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Abstract 

This work is focused on the issue of job scheduling in a high performance computing 
systems. The goal is based on the analysis of scheduling models of tasks in grid and 
cloud, design and implementation of the simulator on the base of GPGPU. The 
simulator is verified by our own proposed model of job scheduling. The simulator 
consists of a centralized scheduler that is using GPGPU to process large amounts of 
data by parallel way. In order to ensure the optimization of the scheduling process we 
have implemented a simulated annealing algorithm. GPGPU model was compared to 
the CPU when the number of nodes from 32 to 2048. Improving the implementation 
based on GPGPU had a significant impact on the system with 512 nodes and with an 
increasing number of nodes further accelerates in comparison with sequential 
algorithm. In this work are designed new scheduling criteria which are experimentally 
evaluated.  
Keywords: HPC, grid computing, cloud computing, hybrid computing, elastic 
cluster, management of resources, job scheduling, virtual machine scheduling 

1. Introduction  

Cloud computing is now very popular and is mainly oriented to commercial 
purposes. High performance computing has traditionally been done on 
supercomputers and high-performance clusters, often related to computational grids. 
In this work we have tried to contribute to a gradual transition from the grids, as 
relatively fixed network clusters to Grid-based elastic clusters, which elasticity and 
ability to lease resources from the external environment leads to the creation of a 
virtual computer world. The philosophy of this work is focused on the virtual 
machine, which is dedicated mainly to scientific computations and which is able to 
elastically expand or reduce according to the dynamic load of the system. The elastic 
cluster presents a hybrid computing, which uses appropriate grids and cloud 

UDC 004.414.23
Original Scientific Paper

DOI: https://doi.org/ 10.31341/jios.43.2.5
     Open Access



212

JIOS, VOL. 43. NO. 2 (2019), PP. 211-228

SKRINAROVA AND POVINSKY PARALLEL SIMULATION OF TASKS... 

  

properties. Cooperation of private and public clouds contributes to the key objective 
of the quality of services [1]. 

An elastic cluster represents a unified model of managing HPC (High 
Performance Computing) resources and cloud resources. For example, the system 
OpenNebula is designed to manage a group of virtual machines. The Elastic clusters 
contain comprehensive solutions that provide services for management of dynamic 
infrastructure, infrastructure on the cluster level and interconnection between the 
dynamic and cluster infrastructure. 

The elastic cluster supports both virtual and physical resources. Using virtual 
machines in the cloud allows efficient running of HPC jobs. Elastic clusters have to 
satisfy the quality criteria related to the latency caused by assignment of virtual 
resources. Amazon Elastic MapReduce (Amazon EMR) is a web service that allows 
you to handle large jobs with solid scientific data on dynamic web infrastructure 
using Amazon Simple Storage Service (Amazon S3). 

In summary, the contributions of this work are the following: We design and 
create new job scheduling simulator on the base of GPU that takes into account 
physical and virtual resources of hybrid system. We implemented and verified it on 
real HPC cluster environment that contains physical and virtual machines. We 
optimize the schedule by simulated annealing algorithm. The aim is to optimize the 
schedule based on the optimization criteria, the time of creation schedule, the 
completion time of the last task Cmax.. We designed two new criteria. New criteria are 
based on energy functions. The first energy function helps us to effective stop 
optimizing algorithms. The second energy function is complex criterion for 
evaluation quality of schedule.  We designed methodology, created and evaluated 
four experiments with goal to find models responsible for the quality of schedule. 

The rest of this paper is organized as follows. Related work is discussed in 
Section 2. The models of dynamic resource management in computing systems are 
described in Section 3. Section 4 outlines Scheduling criteria suitable for elastic 
cluster. In this section we designed two new types of energy function as complex 
criteria for evaluation quality of schedule. The Compute Unified Device 
Architecture is introduced in Section 5. Design of job scheduling simulator is 
described in Section 6. In Section 7 computing environment for the implementation 
and testing of the scheduling simulator is specified. Section 8 includes testing of the 
scheduling simulator design and methodology of measurement and scheduling 
algorithm verification focused on requirement achievement specified in Section 4. 
This section also describes the obtained scheduling results and their validation. 
Finally, Section 9 contains the conclusions of this work. 

2. Related Works 

This paper is based on our previous work related to the proposal of models for 
parallel tasks in workflow, their computing in a distributed environment, and also 
from the design of algorithms to support the scheduling [2, 3, 4]. Some approaches 
of stochastic and heuristic optimization methods for scheduling in grids are 
suggested. Implementation of genetic algorithms and simulated annealing is 
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described in [5, 6, 7, 8]. Lim et al. [9] proposed a hierarchical parallel genetic 
algorithm (Eng. Grid-Enabled Hierarchical Parallel Genetic Algorithm, GE-HPGA). 
Other methods are based on the local search heuristics]. Hybrid model of genetic 
algorithm and Tabu search suggested Xhafa et al. [10, 11]. Other approaches focus 
on fuzzy PSO optimization [12], artificial neural networks [13], neural trees [2] and 
economically based methods [14, 15]. 

3. Models of Dynamic Resource Management in Computing Systems 

In this section we deal with models that are used to manage the workload and 
resources in dynamic systems. System resources can be represented as 
computational nodes. Workload is defined by batch of tasks to be performed on 
certain computing resources using scheduling rules. Resources can be physical or 
virtual. There are two basic models approach to resource management [16, 17]: 

• Model management workload and resources. 
• Model the dynamic infrastructure. 

The first model is the management of workload and resources. It is called Workload 
and Resource Management Systems, WRMS. Model WRMS provides three kinds of 
activities: 

• Managing resources, including resource management conditions. 
• Managing tasks, including creating, assigning the ranks, waiting and 

monitoring. 
• Scheduling, mapping tasks to a set of resources and the allocation of 

resources for certain tasks at a time. 
This is principle of work for resource management systems such as Oracle Grid 
Engine [6], Torque and Condor. 
The second model is used for dynamic resource management infrastructure 
(Dynamic Infrastructure Management System, DIMS). These include systems like 
OpenNebula, xCAT or VMware vCenter Server. The DIMS model supports two 
types of functions: 

• Managing physical resources. 
• Managing services, including the creation of services and the subsequent 

allocation of resources, monitoring services, migration and cancellations. All of 
these services can manage virtual or physical resources. 
Typical tasks in the workflow can include precedence dependences. There is a list of 
all tasks belonging to the task j that must be completed before task j starts running. 
Parallel tasks in the workflow contain subtasks that can communicate together. The 
group of tasks need to be scheduled on resources of a single machine with multiple 
computational units (a group of processors, gang) to avoid unnecessary waiting. 
Tasks in the workflow, which use synchronization, cause also waiting subtasks, but 
may slow down other tasks in the system. The task scheduler system is responsible 
for finding a suitable group of machines that are able to perform all the subtasks of a 
task. 
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4. Scheduling Criteria Suitable for Elastic Cluster 

A schedule means assignment of tasks to recourses for a certain time interval so that 
no two jobs are executed simultaneously on the same resource and resource capacity 
is not exceeded too. The schedule specifies for each point in time a set of tasks that 
are performed at that moment on a particular set of resources [1]. 

Sj denotes to start processing time of task Jj, and Cj is time of task Jj completion. 
The most commonly used criteria for optimization of the schedule φ, that are needed 
to be minimized [18]: 

• Completion time of the last task Cmax is called the maximal time of end of 
task (makespan), Cmax = maxj{C1,…, Cn}. For schedule φ we can define completion 
time of schedule (1): 

Cmax(φ) = maxj{Cj}.    (1) 

The criterion deserves serious attention, because processing time represents the 
entire input set of tasks, and thus the length of the schedule. 

• The total completion time (flowtime) of all jobs is calculated as sum of all 
the tasks F = Σ Cj for all j from 1 to n. If the tasks have different weights we 
calculate a weighted sum of all tasks Σ wjCj. For schedule φ we can define flowtime 
of schedule (2): 

F(φ) = Σ Cj    (2) 

Based on the criteria and (2), we propose two types of energy function (3) and 
(4) 

E1(φ) =n*Cmax(φ)+F(φ).    (3) 

E2(φ) =a1*n*Cmax(φ) + a2*F(φ) + a3*TC,    (4) 

where a1, a2, a3, are weights coefficients and TC are transfer costs. Transfer costs 
are caused mainly by transfer files and creating virtual machines.  

In our case, we use several evaluation criteria and restrictive conditions for an 
elastic cluster. 

If rj is the time availability of task j, Sj is time to start processing task j, Cj is 
competition time of task j, TjS is the last time for starting task j, Dj is duration of task 
j, that is estimated by client, then we can define evaluation criteria for elastic cluster. 

The elastic cluster typically supports three types of time requirements of task, 
which define: 

• Limit for maximum slowdown of task SDmax. 
• An advance reservation of resources. 
• Last possible time TjS (deadline) for starting the task j. 
By equation 5 we calculate slowdown of tasks for the tasks that have required a 

limit to the maximum slowdown of task SDmax. 
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SD(j)=(Sj -rj + Dj )/Dj.    (5) 

We guarantee that the slowdown does not exceed the value SDmax. Using 
equation 6 the latest start time of the task can be calculated. 

Tj
S= rj+ Dj(SDmax-1).    (6) 

5. Compute Unified Device Architecture 

In this section Compute Unified Device Architecture (CUDA) is introduced. To 
perform computation using CUDA it is necessary to define a C function, called the 
kernel. This function uses specified number of lightweight threads. Threads are 
grouped in blocks, and blocks form a grid. This hierarchy is based on the hardware 
organization of GPU.  

Threads within a block can easily communicate through shared memory. Blocks 
of threads can run independently. The GPU hardware contains a number of 
processors, and each block can be executed on a different processor. The order in 
which blocks are dispatched to processors is managed by the embedded scheduler. 
There may be a number of blocks being executed on a processor at the same time, as 
long, as sufficient resources are available (e.g. shared memory, registers). There is a 
limit to the number of threads per block, since all threads of a block are expected to 
reside on the same processor core and must share the limited memory resources of 
that core. Currently, the CUDA specification states that each block may contain up 
to 1024 threads, organized in 1-, 2- or 3-dimensional array. The number of thread 
blocks in a grid is usually specified by the size of the data being processed or the 
number of processors in the system.  

CUDA threads may access data from multiple memory spaces during their 
execution. Each thread has private local memory. Each block of threads has shared 
memory visible to all threads of the block and with the same lifetime as the block. 
All threads have access to the same global memory. 

There are two additional read-only memories accessible by all threads: the 
constant and texture memory spaces. The global, constant, and texture memory 
spaces are optimized for different memory. For a more detailed description, please 
see to the CUDA Programming Guide by NVidia [19]. 

6. Design of Job Scheduling Simulator 

We have created simulator for job scheduling in high performance computing 
systems. The simulator is written in C language. We decided to write own simulator 
as an experimental environment that we can fill in or change. Internal structure is 
based on matrices:  

• NODE_LATENCY – communication latency between machines. 
• CPU_SPEED – processor speed for every machine. 
• JOB_LENGTH – job time consumption in number of operations. 
• FILE_SIZE – capacity of files. 
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• FILE_MIRRORS – time of creating copy of file on the node (0 if file is on 
the particular node, -1 if file isn’t on the node).  

• JOB_FILES – list of input files for every job. 
• FILE_GENBY – for every job includes list of files which are generated by 

this job. 
• NODE_BANDWIDTH – describes bandwidth between machines in the 

system. 
• NODEJOBS – list of jobs actually allocated on the machine. 
• NODEJOBCOUNT – numbers of job allocated on the machines. 
• NODECOMPLETEDJOBS – numbers of completed jobs for every machine. 
• NODELASTJOBFINISH – time of completion last job on every machine. 
• JOBDEP – contains dependences between jobs. 
• JOBFILESLIST – contains actual list of files for every job in process. 
• JOBFILESCOUNT – number of files for every job. 
• NODEJOBSBEST – copy of matrix NODEJOBS which contains the best 

times. 
• NODEJOBCOUNTBEST – copy of matrix NODEJOBCOUNT which 

contains the best times. 
• NODEEDOWNLOADTIMES – time of completion the last file transfer on 

the machine. 
• NODEFILEDOWNLOADFOR – the job file downloaded for. 
• JOBFINISH – completion time of jobs. 
• KERNEL_STATUS – output file from GPU kernel. 
 
Input consists of two parts: 
First part of input consists of basic information about scheduled system: 
• Number of nodes. 
• Number of machines. 
• Number of jobs. 
 
Second part of input is a generated set of inputs matrix and contains 

information: 
• Connection characteristics between machines. 
• Speed of processors. 
• Lengths of jobs. 
• Size of files. 
• List of input files of jobs. 
• List of files which are created by every job. 
• Start allocation of files. 
 
In the process of simulation output from simulator is calculated. The output 

contains: 
• Completion transfer time of every needed file. 
• Start time of every job running. 
• Completion time for every job. 
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• The output from the simulator is in the same time the input for the 
optimizing algorithm. 

We have prepared two versions of simulator. The simulator of job scheduling 
can run as: 

• A sequential program on CPU. 
• A parallel program on GPU. 
In parallel version all matrices are stored in global memory. We used threads 

and block of threads in the program. One thread in program is responsible for 
creating schedule on one machine. Blocks are consisted of 16 threads. 
 

Basic algorithm of GPU simulator can be described by pseudoalgorithm: 
Algorithm 1: Job scheduling GPU simulator 

Inputs: number of nodes, number of machines, number of jobs, connection 
characteristics between machines, speed of processors, lengths of jobs, size of 
files, list of input files of jobs, list of files which are created by every job, start 
allocation of files. 

Outputs: completion transfer time of every needed file, start time of every job 
running, completion time for every job. 

 if not completed all jobs or is found better completion time then 
 for every machine do kernel function: 
 for every job on the machine do 
 for every file of job do 
1. Search resource machine from whom will transfer file (if it is needed). 
2. Compute time for file transfer completion and write it to matrixes 

NODEEDOWNLOADTIMES a FILE_MIRRORS. 
3. Find out time of last transferred file. 
4. Compute start time of running job (maximum of completion time of last 

transfer and completion time of last job). 
5. Compute v running time of job and completion time of job. 
 end for 

end for 
end for 
end if 

 
The output from the simulator is in the same time the input for optimizing 

algorithm. Simulated annealing (SA) algorithm is responsible for optimizing created 
schedule of jobs.  

Schedule optimizing SA pseudoalgorithm: 
Algorithm 2: Schedule optimizing SA algorithm 

Inputs: completion transfer time of every needed file, start time of every  
Outputs: number of iteration, actual Cmax, best Cmax, actual flowtime, best 

flowtime, actual E1, best E1, (difference between actual E1 and best E1), probability 
function, neighbor function and temperature function 

 Generate random initial solution. 
 Evaluate current schedule. 
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 Remember current schedule as the best solution. 
 Repeat for the defined number of iterations: 
1. Randomly move jobs. 
2. Randomly change file download order. 
3. Evaluate the new schedule. 
4. Calculate current temperature. 
5. if the temperature is positive then calculate probability of accepting the new 

schedule. else accept the schedule if it isn't worse than the previous schedule. end if 
6. if the schedule has been accepted then set the schedule as the best schedule. 

else return to the best solution. end if 

 
The algorithm of SA is not difficult to implement. But efficiency of algorithm 

for reason of particular problem depends on functions: 
 Energy function E, which represents energy of a given state. 
 Neighbor function N, which produces the neighbors of a given state. 
 Probability of solution acceptance function P, that determines whether 

moves should be accepted or not. 
 Temperature function T, which computes the cooling schedule. 

Investigation of the first function is one goal of our experiments, because may 
cause difficulties in implementation depend on the problem specification. See 
equations (3) and (4). 

7. Computing Environment for the Implementation and Testing of the 
Scheduling Simulator 

The proposed scheduling simulator is implemented and tested on high-performance 
cluster that is allocated in Matej Bel University in Banska Bystrica, Slovakia as 
framework of Slovak Infrastructure for High Performance Computing (SIVVP) 
project. The main objective of SIVVP is the creation of a Slovak grid and 
supercomputing infrastructure in some centers. Specialized centers are gradually 
equipped with modern technologies for high-performance computing, 
supercomputing and high-capacity data storages. The equipment is situated in 
Slovak academy of Sciences in Bratislava and in 4 universities in Slovakia: Slovak 
Technical University in Bratislava, University of Zilina, Technical University in 
Kosice and Matej Bel University in Banska Bystrica. Infrastructure of local sites is 
interconnected on the base of rules of National Grid Initiatives and European Grid 
Initiatives. Development and implementation of new technologies shows the need to 
focus Slovak infrastructure towards hybrid computing. This means to search and 
apply appropriate services, typical for cloud computing and the main advantages 
supercomputer clusters and grid computing that can be named as an elastic cluster. 

Currently, UMB cluster consists of 49 servers, each server has 12 or 16 
computing elements (560 total), 48 - 128 GB of RAM per server and 96 TB of total 
data storage capacity. The cluster contains 2 special graphics accelerators nVidia 
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Tesla M2070 with 448 computing cores per card and 6 nVidia Tesla K20 with 2496 
computing cores per card which are designed for general computing GPGPU. The 
system includes 2 servers for management, system security and data access, 2 data 
storages and high-speed Infiniband network between computing nodes and data 
storage arrays. 

We use Scientific Linux 6.2 operating system on all computing nodes in the 
cluster. Part of the software installation is xCAT (Extreme Cloud Administration 
Toolkit) designed to manage computing nodes in the cloud environment and IBM 
DS Storage Manager that is intended to manage storage arrays.  

The High Performance Computing Centre – HPCC was established in the 
context of a national project SIVVP at Matej Bel University, see www.hpcc.umb.sk . 
The main objective of the work of Centre is to provide services to scientists who, in 
their research work need to use high-performance computing environment. 

8. Testing of the Scheduling Simulator Design and Methodology of 
Measurement and Scheduling Algorithm Verification  

We prepared two main schedulers for experiments. First scheduler is responsible for 
creating the schedule by sequential way and runs on CPU. The second one is based 
on parallel program and uses GPUs. We prepared generated data for experiments. 
The prepared data have the structure typical for high performance computing system 
and job characteristics. We designed two load system models. The load system 
model #1 represents batch of small load jobs for high performance computing. In the 
load system model #1 each machine is in average loaded by 4 jobs and 16 files. For 
example, for system with 32 machines it means that load do not exceed 128 jobs for 
high performance computing which use 512 files.  

The load system model #2 represents batch of big load of high performance 
computing jobs. In the load system model #2 each machine is in average loaded by 
16 jobs and 32 files. For example, it means that for system with 1024 machines load 
do not exceed 16384 jobs for high performance computing which use 32768 files. 
Experiments were done for systems with 32, 64, 128, 256, 512, 1024 and 2048 
physical or virtual computing machines with different processor speed, differences 
between machines, bandwidth and so on. 

The first goal of the experiments is to investigate and compare times needed for 
creating optimized schedule for both sequential and parallel scheduling algorithms 
on different high performance computing systems for both load system models. 
Optimization algorithm was stopped after a fixed number of iterations (1000 and 
5000). 

We can see in table 1 and on the figure 1 that for small load systems with 
machines 32 – 256 is better to use sequential job scheduling program. But for more 
than 512 machines is better to use parallel scheduling. In system that contains 1024 
machines the parallel created schedule reached more than 4 – times improving. It 
means that parallel schedule creation process takes only 22.6 % of time then 
sequential one. 
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Numbers of machines  Time of schedule 

creating on CPU [sec.] 
Time of schedule 

creating on GPU [sec.] 
32 2 29 
64 5 60 
128 21 144 
256 108 344 
512 1468 806 
1024 8782 1989 

Table 1. Time of schedule creating on CPU and GPU for load system model #1 and different numbers 
of machines. 

 

Figure 2. Comparison of times of schedule creating on CPU and GPU for load system model #1 for 
different numbers of machines. 

Numbers of machines  Time of schedule 
creating on CPU [sec.] 

Time of schedule 
creating on GPU [sec.] 

32 13 184 
64 77 298 
128 979 751 
256 8046 1508 
512 N 3654 
1024 N 7706 

Table 2. Time of schedule creating on CPU and GPU for load system model #2 and different numbers 
of machines. 

In the table 2 and figure 2 we can see results for big loaded high performance 
systems. For systems with 32 – 64 computing machines is convenient to use 
sequential scheduling. For systems with more than 128 machines is needed parallel 
scheduling. Sequential program did not finished computing of the schedule for 512 
and 1024 computing machines. 
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In a system that contains 256 machines the parallel created schedule reached 
more improving than 5.3 – times. Parallel schedule creation process takes only 18.7 
% of time then sequential one. 
 

 

Figure 2. Comparison of times of schedule creating on CPU and GPU for load system model #2 for 
different numbers of machines. 

 
Numbers of machines  Completion time of 

last job for load 
system model #1 

Completion time of 
last job for load 
system model #2 

32 48645 91025 
64 3460 8692 
128 2880 9033 
256 3510 9768 
512 4620 13234 
1024 5980 14520 

Table 3. Time of last job completion Cmax in the load system model #1 and #2. 

The second goal of experiment was to find an optimal (or pseudo optimal) 
schedule for small and big loaded computing systems. Results we can see in the 
table 3 and they are specified in numbers of time units. 

The parameters of stop the optimizing algorithm were the same for sequential as 
for parallel creating schedule. So that the results are the same, except the sequential 
program that was no able in particular time limit compute schedule for 512 and 1024 
computing machines and big loaded system data model #2. On the figure 3 and 
figure 4 are graphically displayed times of completion last job Cmax in the small load 
system model #1 and in the big load system model #2. Comparison completion time 
of last job Cmax in the small and big loaded system model is on the figure 5. 

The third goal of experiment is to investigate and compare times needed for 
creating optimized schedule for both sequential and parallel scheduling algorithms 
on different high performance computing systems for both load system models. 
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Optimization algorithm was stopped if last 50 iterations energy function E1, see 
equation (3), is not improving (is not decreasing). 

 

 

Figure 3. Values of completion time job Cmax in the small loaded system model #1. 

 

Figure 4. Values of completion time job Cmax in the small loaded system model #2. 

We can see in table 4 that for small load systems with machines 64 – 512 is 
better to use sequential job scheduling program. But for more than 512 machines is 
better to use parallel scheduling. In system that contains 2048 machines the parallel 
created schedule reached more than 4 – times improving. It means that parallel 
schedule creation process takes only 21.3 % of time then sequential one. 

In the table 5 we can see results for big loaded high performance systems. For 
systems with 64 – 256 computing machines is convenient to use sequential 
scheduling. For systems with more than 512 machines is needed parallel scheduling. 
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In system that contains 2048 machines the parallel created schedule reached more 
than 15 – times improving. It means that parallel schedule creation process takes 
only 6.6 % of time then sequential one. 

 

 

Figure 5. Comparison of last job completion time Cmax in the small and big loaded system model. 

 
Numbers of 

machines  
Time of schedule creating on 

CPU [sec.] 
Time of schedule 

creating on GPU [sec.] 
64 8.042 95.868 
128 34.799 200.03 
256 255.67 496.66 
512 1777.00 1236.00 
1024 14432.00 2565.00 
2048 105625.00 7019.00 

Table 5. Time of schedule creating on CPU and GPU for load system model #2 after improving 
stopped criterion of algorithm.  

In connection with the use of energy function E1 (3), we achieved a reduction in 
the number of iterations and shortening time of schedule creation.  On the base of 
experiment and after analyze measured data we can conclude that average 
improvement on CPU is 17.79 % and on GPU is 72.21 % for small load system 
model (table 6). For big load system model is average improvement on CPU 11.67 
% and on GPU is 84.49 % (table 7). 

The fourth goal of experiment is to investigate our proposal of energy function 
E2, see equation (4) as a complex criterion of schedule quality. Energy function E2 
depends on completion time of schedule, number of nodes, schedule flowtime and 
transfer costs. Weight coefficients we set on a1=0.35, a2=0.35, a3=0.3 and transfer 
costs on 0, 5, 10 and 25 %. Comparison of energy function E2 with transfer costs 0, 
5, 10 and 25 % for load system model #1 we can see on table 8 and figure 6. 
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Numbers of 

machines  
Improved 
number of 
iterations 
on CPU 

Improved of 
schedule 
creation 

time on CPU 
[%] 

Improved 
number of 
iterations 
on GPU 

Improved of 
schedule 
creation 

time on GPU 
[%] 

64 982 3.97 924 8.23 
128 996 21.39 771 29.70 
256 1049 53.38 1199 0.00 
512 1018 19.06 879 13.77 
1024 3308 6.05 212 371.70 
2048 4253 2.92 954 9.85 

Table 6. Improving process for schedule creation for load system model #1.  

 
Numbers of 

machines  
Improved 
number of 
iterations 

CPU 

Improved of 
schedule 
creation 

time on CPU 
[%] 

Improved 
number of 
iterations 

GPU 

Improved of 
schedule 
creation 

time on GPU 
[%] 

64 1388 15.92 218 358.72 
128 1352 11.17 1004 0.00 
256 2361 4.49 1036 0.00 
512 2438 8.24 1068 4.59 
1024 4237 21.27 875 14.29 
2048 7080 8.93 436 129.36 

Table 7. Improving process for schedule creation for load system model #2.  

 
Numbers of 

machines  
Energy 

function E2 
with 0% 
transfer 

costs  

Energy 
function E2 

with 5% 
transfer 

costs 

Energy 
function E2 
with 10% 
transfer 

costs 

Energy 
function E2 
with 25% 
transfer 

costs 
64 24714.56 47690.21 109395.26 259951.37 
128 65060.84 127329.11 261197.47 611860.92 
256 174838,04 138607,04 202695,94 159212,39 
512 610780.30 515638.89 728897.45 591133.18 
1024 957908.38 881491.50 696758.58 637495.88 
2048 3190675.54 3190014.30 2319272.60 2256150.73 

Table 8. Energy function E2 with coefficients a1=0.35, a2=0.35, a3=0.3 and transfer costs on 0, 5, 
10 and 25 % for load system model #1. 
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Figure 6. Comparison of energy function E2 with transfer costs 0, 5, 10 and 25 % for load system 

model #1. 

 
Comparison of energy function E2 with transfer costs 0, 5, 10 and 25 % for load 

system model #2 we can see on table 9 and figure 7. 
 

 

Figure 7. Comparison of energy function E2 with transfer costs on 0, 5, 10 and 25 % for load system 
model #2. 

Based on evaluation experiments, we can conclude that the GPU job scheduling 
simulator is effective tool for modeling and evaluation different load system models. 
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With help of simulator we can investigate various models for heterogeneous or 
hybrid systems. In the future work is possible to do more precise analysis of virtual 
machines and their behavior inside of the physical system. Investigation different 
system models, in context of combination of physical and virtual machines, is very 
important from point of view managing their images and time of availability for 
applications. 

 
Numbers of 

machines  
Energy 

function E2 
with 0% 
transfer 

costs  

Energy 
function E2 

with 5% 
transfer 

costs 

Energy 
function E2 
with 10% 
transfer 

costs 

Energy 
function E2 
with 25% 
transfer 

costs 
64 63413.48 61460.27 142046.33 136438.66 
128 154334.70 142181.14 305987.45 268544.87 
256 306087.08 333765.90 488058.46 511702.10 
512 1151302.36 762769.83 1486293.45 927528.72 
1024 2565776.98 3145666.38 4658539,32 5759775.81 
2048 5417199.06 9260877.29 8723311.99 14700214,62 

Table 9. Energy function E2 with coefficients a1=0.35, a2=0.35, a3=0.3 and transfer costs on 0, 5, 10 
and 25 % for load system model #2. 

9. Conclusion  

In this paper we introduced models of dynamic resource management in computing 
systems and scheduling criteria suitable for elastic cluster. We designed two new 
types of energy function as complex criteria for evaluation quality of schedule.  
After brief introduction the Compute Unified Device Architecture and computing 
environment we designed, implemented a tested of job scheduling sequential and 
parallel simulator. The new job scheduling simulator is on the base of GPU that 
takes into account physical and virtual resources of hybrid system. We implemented 
and verified it on real HPC cluster environment that contains physical and virtual 
machines. We optimize the schedule by simulated annealing algorithm. The aim is 
to optimize the schedule based on the optimization criteria, the time of creation 
schedule, the completion time of the last task Cmax.. We designed two new criteria. 
New criteria are based on energy functions. The first energy function helps us to 
effective stop optimizing algorithms. The second energy function is complex 
criterion for evaluation quality of schedule.  We designed methodology, created and 
evaluated four experiments with goal to find models responsible for the quality of 
schedule. 
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