
165

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JIOS, VOL. 40, NO. 2 (2016) SUBMITTED 07/16; ACCEPTED 10/16

MATT: Multi Agents Testing Tool Based Nets within Nets

Sara Kerraoui kerraouisara@hotmail.fr
Faculty of Sciences- Department of Computer Sciences
University 20 August 1955- Skikda, Algeria.

Yacine Kissoum kissoumyacine@yahoo.fr
Faculty of Sciences- Department of Computer Sciences
University 20 August 1955- Skikda, Algeria

Mohammed Redjimi medredjimi@gmail.com
Faculty of Sciences- Department of Computer Sciences
University 20 August 1955- Skikda, Algeria

Moussa Saker sak_moussa@yahoo.fr
Faculty of Engineering- Department of Computer Sciences
University Badji Mokhtar- Annaba, Algeria

Abstract

Testing is a software development activity, devoted to evaluating product quality and
improving it by identifying defects and problems. Concerning multi agent systems,
testing is a challenging task, which asks for new testing techniques dealing with their
specific nature. The techniques need to be effective and adequate to evaluate agent’s
autonomous behaviors and build confidence in them.
The "Model Based Testing" (MBT) is a technique particularly interested among all
existing solutions of tests. This latter is based on a system model, which produces
abstract test cases. To run these last ones against systems under test, the abstract test
cases have to be transformed to concrete ones.
As part of this effort, we propose a model based testing approach for multi agent
systems based on such a model called Reference net, where a tool, which aims to
providing a uniform and automated approach is developed. The feasibility and the
advantage of the proposed approach are shown through a short case study.
Keywords: Multi Agent Systems, Nets within nets, Reference nets, Renew, Model
Based Testing.

1. Introduction

Agents and multi agent systems are currently developed in different active areas
focusing mainly on architectures, protocols, frameworks, messaging infrastructures
and community interactions. The obtained results show that these systems are
undoubtedly more than a promising approach to complex software development.

UDC 004.415.53
Preliminary Communication

166

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

However, testing is required to build confidence into the working of them, but testing
of multi agent systems is a challenging task for several reasons, principally [1]:

 The increased complexity related with the multiple distributed processes

running autonomously and concurrently making the system non-deterministic.
 The big quantity of data manipulated by a large number of agents (the systems

can be made by thousands and more of agents, each using its own data).
 The effect of the irreproducibility: several executions of the same system with

the same inputs will cannot lead with the same state making the looking for
errors difficult.

 The agents are autonomous; they cooperate, interact and communicate with
other agents by message passing or blackboard instead of invocation methods.
Therefore, the multi agent system is non-deterministic and it is not possible to
use directly the existing object-testing methods.

One of the new approaches to meet the challenges imposed on software testing is
the Model Based Testing technique (MBT) [2], [4]. It has recently gained attention
with the popularization of models in software design and development. In these
techniques, a model of the desired behavior of the system under test is used for
automated generation of test cases. Automated test cases generation is attractive
because it has the potential to reduce the time required for testing. Test cases derived
from the model are collectively known as abstract test cases and cannot be directly
executed against a system under test. They have to be transformed to concrete test
cases to communicate directly with the system under test. Our work comes in this
context.
In fact, we propose a model based testing approach for multi agent systems based on
models called reference nets [5], [6]. Reference nets are based on the nets within nets
paradigm that generalizes token to data types and even nets. This model is renowned
for its perfect adhesion to the mechanism of composition in multi agent systems.

The framework MULAN (MULti-Agent Network) [7], which is based on the visual
programming concept of petri net gives tools for the modeling of agent application
and bridges the gap between modeling and programming on the one side, and
modeling and verification on the other side.
Our main contribution can be summarized as follow:

- To minimize the initial test effort by automatic generation of test cases supported
mainly by the model used for modeling.
- To propose another way to concretize abstract test cases by instrumented model.

The remaining part of this paper is organized as follow: section 2 surveys the state of
the art of Multi-Agent System (MAS) testing approaches. Section 3 deals with a short
description of the paradigm of reference nets. Section 4 describes the proposed
approach. Section 5 presents a case study. Finally, section 6 concludes this work with
discussion about issues and future works.

167

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

2. Background and related works

Usually, the Multi agent systems can be considered at algorithmic, class, agent,
society, and system levels of abstraction. These levels are defined as follow [2], [8].

 At the algorithmic level, we consider the code at routine level. This step deals only
with the manipulation made within a routine and data. This is comparable to normal
code testing with conventional imperative languages.

 At the class level, the interactions of routines and data that are encapsulated within
a class are considered. This level leads with the object-oriented community. It has
valorizing the emergence of the JUnit [9] testing framework.

 The interactions of groups of cooperating classes are considered at the agent level.
At this step, it is possible to test the integration of the different modules inside an
agent, to test agents' capabilities to achieve their goals and to sense and effect the
context. There are several works in this scope; Tiryaki et al. [10] for example,
proposed a test-driven MAS development approach supporting iterative and
incremental MAS construction called SUnit, which was built on top of JUnit.
Coelho et al. [11] proposed a framework for MAS unit testing similar to SUnit, but
uses Mock Agents. Houhamdi [12] introduces a suite test derivation approach for
agent testing that takes goal-oriented requirements analysis artifact as the core
elements for test case derivation.

 The society level consists of the interactions of the overall results of different
agents. The society level testing is a kind of integration testing and the integration
strategy depends on the agent system architecture where agent dependencies are
usually in terms of communications and sometimes environment mediated
interactions could be present. Integration testing involves making sure that an agent
works properly with the agents that have been integrated before it and with the
agents that are in agent testing phase. In this context comes the Padgham et al. [13]
work: they use design artifacts from the Prometheus design process (e.g., agent
interaction protocols and plan specification) to provide automatic identification of
the source of errors detected at the run-time process. Rodrigues et al. [14] propose
to exploit social conventions, i.e. norms and rules that prescribe permissions,
obligations and/or prohibitions of agents in open MAS to integration test.

 The system level contains all code from all classes and main program necessary to
run the entire system. Explicitly, agents may operate correctly when they run alone
but incorrectly when they are put together. We find in this level: De Wolf et al. [15]
approach in which they propose an empirical analysis approach combining agent-
based simulations and numerical algorithms for analyzing the global behavior of a
self-organizing system. In [16], Houhamdi and Athamena used a suite test
derivation approach for system testing.

 Most of the existing research works on testing the MAS focuses primarily on the
agents and integration level of agents. Our approach considers all the previous test
levels (from the system to the algorithmic levels) as shown Figure 1.

168

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

Figure 1. The scope of our approach.

3. Nets within nets

The paradigm of nets within nets [17] is an expressive high-level petri nets that allows
nets to be nested within nets in dynamical structure. In other word: it formalizes the
aspect that tokens of a Petri nets can be data types and even nets. A short introduction
of the implementation of certain aspects of nets within nets called Reference nets [5],
[6] will be given in subsequently.

3.1. Reference nets

Reference nets are a graphical notation especially well-suited for the description and
execution of complex and concurrent processes. As for other net formalisms, there
exist tools for the simulation of reference nets called Renew (for REference NEt
Workshop) [6]. The reference nets extend black and colored Petri nets by means of
net instances, nets as token objects, communication via synchronous channels and
different arc types. Some definitions of these extensions are given in [18], [19].

3.2. Multi agent nets

The MULAN (MULti-Agent Network) architecture [7] is based on the nets within
nets paradigm and is used to describe the natural hierarchies in a multi agent system.
Mulan is implemented in Renew [6] and has the general structure as depicted in Figure
2. Each box describes one level of abstraction in terms of a system net.
The net in the upper left side of Figure 2 describes an agent system, which places
contain agent platforms as tokens. The transitions describe communication or mobility
channels, which build up the infrastructure. By zooming into the platform token on
place p3, the structure of a platform becomes visible. The central place agents host all
agents, which are currently on this platform. Each platform offers services to the
agents. Agents can be created (transition new) or destroyed (transition destroy).
Agents can communicate by message exchange. Two agents of the same platform can
communicate by the transition internal communication. External communication only
binds one agent, since the other agent is bound on a second platform somewhere else

169

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

in the agent system. In addition, mobility facilities are provided on a platform: agents
can leave the platform via the transition send agent or enter the platform via the
transition receive agent.

Figure 2. Agent systems as nets within nets (Source [18]).

Agents are also modeled in terms of nets. They are encapsulated, since the only
way of interaction is by message passing. Agents can be intelligent, since they have
access to a knowledge base. The behavior of the agent is described in terms of
protocols, which are again nets. Protocols are located as templates on the place
protocols. Protocol templates can be instantiated, which happens; for example if a
message arrives. An instantiated protocol is part of a conversation and lies in the place
conversations.

4. Proposed approach

Model-based testing (MBT) can be summarized in one sentence; it is essentially a
technique for automatic creation of test cases from specified software model. It,
usually, means functional testing for which the test specification is given as a test
model. The test model is derived from the system requirements.
As mentioned in section 2, multi agent systems can be considered, from tester’s point
of view, as a number of different levels of abstraction: the algorithmic level, class,
agent, society and system levels. Traditional test techniques (functional, structural and
non-regression) have been fully implemented for the first level of abstraction.
Furthermore, the need of a framework to support the development of automated tests

170

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

was perceived by the object-oriented community and it has led to the emergence of
the Java Unit Testing (JUnit) frameworks, which is considered as reference of unit
testing in Java [9]. Its effectiveness encouraged many researchers to propose
extensions capable of supporting other application types: DBUnit (for databases) and
NModel (for applications written in C #) for model Mark Utting proposed based
testing technique, an extension of JUnit, called Model JUnit [20]. Its principle is to
write simple finite state machine (FSM) models or extended finite state machine
(EFSM) models as Java classes, then generates tests from those models.
The approach discussed in this paper was inspired from Model-JUnit, but it
differentiates itself by the fact that it is dedicated to multi-agent applications.
Moreover, while Model-JUnit utilizes finite state machine as model, our approach is
based on reference nets, which have a graphical representation that provides a flexible
modeling approach where tokens can be Java-objects and nets can be regarded as
objects. Finally, in Model JUnit, the tester should write test cases to be executed by
using JUnit. In our approach, the test cases are generated automatically from the
model and is enforceable dynamically and simultaneously with the execution of the
system under test.
The Figure 3 summarizes the general architecture of our approach. It contains a series
of four stages.
As shown by (1) the modeling phase is the first step in model based testing technique.
In this phase, we represent the abstract specification in the form of a model. The model
is built to represent the intended behavior of the system under test. However, to verify
the validity of the model, phase (2) is mandatory. The tester (the modeler) has to
simulate its model for each possible scenario, in certain cases corrects, and refines
progressively the abstract test model until he is satisfied that the model meets the
initial specifications. The no detected errors in the validation phase can be detected
during the phase of execution of test cases. Phase (3) represents the test cases
generation and their concretization.
It is the most delicate step and constitutes our main contribution. It cannot be
conducted without the source code of the system under test and is directed under the
responsibility of the tester. It takes as input an information file extracted from the
system under test and another from the test model: All the methods present in the
source code and all the transitions in model extracted as XML format or more
accurately (PNML RefNet format) file and, of course, the scenario that the tester
wants to check. Such scenario is built according to the specification of the test and the
levels of the desired test (agent, society or system). While adopting a test case design
technique called "error-guessing ", which a technique is based on the ability of the
tester to draw on his past experience, knowledge and intuition to predict where bugs
will be found in the system under test. The output of instrumentation is then a new
version of the model. The last step is the execution phase (4). During this stage, the
tester can invoke the execution of the instrumented version of the model. The results
obtained following the execution of a sequence of test will be compared to the
expected results and a verdict is constituted.

171

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 3. Proposed approach.

To better understand the proposed approach and to explain the different stages, we

introduce as case study the well-known producer-consumer model.

5. Case study

The producer-consumer model has been used so abusive in computer literature, for
example, to solve synchronization problems, coordination and communication. The
Figure 4 describes our case study at an abstract level.
The example is constituted from a producer, which transmits data to a consumer. It is
imperative to point out that this example works under the following assumptions:

 Consumers must collect original data disassembled by the producer before
transmission,

 The principle of transmission is according to the stop-and-wait protocol
(Asynchronous mode). That is, the producer transmits a data packet at a time and
must wait for an acknowledgment.

 The principle of transmission is according to the stop-and-wait protocol
(Asynchronous mode). That is, the producer transmits a data packet at a time and
must wait for an acknowledgment.

172

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

Figure 4. Producer-consumer case study.

The steps sequences of the proposed approach are as follow:

5.1. Building the abstract test model

In the MBT process, we represent the abstract specifications in the form of a model.
This may lead to discover inconsistencies in the specification, thus, leading to correct
code from the beginning. Models of the system are useful for predicting the outputs
of the system, which allows test case to be generated. One of major drawbacks of the
model based testing techniques is the cost of building the abstract test model of the
system under test. In fact, the behavior of the system can be described using a variety
of different model types and a few of which make good models for testing, but the
choice depends on aspects of the system under test. To the best of our knowledge,
existing model based testing techniques for multi agent systems do not cover every
aspect of multi-agent systems such as dependencies and interactions. The proposed
approach covers such interactions as well, because it is based on the Reference nets
model. The latter is based on the nets within nets paradigm, which is renowned for:

- First, for its perfect adhesion to the mechanism of composition in multi agent
systems: agent protocols are composed to agent behavior, agent behavior is
composed to agents, agents are composed to groups, groups are composed
within agent platforms and platforms are composed to agent systems.

- Furthermore, for its unifying framework MULAN based on the visual
programming concept of petri net for the modeling of agent application in an
elegant and intuitive manner without losing formal accuracy.

- Finally, a model built upon a formalism that has a formal semantics to support
verification, simulation and execution.

173

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

 In Figure 5, the snapshot (a) represents the main net (system level); it creates the
producer and the consumer nets. Snapshot (b) shows the structure of our autonomous
agents. Finally, the snapshot (c) describes, respectively, the producer and the
consumer protocols. After the producer protocol starts the transition: transmit()
produces a performative containing a message “this is the test message” which
represents the product sending and that is directed to the consumer. The performative
will be sent over the p: send() transition; subsequently the protocol is blocked waiting
an answer message. The blocking behavior is necessary to simulate a synchronous
communication between producer and consumer. An arriving acknowledges
confirmation to p: ack(j) enables the transition acknowledges received. After
occurrence of that transition, the protocol is not blocked any further and the producer
agent is now able to reproduce another item. The protocol net that models the consume
behavior of the consumer agent is selected by the agent’s main page to process an
incoming performative item from the producer agent. It can now acknowledge the
reception, consume the item and wait for another product.

5.2. Validating the model

Because this abstract formal test model is derived manually out of the systems
requirements specification, the validation of the test model against system
requirements specification should be done first in order to find major errors in the test
model. With MBT approach, if some errors remain in the model they are very likely
to be detected when the generated test is run against the system under test. Renew
relies entirely on simulation to explore the properties of a net, where the tester can
dynamically and interactively explore the state of the simulation. In fact, at this stage,
the tester can imagine different execution scenarios by acting, for example, on the
number of agents or the number of objects (resources).
In other words, while simulating the system net, the tester has the opportunity to
correct and to refine progressively the abstract test model. Such robust and easy to use
tool reduces considerably the large initial effort in term of person-hours required
mainly in constructing and validating the testing model.

5.3. Test cases generation and concretization

Test cases are generated automatically from the behavioral model, which is given as
input to the test generators. In the literature [21], the test cases generation approaches
have suffered from the combinatorial explosion problem of the number of test cases.
For economic reasons, it should be reduced to a minimum. For quality reasons, it must
be sufficiently high as to reduce the number of remaining failures in the field to an
acceptable number. To cope with this explosion, we have opted for the well-known
test cases generation techniques. In our case, let us consider, for instance, the class
partitioning and limit testing techniques.

174

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

Figure 5. The modelling phase.

The strategy of such technique can be summarized as follow:

A- Identification of operational variables,
B- definitions of domains (and equivalence classes) of variables,
C- Development of an operational relationship between the variables; modeling

different system responses in a variant of the decision table,
D- Development of test cases for the variants.

A- Identification of operational variables:
Msg: variable modeling the packet to be transmitted,
P: object modeling the producer,
C: object modeling the consumer.

B-definition of domains:
Msg :{ Ok, Empty, Not string value},
P :{ Ok, Null},
C: {Ok, Null}.

175

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

C-Decision table:
Number of test cases: 3*2*2= 12(see Table 1).

Test case Msg P C Result

1 Ok Ok Ok
Successful

transmission
2 Ok Null Ok Error
3 Ok Ok Null Blocked
4 Empty Ok Ok Blocked
5 Empty Null Ok Blocked
6 Empty Ok Null Blocked
7 Not string value Ok Ok Error
8 Not string value Null Ok Error
9 Not string value Ok Null Error
10 Ok Null Null Blocked
11 Empty Null Null Blocked
12 Not string value Null Null Error

Table 1. The decision table.

D-Development of the test cases:
-A test case is “true” when it meets all requirements of the variants on the values of
the variables.
-A test case is “false” when it violates the requirements of the variants.

 To increase the effectiveness of the proposed approach and to compensate the
inherent incompleteness of equivalence partitioning and boundary value analysis, an
error guessing test case design technique is used. Such a technique is based on the
ability of the tester to draw on his past experience, knowledge and intuition to predict
where bugs will be found in the system under test. By doing so, the number of possible
test traces (scenarios) is reduced. Here depending on abstract test level the tester wants
to check, additional information can be extracted from design artifacts: state charts for
algorithmic level, class diagram for class level, sequence diagram for agent level,
collaboration diagram for society level and uses case diagram for system level.

 Concerning concretization, the generated test cases are abstract like the test model.
Thus, significant information is missing in the generated test cases to be executable
with the concrete system under test. Therefore, these test cases have to be concretized.
In other words, this step acts as a translator which bridges the abstraction gap between
the test model and the system under test by adding missing information and translating
entities of the abstract test case to concrete constructs of the test platform’s input
language.
This last one is a difficult task because it is done generally by applying different
algorithms. Furthermore, the model based testing solution ensures code coverage as
shown Figure 6.

176

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

Figure 6. The scope of model based testing approach [22]

 However, we make changes in the code of system under test by Adding missing

information (instrumentation of code). We come across the following problems: over
load, stress, performance, volume, security, usability, storage.

To remedy these problems, we have proposed to do the opposite (why not
instrumentation of the model?), since, reference nets are themselves Java objects:
Making calls from Java code to net is easy as to make calls from nets to Java code.
This phase begins with the launch of the test monitor, which we have developed.

So, before realizing this phase, a preparative work must be done. This is the static
analysis.

Concerning system under test (source code), information is extracted from the
agent’s internal structures by parsing them. This information includes details as the
identification of agents, their plans, the names of classes (the agent is composed from
the agent base class and several behavior classes) together with the names of each of
member methods, their parameters, and their types. Those information are then stored
in a so-called application information file as shown in Figure 7.

Concerning the model, all nets are exported into XML format or more accurately
PNML RefNet format (see Figure 8).Once all inputs (system information file, model
information file and the scenario of test) are available, the test monitor proceeds to the
instrumentation of scenario of test by adding a certain set of specific routines in model.
More precisely, the instrumentation is done by selecting the methods we want to test
from application information file and insert each method in the most suitable transition
in model information file as is shown in Figure 9.The output is a new version of the
model.

177

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 7. Result of static analysis of source code.

In particular, the instrumentation will allow the tester to follow the execution of the
traces of the various operations as the progresses of the simulation of the model.
By doing this, the tester can, at this stage, accept, reject or modify the generated
variable values. Figure10 shows the instrumented version of model where all adding
instruments are encircled. The reader can easily compare the original figures of the
model to the figure 10. Finally, because this operation (instrumentation) is derived
automatically, this significantly reduces the testing effort.

178

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

Figure 8. Result of static analysis of model.

179

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 9. Instrumentation of model.

180

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

Figure 10. Instrumented version of the model

181

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

5.4. Execution and evaluation

Now, instrumented version of the model under test is ready for execution with the
desired test case. The results obtained following the execution of a sequence of test
will be compared to the expected results and a verdict is constituted. Figure11 presents
the execution of producer consumer example.
The execution of instrumented model calls concerned function by test in application.
If the test passes correctly, the execution of model continues to a new place or
transition as shown in snapshot (a). Otherwise, an error message is displayed on the
command line in snapshot (b).

Figure 11. Execution and evaluation of results.

(a) (b)

182

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

6. Conclusion and future works

In this paper, we have presented a model based testing approach for multi agent
system using the paradigm of reference nets and we have used the producer consumer
example as a case study.
An important argument for using the paradigm of nets within nets is that the modeling
process concludes not only with a running system model, but also because it supports
the whole steps of the model testing technique. This reduces greatly the major negative
aspects of model based testing techniques and support testers in creating and executing
tests in a uniform and automatic way.
 This paper reflects our experiences with reference nets and hence renew tool. We
think that it is a robust and easy to use tool, which reduces considerably the large
initial effort in term of person-hours required mainly in constructing and validating of
the testing model. In fact, one of major drawbacks of the model based testing
techniques is the cost for the building of the abstract test model of the system under
test.
This paper represents a different approach compared to other works; first the scope of
our approach touches all test levels (from the system to algorithmic levels).besides we
solve the problem of combinatorial explosion in the number of test cases by adopting
error guessing technique. Moreover, we have automated the concretization stage by
instrumented model, finally and to validate our approach we have developed a test
monitor that supports all phases of the testing technique based models: modeling,
validation, implementation and execution. The test results generated by the test
monitor facilitate the construction of a verdict about the application. Therefore, our
approach can be a valid support for these kinds of test.
Nevertheless, the proposed testing approach has focused on a simple form of agent
cooperation. It is our intention to build models for a number of sophisticated multi
agent coordination.
Since our approach is based on formal models, automation of building and validating
models will be another perspective.
A final perspective could involve the integration of structural coverage at our test
monitor to test other characteristics of multi-agents applications (robustness, safety,
and reliability).

References

[1] Z. Houhamdi, “Multi-Agent System Testing: A Survey.” Int. Journal of
Advanced Computer Science and Applications, Vol. 2, No. 6, 2011.

[2] Y. Kissoum and Z. Sahnoun, “Formal specification and testing of multi
agent systems.” in 8th Colloq. Africain sur la Recherche en Informatique
(CARI’06), 2006.

[3] M. Broy et al., “Model-Based Testing of Reactive Systems: Advanced
Lectures.” LNCS, Springer-Verlag New York, Inc. 2005.

183

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[4] M. Utting, B. Legeard, “Practical Model-Based Testing: A Tools
Approach.” Morgan-Kaufmann, ISBN 978-0-12-372501-1, 2007.

[5] O. Kummer, “Simulating synchronous channels and net instances.”
Workshop Algorithmen und Werkzeuge für Petrinetze, Fachbereich
Informatik, Universität Dortmund, 1998, pp 73–78.

[6] O. Kummer and F.Wienberg, “Reference net workshop (Renew).”
Available:www.renew.de

[7] M. Duvigneau et al., “Concurrent architecture for a multi-agent platform.”
in Proc.Workshop on Agent Oriented Software Engineering (AOSE’02),
LNCS 2585, Springer Verlag, 2003.

[8] Y. Kissoum and Z. Sahnoun, “A formal approach for functional and
structural test cases generation in multi agent systems.” in 5th IEEE/ACS
Int. Conf. on Computer Systems and Applications (AICCSA’07), 2007.

[9] E. Gamma, and K. Beck. (2000) “JUnit: A Regression Testing
Framework”. available: http://www.junit.org

[10] A. M. Tiryaki et al., “SUnit: A unit testing framework for test driven
development of multi-agent systems.” AOSE'06 Proc.7th Int. Workshop on
Agent-Oriented Software Engineering VII, Springer, Berlin, 2007,.

[11] R. Coelho et al., “Unit testing in multi-agent systems using mock agents
and aspects.” Proc.Int. workshop on Software engineering for large-scale
multi-agent systems, ACM Press, New York, 2006 , pp. 83–90.

[12] Z. Houhamdi, “Test Suite Generation Process for Agent Testing.” Indian
Journal of Computer Science and Engineering, Vol. 2, N °2, 2011.

[13] L. Padgham et al., “Adding debugging support to the Prometheus
methodology.” Engineering Applications of Artificial Intelligence, Vol. 18,
2, 2005, pp. 173-190.

[14] L. Rodrigues et al., “Towards an integration test architecture for open
MAS.” 1st Workshop on Software Engineering for Agent-Oriented
Systems/SBES, 2005, pp. 60-66.

[15] T. De Wolf et al., “Engineering self-organising emergent systems with
simulation-based scientific analysis.” Proc.4th Int. Workshop on
Engineering Self-Organising Applications, 2005, pp. 146-160.

[16] Z. Houhamdi, and B. Athamena, “Structured System Test Suite Generation
Process for Multi-Agent System.” Int. Journal on Computer Science and
Engineering, Vol.3, 4, 2011, pp.1681-1688.

[17] R. Valk, “Petri nets as token objects: An introduction to elementary object
nets.” Application and Theory of Petri Nets, volume 1420 of LNCS, 1998,
pp 1–25.

184

JIOS, VOL. 40, NO. 2 (2016), PP. 165-184

KERRAOUI,KISSOUM,REDJIMI AND SAKER MATT: MULTI AGENTS TESTING TOOL BASED…

[18] M. Köhler et al., “Modeling the structure and behavior of petri net agents.”
J.M. ICATPN 2001, LNCS 2075, 2001, pp 224–241.

[19] M. Köhler et al., “Modelling mobility and mobile agents using nets within
nets.” ICATPN 2003, LNCS 2679, 2003, pp 121–139.

[20] Http://www.cs.waikato.ac.nz/~marku/mbt/modeljunit/, last accessed on
March 15, 2009.

[21] G.J. Myers, “The art of software testing.” John Wiley & Sons, Inc.,
Hoboken, New Jersey, 2nd Ed. 2004

[22] S. Weibleder, “Test models and coverage criteria for automatic model
based test generation with UML state machine.” Dissertation thesis,
Mathematisch-Naturwissenschaftlichen Fakultät II, Humboldt-Universität
zu Berlin, 2010, p 31.

