001.

[18] J. Skrinarova, “Implementation and evaluation of scheduling algorithm
based on PSO HC for elastic cluster criteria,” in Central European Journal
of computer science. 4 (3) 2014. pp. 191-201.

[19] NVidia, CUDA C Programming Guide http://docs.nvidia.com/cuda/cuda-
c-programming-guide/index.html#ixzz3lKChsNsN

