
197

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

JIOS, VOL. 41, NO. 2 (2017) SUBMITTED 08/16; ACCEPTED 04/17

Computer Games as Virtual Environments for Safety-Critical
Software Validation

Štefan Korečko stefan.korecko@tuke.sk
Faculty of Electrical Engineering and Informatics
Technical University of Košice, Košice, Slovakia

Branislav Sobota branislav.sobota@tuke.sk
Faculty of Electrical Engineering and Informatics
Technical University of Košice, Košice, Slovakia

Abstract
Computer games became an inseparable part of everyday life in modern society and
the time people spend playing them every day is increasing. This trend caused a
noticeable research activity focused on utilizing the time spent in a meaningful way,
for example to help solving scientific problems or tasks related to computer systems
development. In this paper we present one contribution to this activity, a software
system consisting of a modified version of the Open Rails train simulator and an
application called TS2JavaConn, which allows to use separately developed software
controllers with the simulator. The system is intended for validation of controllers
developed by formal methods. The paper describes the overall architecture of the
system and operation of its components. It also compares the system with other
approaches to purposeful utilization of computer games, specifies suitable formal
methods and illustrates its intended use on an example.
Keywords: formal methods, computer games, games with purpose, validation,
verification

1. Introduction
For millions of people in developed countries computer games have become an
integral part of everyday life. According to the recent statistics [1] the daily time
spent playing computer games per capita in USA will reach an half of hour in the
nearby future. There have been many disputes about positive and negative impacts
of these games on society but it is an indisputable fact that the time and effort spent
in developing and playing the games is increasing. And it is only natural that
scholars came with an idea to use the effort “wasted” during gameplay for pure
entertainment in some meaningful way. This resulted in an emergence of serious
games, which can be defined as “any piece of software that merges a non-
entertaining purpose (serious) with a video game structure (game)” [2]. While this
definition is broad, the term is mostly used for games with educational goals. A

UDC 004.415.53:004.9:793
Original Scientific Paper

198

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

KOREČKO AND SOBOTA COMPUTER GAMES AS VIRTUAL ENVIRONMENTS…

special group of serious games are so-called games with purpose [3]. They look like
ordinary games but the gameplay is designed in such a way that the players are
(unconsciously) helping to solve computational problems by playing them.

Safety-critical systems (SCS) are systems, which failure could lead to
unacceptable consequences [4] such as a loss of human lives or of expensive
equipment. SCS are usually controlled by computers and it is up to these discrete
controllers to ensure that no failure occurs. To guarantee this, formal methods (FM)
for specification and verification of discrete systems should be used during their
development. A typical FM for hardware or software development provides a
language with unambiguously defined syntax and semantics to write specifications
of systems and their safety-critical properties and a mathematical apparatus to
analyse, verify or refine these specifications. The prominent formal verification
techniques are model checking and theorem proving and they provide one
significant advantage over testing: after the system is verified we can be sure that the
properties hold in every state of the system. However, no formal method can verify
the correctness of the properties themselves as these are “distilled” from informal
requirements. The process of checking a formal specification of a system against the
informal requirements is called validation and some of the contemporary FM tools
support it through so-called animation, which is a (symbolic) execution of the
specification. But these tools offer only basic execution and do not take features of
the environment where the specified system will operate into account.

The question is how to provide virtual environments realistic enough to allow
serious reasoning about the requirements and corresponding formalized safety
properties. Here we propose to embed an executable prototype of the formally
specified software controller into a computer game, which serves as a virtual
representation of the device and environment where the controller will operate. The
benefit of using computer games in this way is twofold. First, we can utilize already
existing games and assets together with the contemporary game engines to create the
environments relatively fast. Second, such a game can be used as game with
purpose: its users will interact with the controller (i.e. any entity representing it in
the game) during gameplay and generate valuable data for analysing the behaviour
of the controller. Two implementations of the proposal have been considered and
experimented with: an extension of an already existing complex game by an
interface for formally developed controllers and a development of a separate game,
built around a specific controller. In this paper we deal with the first one, which
allows using verified safety-critical software controllers (SCSC) with Open Rails1
(OR) 3D train simulator. We call the implementation OR/TS2JC as it consists of two
components, a modified version of OR and an application called TS2JavaConn
(TS2JC), which provides communication between OR and SCSC. In OR/TS2JC the
SCSC manipulate signals, switches and trains according to events that occur in OR
during gameplay (simulation). Trains can also be controlled manually, by players.
The implementation is a development of a previous one [5], which utilized a much

1 http://openrails.org/

199

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

simpler 2D simulation game called Train Director and has been used as a virtual
laboratory environment in FM teaching. The replacement of Train Director by Open
Rails was necessary in order to provide a truthful representation of the environment
where SCSC should operate as OR has a realistic model of train operation. In
addition, because OR is a successor of the Microsoft Train Simulator (MSTS),
thousands of routes, faithfully modelled for MSTS after the real ones from all over
the world, can be used with OR/TS2JC. This allows to develop, validate and
evaluate controller prototypes for routes where automatization of railway traffic
control didn’t even started.

In this paper we present the current state of OR/TS2JC development and the rest
of it is organized as follows. Section 2 compares our work to similar ones of others
and section 3 specifies FM suitable for our approach and explains the problem of the
verification and validation on a small example. Section 4 introduces a general
scheme of the connection between a SCSC and a game, used in both
implementations, and section 5 deals with OR/TS2JC. The paper concludes with a
summary of achieved results and plans for future research and development.

2. Related Work
The idea of using an already existing non-serious game for research purposes is not
new. One of the most prominent examples is the real-time strategy game Starcraft,
which has been turned into a virtual laboratory for numerous works in artificial
intelligence [6], such as a design of a new pathfinding algorithm for combat units [7]
or a genetic programming-based automatic generation of high-level strategies [8].
According to [6], most of these works are implemented via the Brood War
Application Programming Interface (BWAPI) [9], which allows replacing a human
player with a computer program (bot). Our work is most related to the BWAPI itself.
The similarity is in the primary purpose – to provide an interface through which a
separately developed program is able to control the gameplay. However, it differs in
the computer game chosen and the focus on the support of SCSC, compiled from
source code generated by contemporary FM tools. In addition, the OR/TS2JC
interface allows to control not only elements operated by human players (i.e. trains),
but also elements normally managed by OR itself (i.e. signals and switches).

Formal methods and games are combined in the Crowd Sourced Formal
Verification (CSFV) program of the U.S. defence agency DARPA. The CSFV web
site2 provides several games with purpose [10] where the task of human-assisted
formal verification, which requires highly-trained professionals, is transformed into
a gameplay accessible to much greater audience of casual players. For example,
Xylem [11] is a game, where players help to find program loop invariants by
observing and describing behaviour of plants. The similarity between CSFV and our
approach lies in the utilization of the players’ effort for FM-related tasks. It is even
targeted to the same area of FM application, the development of reliable, verified,
software. On the other hand, OR/TS2JC uses a modification of an already existing

2 http://www.verigames.com/

200

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

KOREČKO AND SOBOTA COMPUTER GAMES AS VIRTUAL ENVIRONMENTS…

game while CSFV games are newly designed with the verification purpose in mind.
In fact, CSFV is complementary to our work: The CSFV games can be used to
verify SCSC, which are subsequently evaluated and validated using OR/TS2JC.

Our implementation with OR as well as the previous one [5] with Train Director
have been also inspired by existing solutions for animation and visualization of
formally specified systems. Two such tools exist for Event-B [12], a formal method
similar to B-Method [13], which is our primary FM of choice. The first tool is
Brama3, where custom visualizations can be made by connecting a specification in
Event-B with Adobe Flash animation. The second one is B-Motion Studio [14], with
animations composed from pictures. These solutions are different from OR/TS2JC
as the visualizations have to be created from scratch but without a limited domain
(railways), they connect with formally developed software on the specification and
not implementation level and are limited to one formal method. The same can be
said about the APEX framework [15], which connects a multi-user 3D application
server for creation and running of 3D virtual environments called OpenSimulator4,
with CPN Tools5 an editor, simulator and analyser for Coloured Petri nets (CPN)
formal method. The APEX is similar to our work in utilizing an existing tool
(OpenSimulator) to create virtual environments with entities managed by formally
developed controllers (by CPN in APEX). Another similarity is in the utilization of
the TCP protocol for the communication between the simulator and the controller.

3. Formal Methods: Suitability, Verification and Validation
OR/TS2JC has been developed as a virtual environment for evaluation and
validation of railway SCSC and as such is suitable for software development formal
methods fulfilling the following criteria:

1. Formal verification support. The language of the method has to support
safety properties specification and there should be a method and a software
tool for formal verification of the system specification against these
properties.

2. Verified development process. All effort put into writing the formal
specification of the system and its properties can be wasted if there is no
way to verify that the same or similar properties will hold in an
implementation of the system. Therefore the method should be able to
generate executable specifications automatically or provide means to verify
that the properties still hold in a manually written implementation of the
system.

3. Translation to Java. OR/TS2JC accepts SCSC written in the Java general
purpose programming language, so the tools for the formal method have to
include a compiler to this language. Java has been chosen because it is

3 http://www.brama.fr/
4 http://opensimulator.org/
5 http://cpntools.org/

201

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

supported by several formal methods that fulfil the first two criteria and
because of its popularity with students and developers.

Only the third criterion is mandatory, but without the first two our effort will not
be meaningful: Why to spend a lot of time by preparing an environment such as
OR/TS2JC for validation and evaluation when there are no means to verify the
validated properties in both formal and executable specification of the system?
Fortunately, several FM fulfil the criteria, such as B-Method [13], Event-B [12],
Perfect [16] and VDM [17]. These FM are frequently used in practice, with B-
Method and VDM primarily in the railway domain.

a) b)

Figure 1. Schema of a track segment guarded by two signals (a) and a train leaving a similar
segment in Open Rails simulator (b).

Before going to OR/TS2JC and the principles behind it, let us illustrate SCSC
development process on an example. The example uses B-Method (B) and presents a
part of a controller of a very simple railway track segment, containing one track
section (sig0_sig1) and two signals (sig0, sig1), which guard the access to it (Fig.1 a).
The development of its controller in B starts with writing an abstract formal
specification in B-language, the specification language of B. The specification
consists of one or more components, called B-machines. For our controller we need
only one machine, TContrl. Part of the specification of TContrl in B-language looks as
follows:

MACHINE TContrl
SETS SIGNAL={green, red}; SECTION={free,occup}

CONCRETE_VARIABLES sig0, sig1, sig0_sig1

INVARIANT sig0:SIGNAL & sig1:SIGNAL & sig0_sig1:SECTION &
 (sig0=red or sig1=red) & ((sig0=red & sig1=red) or sig0_sig1=free)

INITIALISATION sig0:=red || sig1:=red || sig0_sig1:= free

OPERATIONS
 ok<--reqGreen_sig0 =
 PRE sig0=red & sig1=red & sig0_sig1= free THEN sig1:=green || ok := TRUE END;
 …
END

202

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

KOREČKO AND SOBOTA COMPUTER GAMES AS VIRTUAL ENVIRONMENTS…

The clause SETS of TContrl defines two new types, the enumerated sets SIGNAL and
SECTION. Three state variables of the machine, representing the signals and section
of the track segment, are listed in the CONCRETE_VARIABLES clause. The
INVARIANT clause defines properties of the variables; its first line types the variables
and the second line contains a safety property, which can be informally written as

“only one of the two signals sig0 and sig1 can be green and both of them are red if
sig0_sig1 is occupied”.

INITIALISATION contains an operation that sets the initial state of the machine, here
both signals to red and the section to free. The operator “:=” is assignment and “||” is
parallel composition (i.e. S1||S2... means do S1 and S2 at once). Finally, we have
operations, which can be called from other components. The controller has several
operations and the one shown here, reqGreen_sig0, is called when a train approaches
sig0. The operation has no input parameter and one output parameter, named ok. It
contains a command that cannot be found in usual programming languages, the PRE
P THEN S END, where P is a condition and S is a command. It means “if P holds it is
safe to execute S, otherwise anything can happen”. The verification of TContrl is a
formal proof of a set of theorems saying that the initialisation operation establishes
the invariant properties and every operation maintains them. In simple cases the
proof is discharged automatically by corresponding tools (e.g. Atelier B6), in
complicated ones it has to be performed with a human assistance.

After the proof we refine (i.e. concretize) the abstract specification into an
implementable one. This can be a complex process with several steps and significant
modification of used algorithms and data representation. In our case it is sufficient to
replace “||” by “;” (sequential composition) and get rid of the non-implementable
PRE command. For example, the refined reqGreen_sig0 will look like

 ok<--reqGreen_sig0 =
 IF sig0=red & sig1=red & sig0_sig1= free THEN sig1:=green ; ok := TRUE
 ELSE ok := FALSE END;

Correctness of the refinement steps is, again, verified by formal proofs. Finally, we
can generate the Java code of the controller using BKPI compiler [18]. After this the
method generated from reqGreen_sig0 will be:

 public Boolean reqGreen_sig0() {
 Boolean ok;
 if (((sig0 == SIGNAL.red && sig1 == SIGNAL.red) && e0_sig0 == SECTION.free)) {
 sig0 = SIGNAL.green; ok = true; } else { ok = false; }
 return ok;
 }

6 http://www.atelierb.eu/en/

203

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

The code we got is correct but only with respect to the safety properties we
specified. But the properties themselves can be incorrect. For example, the section
sig0_sig1 can be so short that a train already inside one of the adjacent sections will
be unable to stop before sig0 or sig1. And this is exactly where OR/TS2JC can help
to validate the properties: the controller is connected to a corresponding reasonably
realistic representation of the track segment in OR (Fig.1 b) and adequacy of the
properties is evaluated during gameplay.

4. Game and Controller as a Hybrid System
Both implementations of the embedding of an executable SCSC prototype into a

computer game implement the same architectural principle, derived from the
operation of a hybrid system. By the hybrid system we mean a system defined
according to [19], i.e. a system that combines time-driven and event-driven
subsystems. These two kinds of systems differ in the state transition mechanism
[19]: the state of a time-driven system changes as time changes while the state of an
event-driven one changes at certain points in time only, i.e. when some event occurs.

a) b)

Figure 2. Hybrid system (a) and a general schema of a controller and computer game
composition (b).

In particular, we consider a configuration where an event-driven controller is
supervising a time-driven system (Fig. 2 a) and the controller has a form of a
computer system, running a SCSC. The controller reacts to events (e in Fig. 2 a)
observed in the time-driven system by issuing commands (c), which affect the
system. Of course, there needs to be an interface, which creates e on the basis of
output signals (o) and transforms c to input signals (i) of the system. For example,
the output signals can be about the distance between a train and a railway signal and
when the distance decreases below a certain value, the interface generates an event
“the train requests green” to which the controller reacts by running a procedure (e.g.
reqGreen_sig0 from section 3), which evaluates the situation and issues a command.
Then the interface transforms the command to an input signal, which switches the
railway signal.

In our work the real system is replaced with a computer game (Fig. 2 b). In
general, a contemporary computer game is a hybrid system as some of its variables

204

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

KOREČKO AND SOBOTA COMPUTER GAMES AS VIRTUAL ENVIRONMENTS…

change with time (e.g. the ones computed by a physics engine) and others when an
event (e.g. an input from a player) occurs. We can see the game as a composition of
entities (E), some of them time-driven, some event-driven and some hybrid, which
communicate via corresponding internal interfaces (dashed lines in Fig. 2 b). In
addition to the user interface, which communicates events (eu) to the player as audio
and video and processes his commands (cu), the game will need a control interface
to interact with the controller. Both interfaces can share the same set of events and
commands, as in the case of BWAPI where the controller replaces a human player.
On the other hand, the sets can be disjoint, e.g. when a controller is supervising a
non-playable character. In OR/TS2JC some of the events and commands related to
trains are shared by both interfaces while others belong to only one of them.

Figure 3. OR/TS2JC architecture.

5. OR/TS2JC
The OR/TS2JC (Fig. 3) differs from the general schema (Fig.2 b) in two important
aspects. First, there is a separate application, TS2JavaConn (TS2JC), serving as an
additional interface between the modified Open Rails (OR) and SCSC, which we
call control module. TS2JC makes it easier to adapt our work to different railway
simulators and is in more detail described in section 5.2. Second, OR itself can be
run in a multiplayer mode where each instance is responsible for one train and only
the server instance connects to TS2JC. The multiplayer allowed us to implement
three different ways of train control. We return to them later, in section 5.3.

The control modules (CM) are Java applications possibly, but not necessarily,
generated by FM tools. They contain two kinds of methods:

1. Event methods, called by TS2JC when a corresponding event occurs in OR.
It is expected that they change the state (i.e. the values of variables) of the
module. The reqGreen_sig0 from section 3 is an event method.

205

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

2. Getters. They return current state of signals, switches and trains, computed
by the event methods. Getters should not change the state of the module.

It is up to the developer how the variables of CM will capture the state of the
controlled railway scenario and what exactly the methods will do and return.

As in the general schema, the modified OR can be seen as a composition of
different entities. Here we distinguish entities representing railway signals (Sig in
Fig. 3), switches (Sw), stations (St), trains (TS, Tc1, Tc2), locomotive controllers (LC)
and other entities (CRE), including the audio-visual output renderer and the part
responsible for the communication between OR instances. The most important
modifications of OR have been the creation of the TS2JC interface, changes in the
game logic in order to cooperate with the interface, extension of the interface for
client-server communication (Comm I. in Fig. 3) to incorporate TS2JC messages and
changes in the OR graphical user interface to be able to set new preferences and see
names of entities in corresponding views.

To use OR/TS2JC we first need to start one or more instances of the modified
OR with exactly one of them in the server mode. In each instance we set the same
route and activity and choose a user name. The user names have to be the same as
train names in the corresponding CM. Then we start TS2JC and connect to OR. This
causes TS2JC to request route data from OR. After receiving the data TS2JC
displays their names in its GUI. Then we load a CM in TS2JC and TS2JC checks
whether it is a correct module for the route. If yes, the route and trains state in OR is
set according to the CM and we can start the simulation. After this the user(s) can
operate manually operated trains or act as validators by observing the behaviour of
the controller.

5.1. Event Processing
During the simulation most of the communication between OR and CM is initiated
by events caused by trains in OR. In general, the communication proceeds as
follows:

1. An event occurs in an OR instance.
2. The instance composes a message consisting of the event name and data

(parameters). If the instance is an OR server then the message (e in Fig. 3) is
sent directly to TS2JC. If it is a client instance, the message is first sent to
the server instance as an extended multiplayer message (em) and then to
TS2JC as e.

3. TS2JC receives e and translates it into a call (ope in Fig. 3) of the
corresponding method in the CM.

4. TS2JC executes ope. This usually changes values of the CM variables.
5. TS2JC calls getters of the CM, stores returned values (get in Fig. 3) and

compares them with the values getp stored after the previous event.
6. TS2JC composes so-called multicommand message (mc in Fig. 3),

consisting of those values of get that are different from getp and sends mc to
the OR server. The server receives mc and updates all affected signals,

206

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

KOREČKO AND SOBOTA COMPUTER GAMES AS VIRTUAL ENVIRONMENTS…

switches and trains. Connected client instances are updated, too, via em
messages.

Event Data Cause

speedChanged t, s

Speed of the train t changed by an amount set in
preferences of the modified OR. The resulting
speed value is s.

redSignalApproach i, f, t

The distance between the train t with the
destination f and the signal i decreased to
predefined distance rs.

requestGreen i, f, t

The distance between the train t with the
destination f and the signal i decreased to
predefined distance rg.

signalStateChanged i, f, t

The signal i before the train t with the
destination f has been switched to green. The
train t is before i if it is as close or closer to i as
predefined distance sc.

sectionEnter t, s The train t entered the section s.

getSpeed t, s
The train t had entered the section s and asked
for the speed required for s.

sectionLeave t, s The train t left the section s.

stationApproach t, a, f, s

The distance between t with f and the station a,
which occupies the section s, decreased to
predefined distance sa.

requestDepartureStation t, a, f, s
The train t with the dest. f asked for permission
to leave the station a occupying the section s.

canLeaveStation t, a, f, s
The permission for t with f to leave a occupying
s has been granted.

Table 1. Selection of events triggered during simulation

The process repeats for every event. The most important events are listed in

Table 1. The data sent with event messages are identifiers of involved entities: trains
(t), signals (i), sections (s) and stations (a, f). The sections are defined by
surrounding switches and signals, so we have sections between two signals, two
switches or a signal and a switch. The events redSignalApproach and requestGreen
are similar; they differ only in the train distance from the signal. The requestGreen
can be seen as a failsafe and its predefined distance rg should be shorter than rs. The
processing of getSpeed differs from other events as it doesn’t involve the calling of
all the getters from CM. Only a method associated with the event is called and the
speed required for s is expected as its output parameter. There are also other

207

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

important events, for example ready, which occurs when an OR instance with a train
t became available and getDistance to get the distances rs, rg, sc and sa from CM.

5.2. TS2JavaConn and Customizable Control Interface
TS2JavaConn (TS2JC) is a separate Java application responsible for three important
tasks:

1. Communication between OR and CM. TS2JC translates event messages
from OR to CM method calls and values returned by CM getters to
commands for OR.

2. Control process monitoring. The Overview tab of the TS2JC user interface
(Fig. 4 a) lists state of all important elements in the actual route and activity,
loaded in OR. It also contains a logger with a detailed history of events,
method calls and commands. Most of the event and data names shown in the
logger are the same as in Table 1.

3. Control module template generation. TS2JC allows to generate a template
of a control module with variables and method (operation) headers
corresponding to the route loaded in OR. This feature is currently available
for Java and specification languages of B-Method and Perfect.

As we mentioned earlier, there are several FM with code generators to Java. To

make it possible to use the CM code generated by them without any or with minimal
modifications, TS2JC allows to customize the way how CM and OR communicate.
The customization is implemented by means of a properties file, associated with
each CM. The properties file defines how the event methods are called, which event
data are used, whether the data are a part of method names or input parameters and
what is the meaning of values the getters return. For example, an event message

requestGreen with parameters i=sig0, f=sta3 and t=train0

can be translated to a method call, which uses only the first parameter as a part of its
name

 requestGreen_sig0()

or uses first two event parameters as method parameters

 requestGreen(sig0, sta3)

or combines both ways

 requestGreen_sig0(sta3).

208

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

KOREČKO AND SOBOTA COMPUTER GAMES AS VIRTUAL ENVIRONMENTS…

a)

b)

Figure 4. TS2JavaConn (a) and Open Rails (b) during a simulation of Hisatsu Line route.

5.3. Multiplayer and Three Ways of Train Control
Open Rails is a train simulator, so one OR instance handles one train operated by a
player. Yet, for faithful representation of real-life situations we need routes
populated by more than one train. To accomplish this, two approaches were
considered. First, we tried to use automatic (AI) trains, which can be added to routes
and operated according to a schedule, defined for corresponding activity. However,
required modifications of OR proved to be too complex and the achieved result has
been only partially satisfying (i.e. a route and activity with several AI trains and only
one human operated train) Therefore, it was decided to utilize the multiplayer mode
of OR. The already existing protocol for communication between OR server and
client instances has been extended to be able to carry the multicommand messages,

209

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

so only the server instance needs to communicate with TS2JC. To provide maximal
flexibility, three different ways of train control have been implemented and each
route and activity, controlled by one CM, can contain trains of all three
corresponding types. Namely, the train types are:

1. Manual. A train controlled by a player via the OR user interface. The
availability of such trains is very important for the validation and
evaluation process as they allow to test CM against unpredictable
behaviour of human operators (i.e. a driver ignoring signals set by CM).

2. CM-controlled. Train operated by CM. The control is realised via CM
responses to the getSpeed event, which define train speeds for individual
sections. How the train reaches the speed is implemented on the OR
side.

3. Bot. Train operated by locomotive controllers (LC in Fig. 3), added to
OR. These trains always obey signals and defined schedule and are
useable when there is a need to populate the route with trains without
any additional investment in their control.

 All three types are included in Fig. 3: a manual train TS on the OR server, a CM-
controlled train Tc1 on the OR client 1 and a bot train Tc2 on client 2.

6. Conclusion
The development of the OR/TS2JC environment, where validation and

evaluation of railway controllers, developed by contemporary FM, can be realized in
a form of gameplay, reached an important milestone; it is ready to be used with
existing railway routes and activities, created originally for MSTS. Great amount of
time and effort has been invested not only to the design and implementation of the
communication interface, JS2JC and modifications of OR, but also to the fixing of
several issues that emerged during the testing with MSTS routes, such as
unambiguous names of track sections. In the future the development of OR/TS2JC
will focus on better support of validation tasks, such as more detailed logs,
development of concrete control modules using FM mentioned in section 3 and
other formalisms, e.g. those based on the category theory [20], [21], and an
extension of the communication between OR and CM, especially in the area of train
control. We also intent to use the Java interface [22] of the ProB [23] animator and
model checker for B-Method, Event-B and several other FM to be able to connect
with SCSC on the formal specification and not implementation level. Regarding B-
Method, the CM can also benefit from a combination of B-Method and Petri nets,
pioneered in [24], [25] and further extended to other Petri net dialects and railway
domain in works such as [26] or [27].

It should be also noted that while OR/TS2JC has been developed with FM in
mind, the controllers don’t need to utilize FM at all. The only condition is that they
are written in Java and provide interface acceptable by OR/TS2JC. OR/TS2JC is
available from http://hron.fei.tuke.sk/~korecko/FMInGamesExp/.

210

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

KOREČKO AND SOBOTA COMPUTER GAMES AS VIRTUAL ENVIRONMENTS…

Acknowledgements
The paper is a result of the Project implementation: University Science Park
TECHNICOM for Innovation Applications Supported by Knowledge Technology,
ITMS: 26220220182, supported by the Research & Development Operational
Programme funded by the ERDF. The authors would like to thank all the students
who participated on the development of OR/TS2JC.

References
[1] Statista. (2016). Daily time spent playing video games per capita in the

United States in 2008, 2013 and 2018, [Online]. Available:
http://www.statista.com/statistics/186960/time-spent-with-videogames-in-
the-us-since-2002/.

[2] D. Djaouti et al., “Classifying Serious Games: the G/P/S model,” in
Handbook of Research on Improving Learning and Motivation through
Educational Games: Multidisciplinary Approaches, P. Felicia, Ed., IGI
Global, 2011, pp. 118-136.

[3] L. von Ahn, “Games with a Purpose,” Computer, vol. 39, no. 6, pp. 92–94,
June, 2006.

[4] J. C. Knight, “Safety critical systems: challenges and directions,” in 24rd
Int. Conf. on Software Engineering (ICSE 2002), Orlando, FL, USA, 2002,
pp. 547-550.

[5] Š. Korečko and J. Sorád, “Using simulation games in teaching formal
methods for software development,” in Innovative Teaching Strategies and
New Learning Paradigms in Computer Programming, R. Queirós, Ed., IGI
Global, 2015, pp. 106–130.

[6] Ontanon, S. et al., “A Survey of Real-Time Strategy Game AI Research
and Competition in StarCraft,” IEEE Trans. on Computational Intell. and
AI in Games, vol. 5, no. 4, pp.1-19, 2013.

[7] J. Hagelbäck, “Potential-field based navigation in StarCraft,” in 2012 IEEE
Conf. on Computational Intell. and Games (CIG), Granada, 2012, pp. 388-
393.

[8] P. Garćıa-Sánchez, A. Tonda, A. M. Mora, G. Squillero and J. J. Merelo,
"Towards automatic StarCraft strategy generation using genetic
programming," in 2015 IEEE Conf. on Computational Intell. and Games
(CIG), Tainan, 2015, pp. 284-291.

[9] Heinermann, A. (2017, April 19) BWAPI—An API for interacting with with
Star-Craft: Broodwar [online] Available: http://bwapi.github.io/

211

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[10] D. Dean et al., “Lessons learned in game development for crowdsourced
software formal verification,” in 2015 USENIX Summit on Gaming,
Games, and Gamification in Security Education (3GSE‘15), 2015.

[11] H. Logas et al., “Software Verification Games: Designing Xylem, The
Code of Plants,” in Proc. 9th Int. Conf. Foundations of Digital Games
(FDG 2014), Ft. Lauderdale, FL, USA, 2014.

[12] J. R. Abrial, Modeling in Event-B: System and Software Engineering,
Cambridge University Press, 2010.

[13] J. R. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge
University Press, 1996.

[14] L. Ladenberger et al., “Visualising Event-B Models with B-Motion
Studio,” in Proc. of Formal Methods for Industrial Critical Systems, LNCS
vol.5825, Springer, 2009, pp. 202-204.

[15] J. L. Silva et al., “The APEX Framework: Prototyping of Ubiquitous
Environments Based on Petri Nets,” in Human-Centred Software
Engineering, LNCS, vol. 6409, Springer, 2010, pp. 6-21.

[16] D. Crocker, “Safe object-oriented software: the verified design-by-contract
paradigm,” in Practical Elements of Safety, Springer, 2004, pp. 19-41.

[17] J. Fitzgerald et al., Validated Designs for Object–oriented Systems,
Springer, 2005.

[18] Š. Korečko and M. Dancák, “Some Aspects of BKPI B-language Compiler
Design,” Egyptian Comput. Sci. J., vol. 35, no.3, pp.33–43, 2011.

[19] Ch. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, second edition, Springer, 2008.

[20] W. Steingartner and V. Novitzká, “A new approach to semantics of
procedures in categorical terms,” in 13th IEEE Int. Scientific Conf. on
Informatics, Poprad, 2015, pp. 252-257.

[21] W. Steingartner et al., “An Analysis of some Aspects of Component-Based
Programming for Selecting Appropriate Categorical Structures as Their
Models,” Acta Electrotechnica et Informatica, vol. 17, no. 2, pp. 3-10,
2017

[22] J. Bendisposto and J. Clark (2014): ProB 2.0 Developer Handbook,
[online]Available:
https://www3.hhu.de/stups/prob/index.php/ProB_Java_API_
Developer_Manual

[23] M. Leuschel and M. Butler, “Prob: an automated analysis toolset for the B
method,” Int. J. Softw. Tools Technol. Transf., vol. 10, no. 2, pp. 185-203,
March 2008.

212

JIOS, VOL. 41, NO. 2 (2017), PP. 197-212

KOREČKO AND SOBOTA COMPUTER GAMES AS VIRTUAL ENVIRONMENTS…

[24] Š. Korečko and Š. Hudák, “Implementing Petri nets via B-method”, in:
Proc. Of Electron. Comput. and Informatics (ECI’ 2004), Herľany,
Slovakia, 2004, pp. 103-110.

[25] Š. Korečko et al., “Petri net - like treatment of B-machine behaviour,” J. of
Inform., Control and Management Syst. vol. 5, no. 2, pp. 213-223, 2007.

[26] P. Sun et. al., “A joint development of coloured petri nets and the B
method in critical systems,” J. of Universal Comput. Sci., vol. 21, no. 12,
pp. 1654-1683, 2015.

[27] Z. Boudi et al. “A CPN/B method transformation framework for railway
safety rules formal validation,” European Transport Research Review, vol.
9, no. 2, art. no. 13, 2017.

