
283

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

UDC 004.056.55
Survey Paper

JIOS, VOL. 41, NO. 2 (2017) SUBMITTED 10/16; ACCEPTED 09/17

Merkle-Damgård Construction Method and Alternatives:
A Review

Harshvardhan Tiwari tiwari.harshvardhan@gmail.com
Centre for Incubation, Innovation, Research and Consultancy (CIIRC)
Jyothy Institute of Technology, Bangalore, Karnataka, India

Abstract
Cryptographic hash function is an important cryptographic tool in the field of
information security. Design of most widely used hash functions such as MD5 and
SHA-1 is based on the iterations of compression function by Merkle-Damgård
construction method with constant initialization vector. Merkle-Damgård construction
showed that the security of hash function depends on the security of the compression
function. Several attacks on Merkle-Damgård construction based hash functions
motivated researchers to propose different cryptographic constructions to enhance the
security of hash functions against the differential and generic attacks. Cryptographic
community had been looking for replacements for these weak hash functions and they
have proposed new hash functions based on different variants of Merkle-Damgård
construction. As a result of an open competition NIST announced Keccak as a SHA-3
standard. This paper provides a review of cryptographic hash function, its security
requirements and different design methods of compression function.

Keywords: Cryptographic hash function, Information security, Merkle-Damgård
construction, MD5, SHA-1, Differential attacks, Generic attacks.

1. Introduction
Cryptographic hash function is a one-way and compression function that converts an
arbitrary length message to a fixed length hash value. This hash value of a message
is also known as the fingerprint of the message. Any small change or modification in
the input data causes the drastic change in the hash value. Cryptographic hash
function is widely used in security applications and protocols [1]. Hash functions are
targeted heavily by cryptanalysts as they are a fundamental building block for many
security applications. Cryptographic hash function ensures the integrity and
authentication in the communication. There are various applications of
cryptographic hash function such as pseudo-random string generation, digital
signature and MAC.
 The basic operation of cryptographic hash function has been shown in Figure 1.
A cryptographic hash function is like a deterministic and computationally efficient
random function. Cryptographic hash function has to satisfy requirements of
onewayness and collision resistance. Onewayness means that the method to

284

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

calculate a hash value from a given message is easy, but it is computationally
infeasible to generate any message that yields a given hash value. Collision
resistance means it is extremely difficult to find two messages that have the same
hash value. Cryptographic hash functions are classified into unkeyed hash functions
and keyed hash functions. Unkeyed hash functions, also known as modification
detection codes (MDCs), use message as a single input whereas keyed hash
functions, also known as message authentication codes (MACs), can be viewed as
hash functions which take two functionally distinct inputs, a message of arbitrary
finite length and a fixed length secret key.

Figure 1. Cryptographic hash function
Formally, a hash function can be shown as:    *: 0,1 0,1 nh  . It presents that an
input is arbitrary length of any binary string, and the output is n bits of binary string.
We usually call n as the size of hash value. A hash function must satisfy the
following properties;
Compression: h maps an input M of an arbitrary bit length (up to a predefined very
long maximum length) to an output of a fixed bit length n.
Ease of computation: for a given input M and a hash function h, the process of
computing h(M) should be easy and fast.

(1) Preimage resistance: it is computationally infeasible to find any input which
hashes to any pre-specified output i.e., given a hash value H, it is
computationally infeasible to find an input M such that h(M) H.

(2) Second preimage resistance: it is computationally infeasible to find any
second input which has the same output as any specified input. That is,
given an input M, it is computationally infeasible to find another input
Msuch that h(M) h(M) and M M. This is also known as weak
collision resistance.

(3) Collision resistance: it is computationally infeasible to find two different
inputs with the same output. That is, it is computationally infeasible to find a

285

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

pair of inputs, M and M, such that h(M) h(M) and M M. This is also
known as strong collision resistance.

(4) Near-collision resistance: it is computationally difficult to find any two
different inputs M and M, that have a low Hamming weight between their
hash values, i.e., h(M) differs from h(M)by a few number of bits.

(5) Partial preimage resistance: given a hash value, it is computationally
difficult to recover any part of the message.

(6) Non-correlation: the input bits of an input M should not be correlated to the
output bits of h(M) .

(7) Random behaviour: hash function should have random behaviour. That is,
given a particular input M it should be infeasible to predict any output bits
of h(M) without actually applying the function h.

(8) Deterministic nature: hash function h should be deterministic, i.e. given a
particular input M, the function always computes the same output h(M) .

Properties preimage, second preimage and collision resistance are ground
properties of a hash function. These are NIST core requirements for a cryptographic
hash algorithm and are the requirements which are generally of most practical
importance. It is always important to achieve the first five properties as much as
possible. Preimage resistance is important in some authentication scenarios and
password storage where one does not send plain messages with their hash values, so
if adversary can reverse the hash function he/she will be able to find the original
message. Second preimage is for preventing the adversary from changing the
original message in a way that the hash value remains unchanged. Collision
resistance is stronger notion than preimage and second preimage resistance.
Collision resistance always implies property second preimage resistance but does
not imply preimage resistance. Collision resistance is easy to breach, so most
cryptanalysis target collision attack. Collision resistance is important for digital
signatures. The properties of second preimage resistance and collision resistance
may seem similar but the difference is that in the case of second preimage resistance,
the attacker is given a message to start with, but for collision resistance no message
is given; it is simply up to the attacker to find any two messages that yield the same
hash value. The term computationally infeasible or computationally difficult means
that the complexity of an algorithm to break any of these properties is not less than
that of the generic attack required to break that property.

For a n-bit hash function, we have a generic collision attack with complexity
2n/2, while brute force preimage or second preimage attacks have complexity 2n. In
case of collision attack, birthday attack is popularly used exhaustive search. The
term computational easiness might mean polynomial time and space; or more
practically, within a certain number of machine operations or time units [2].
Unkeyed hash function is further classified into oneway hash function (OWHF) and
collision resistant hash function (CRHF). A hash function that satisfies first four
properties mentioned above is termed as an oneway hash function (OWHF). A hash
function that satisfies the first five properties mentioned above is sometime called a
collision resistant hash function (CRHF). The construction of CRHF is hard than

286

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

OWHF. CRHF usually deals with longer length hash values. Other then these
functions universal one way hash function (UOWHF) also exist [1], [13].

Paper discussed basic hash function design and MD construction in section 2.
Section 3 gives iterative processing of the messages by different alternative hash
construction methods. In this section weaknesses and security of compression
function have also been highlighted. Paper is concluded in section 4.

2. Basic hash function design
Iterated hash functions have been the most successful method for constructing fast
and secure hash functions. Usually, hash functions are built upon two components: a
compression function and a domain extension algorithm.

Figure 2. Iterative hash construction

The compression function has the same security requirements that a hash function
but takes fixed length inputs. The domain extension algorithm defines how to use
the compression function in order to handle arbitrary length inputs. Almost all hash
functions are iterative processes which hash inputs of arbitrary length by processing
successive fixed-size blocks of input. In this section, we will discuss some popular
known iterative hashing constructions. Common iterative structure is shown in the
Figure 2.

287

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

2.1. Merkle-Damgård Construction
From the early beginning of hash functions in cryptography, designers relied on the
Merkle-Damgård (abbreviated to MD) construction. The MD construction was
discovered by Merkle [3] and Damgård [4] in 1989 independently. Majority of
famous hash functions such as MD4 [5], MD5 [6], SHA-0 [7], SHA-1 [8],
RIPEMD-160 [9] etc., follow the iterative MD method. A compression function
which takes a fixed input length value and outputs a fixed length hash value is core
component of this construction.

Figure 3. Merkle-Damgård construction

A compression function accepts two inputs: a chaining variable and a block of
message. A compression function accepts two inputs: a chaining variable and a
block of message. Let      : 0,1 0,1 0,1b n nf   be a compression function which

takes a b-bit message block and an n-bit chaining value. Let    *: 0,1 0,1 nh  be a
MD construction built by iterating the compression function f in order to process a
message of arbitrary length. A message M to be processed using h is always padded
in a manner such that the length of the padded message is a multiple of the block
length b of f. Bit-length b corresponds to input length of desired compression
function f. The padding is done by adding after the last bit of the last message block
a single 1-bit followed by the necessary number of 0-bits. Let M be abinary
representation of the length of the message M. The binary encoding of the message
length is also be added to complete the padding. This is called a Merkle-Damgård
strengthening.Then input M subsequently divided into t blocks, each of bit-length b.
The hash function h can then be described as follows:

0

1

,
(,), 1 ,

()
i i i

t

H IV
H f H M i t
h M H



 
  
 



 (1)

Where f is the compression function of h, is the intermediate chaining variable
between stage i-1 and stage i, and 0H is a pre-defined starting value or the initial

288

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

value IV. The block diagram of the iterative hash function using the compression
function is shown in the Figure 3. The computation of the hash value is dependent
on the chaining variable. At the start of hashing, this chaining variable has a fixed
initial value which is specified as part of the algorithm.

Figure 4. Detailed view of Merkle-Damgård construction

This process continues recursively, with the chaining variable being updated under
the action of different part of the message, until the entire message has been used.
The final value of the chaining variable is then output as the hash value
corresponding to that message. One of its distinctive features is that it promotes the
collision resistance and preimage resistance of the compression function to the full
hash function: for instance, a collision on the compression function can be deduced
efficiently from a collision on the full hash function. The inclusion of the length at
the end of the message is important for this situation, and is also important for
preventing a number of attacks, including long-message attacks.
 Merkle-Damgård construction proves that the security of hash function relies on
the security of the compression function. Thus, in order to build a collision resistant
hash function, it is sufficient to design a collision resistant compression function.
Recent results, however, highlight some intrinsic limitations of the MD approach
[27]. This includes being vulnerable to multicollision attacks [10], long second

289

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

preimages attacks [11], and herding attack [12]. Figure 4 shows detailed view of MD
construction.

3. Alternative construction methods

3.1. Tree Construction
This is the most parallelizable class of constructions and is mainly suited for multi
core platforms where multiple processors can independently operate on different
parts of the message simultaneously.

Figure 5.Tree construction
The compression function of tree construction is of the form    2: 0,1 0,1n nf  .
However, the Damgård tree construction is not practical since the size of the binary
tree grows with the length of the message. Figure 5 illustrates a typical tree based
hashing construction. Damgård tree construction was later optimized by Sarkar and
Scellenberg [14]. Sarkar and Scellenberg construction (SS construction) was a
parallel version of MD construction. The main difference between SS construction
and previous constructions is that authors consider the number of available
processors to be fixed while the length of the message can be arbitrarily long.

Thus SS construction considered a fixed processor tree and used it to hash
arbitrarily long messages. Each processor simply computes the base hash function.
Similarly, Carter and Wegman [15] used tree hashing techniques to build universal
hash functions. This was followed up by Naor and Yung [16] and Bellare and
Rogaway [17] in the context of UOWHFs (Universal One Way Hash Functions). In
[18] Bellare and Micciancio proposed the randomize-then-combine paradigm, where
the message is split into blocks, each block is processed via randomizing function

290

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

(derived from some standard hash function) and finally combined by an operation
such as XOR. Although this structure was originally proposed to build incremental
functions, it can be thought of as a 2- level tree and can still be parallelized since the
randomization process of the individual blocks are independent. Tree-based
constructions are slightly less popular than the iterative ones.

3.2. Sponge Construction
Sponge construction [19] is an iterative hash function construction, builds upon a
fixed length transformation or permutation instead of a compression function and
can generate output strings of infinite length. Sponge construction can be used to
build both hash functions and stream ciphers.

Figure 6.Sponge construction

Basically, sponge hashing proceeds in two phases, the absorbing phase and the
squeezing phase. The sponge operates on a fixed length state  0,1 r cs  composed
of r bits (called bit-rate) and c bits (called capacity), through a function

   : 0,1 0,1r c r cf   which produces a transformation or permutation of s. In the
absorbing phase, the message is divided into r-bit blocks (padded if necessary) and
each block is XORed with the r part of s (initially,  0 r cs ), f then iteratively
processes s until all blocks are exhausted. In the squeezing phase, the state continues
to be transformed or permuted by f but this time the r parts of the states are returned
at every iterations as output blocks. Since the sponge construction supports variable
length output, the user chooses the length of the final hash value which determines
how many of the returned blocks in the squeezing phase need to be returned.
Optionally, between two phases, some number of blank rounds can be applied. In

291

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

the blank rounds, there is no input to or output from the state. Only, f is applied to
the state s. If f is expressed as a random function, the construction is called a T-
sponge, otherwise if it is expressed as a permutation then the construction is called a
P-sponge. The security of a sponge construction depends on its capacity c, hash size
n and function f. For P-sponge construction the complexity of a collision is

2 2(2 , 2)c nMin and complexity of preimage and second preimage is 2(2 ,2)c nMin .
Collision complexity of T-sponge construction is equal to the collision complexity
of P-sponge construction. Finding a preimage costs (2 , 2)c nMin and finding a second
preimage costs (2 ,2)c nMin N for a T-sponge, where N is the length of the original
message. Figure 6 illustrates the sponge construction.

Hash functions such as Keccak [20] and PHOTON [21] are based on the
sponge construction. Keccak has recently been selected as the winner of SHA-3
competition. Although still considered an iterative construction, the sponge is
completely different from the Merkle-Damgård construction. When iterated hash
functions are considered, there always exist inner collisions which can be defined as
if two message pair M1and M2give the same chaining value, then concatenation of
M1and M2with collide suffix M*collide. In the sponge function construction, there
also exist inner collisions and this is the only weaknesses of sponge functions so far.

3.3. Wide and Double Pipe Construction
Lucks has proposed a wide pipe and double pipe hash function construction [22]
which provides an enhancement of the Merkle-Damgård construction. The wide pipe
construction intended to increase the size of the internal state of n-bit hash function
and w-bit compression function, where w n . This means that the wide pipe design
obtains a greater internal state than message digest length by using a larger
compression function.

Figure 7.Wide-pipe construction

Constructing a collision-resistant compression function with w n output bits may
be simpler than constructing an n-bit compression function with the same level of

292

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

collision resistance. Let  0 0,1 wH  be a random initial value. Using two
compression functions:

 : 0,1 wf     0,1 0,1m w  and    : 0,1 0,1 .w nf   Wide pipe hash is computed
as:

1(,), 1 ,
() ()
i i i

t

H f H M i t
h M f H

  
 



(2)

Wide-pipe construction is shown in the Figure 7.

On the other hand, the double pipe design maintains twice the hash size using the
2w n compression function in parallel to process each message block. Using one

compression function      : 0,1 0,1 0,1n n m nf   , with m n and two distinct

random initial values  0 0 0,1 nH H   double pipe hash is computed as:

1 1

1 1

1 1

(,), 1 1

(,), 1 1

() (,)

i i i i

i i i i

t t t

H f H H M i t

H f H H M i t

h M f H H M

 

 

 

     
     
  





 (3)

Figure 8. Double-pipe construction

Double-pipe construction is shown in the Figure 8. From these designs Lucks
showed that increasing the size of the internal state (i.e. the chaining variable) to

293

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

become larger than the size of the final hash value, would significantly improve the
security of the hash function. This modification clearly thwarts the extension attack
since in the wide and double pipe construction the final hash value is truncated, so in
order to append an extension, the unknown discarded bits have to be guessed, which
is clearly difficult if the number of the discarded bits is non-trivial. Furthermore, by
increasing the size of the internal state, finding collisions for the compression
function becomes harder, which complicates the other generic attacks. An obvious
drawback of the wide and double pipe construction, however, is a degraded
efficiency as the compression function now has larger input and output while
keeping the hashing rate constant (the size of the compression function input
corresponding to a message block is fixed) since the chaining variable input is
increased. Also, adapting existing hash functions for the wide and double pipe
construction may be difficult since it might be the only reasonable way to increase
the internal state is to use multiple compression function calls in parallel for every
iteration. Recently, Yasuda [23] adopted a slightly modified variant of the double
pipe construction and proved its unforgeability beyond the birthday barrier.

3.4. 3C Construction
The 3C construction is the simplest variant of the MD construction that one can
obtain to improve its security against multi block collision attack [24]. The 3C hash
function processes the intermediate chaining values of the MD construction by
maintaining a second internal chaining variable containing a value produced by
repeatedly XORing the chaining variables while hashing a message; this variable is
then processed in an extra finalisation call to the compression function. There are
two chains in 3C construction: the accumulation chain and cascading chain. The
accumulation chain and the compression function have an accumulator XOR
function that works iteratively in the cascade chain, similarly to the MD
construction. The processing in the 3C divides the message into t-blocks with 0IV
representing the initial value. ia and ic are the chaining variables in the accumulation
chain and cascade chain. The compression functions are executed three times for
each block: the processing data block, padding block and forming the block Z in the
accumulation chain. The 3C is as secure as the MD construction.
The 3C hash is computed as:

 
0 0

1

1 1

1

,
, , 1 ,

, 2 , ,
() (,).

i i i

i i i t

t

c IV
c f c M i t
a c
a a c i t Z a
h M g Z c





 
  
 
    
 





 (4)
To increase the security level of 3C, 3C+ design has been proposed. In the 3C+ hash
construction, there is an additional chain called the final chain. The final chain is

294

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

added to the cascade and accumulation chains of the 3C hash construction. The final
compression function g at the last block takes the series of the result of the
accumulation and final chains after padding. Due to this enhancement, the security
level of 3C+ is higher than that of 3C and MD construction. 3C+ uses extra memory,
but makes finding multi-block collisions more difficult. However, the 3C and 3C+
structures are slower because the processors have to process data sequentially, where
every block takes its input from the previous block, causing sequential delay.
However, in [25], it was shown that both 3C and 3C+ are indeed susceptible for
multi-block attack. The designers of 3C claimed that while it is susceptible to the
multi-collision attack, it resists the long messages 2nd pre-image and herding attacks.
However, it was shown in [26] that 3C is also indeed susceptible to both the second
preimage and herding attacks.

3.5. The Prefix Free, Chop Constructions, NMAC and HMAC Constructions
Coron et al. proposed, prefix-free, NMAC, and HMAC constructions as secure
variants for the MD construction [28]. Later it is found that even though these
constructions are indifferentiable from RO, they are not collision resistant. The
prefix-free construction does not modify the Merkle-Damgård construction, instead
it modifies the padding algorithm to make sure that the message is prefix free. One
way to do this is by prepending or appending the length of the whole message to
every message block. PFMD construction uses a padding function g which ensures
that for any two messages ,M M with M M  , ()g M cannot be a prefix of ()g M  .
Let N is the length of the message M. Three variants of PFMD are:

Varient1: 1gPF

0

1

1 1

0 1

,
(, ,),

() () ,
(, ())

t i

t

y IV
M M M M b

g M N M M
y f y g M

 
  


 
 





(5)
Varient2: 2gPF

0

1

2 1 2 1

0 2

,
(, ,), 1

() ((0) (0) (0) (1)),

(, ())

t i

t t

y IV
M M M M b

g M M M M M

y f y g M


 
   


 
 





(6)

295

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Varient3: 3gPF

0

1

1

,
(, ,),

(, , ,)), 1, ,
t i

i i i

y IV
M M M M b
y f y M N i i t

 


  
  





(7)

The Chop construction is an n bit MD hash where r out of n bits of the hash value
are chopped, thus producing an (n−r)-bit hash value. The chop construction
basically removes a non-trivial number of bits from the final hash value. This, while
it solves the indifferentiability issue, unfortunately lowers the security bounds of the
hash function.
 In NMAC, an independent function g is applied to the output of the last
application of the compression function, while HMAC is a special case of the
NMAC in which an extra compression function call is introduced. The HMAC hash
construction hashes a message by applying the same f function twice, using the same
IV. The NMAC and HMAC are computed as:

NMAC:

0

1

,
(,), 1, ,
()

i i i

l t

y IV
y f y M i t
y g y



 
  
 



(8)

HMAC:

0

0 0

1

0 ,
(,)
(,), 1, ,

(0 ,)

b

i i i

b n
l t

M
y f IV M
y f y M i t

y f y IV







 
  
 



(9)

3.6. Linear Hash and Linear XOR Hash
The linear hash function is described by Bellare and Rogaway [28]. It accepts an
additional key input in every call of the iteration. Moreover, each key is distinct and
therefore LH requires number of key inputs that is a linear in the message size. It
employs distinct compression functions for each message block evaluation. In the
same paper another approach linear XOR (XLH) by Bellare and Rogaway [28] was
discussed. In contrast to the LH hash function it adds the same number of distinct
keys by XORing these with the chaining values resulting from each iteration of the
Merkle-Damgård style hash function. The first key is XORed with the initialization

296

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

vector IV and the final key is XORed with the final intermediate chaining value,
while the final hash result is left unmodified.

3.7. Enveloped Merkle-Damgård
The enveloped Merkle-Damgård [29] (EMD) was proposed by Bellare and
Ristenpart and resembles the design of HMAC [30]. EMD uses two fixed
initialization vectors 0IV and 1IV . The first vector is applied in a Merkle-Damgård
style as input to the first compression function. The second 0IV is provided as input
to the final compression function together with the chaining variable and the final
input message bits and this step is known as the “enveloping” step of the
construction. Bellare and Ristenpart showed that EMD preserves collision
resistance, indifferentiability from random oracle and indistinguishability from
Pseudorandom Function (PRF).

0 0

1

1 1

,
(,), 1, , 1
(,)

i i i

t t t

y IV
y f y M i t
y f y M IV








   
 



(10)

3.8. Merkle-Damgård with permutation
The Merkle-Damgård with permutation, due to Hirose et al. is a simple variant of
the original Merkle-Damgård design [31]. The only difference with the Merkle-
Damgård construction is that a permutation is applied before the processing of the
last message block. The permutation masks the internal Merkle-Damgård style
processing, similarly to the idea of EMD, and MDP is proven indifferentiable from a
random oracle when the underlying compression function is an ideal function.

Figure 9. Merkle-Damgård with permutation (MDP) construction

MDP construction is shown in the Figure 9. The authors proved that the collision
resistance of MDP follows trivially from the collision resistance of the Merkle-
Damgård construction as the former introduces minimal changes to the latter. The

297

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

authors also discussed the security of possible simple MAC constructions based on
MDP. However, although with such a simple modification, the authors succeeded in
proving a significant security gain, MDP seems to be able to thwart only the
extension attack, but not other Merkle-Damgård generic attacks. Also, recently it
was shown that MDP is neither pre-image nor second preimage resistant [31].

0 0

1

1

,
(,), 1, , 1
((),)

i i i

t t t

y IV
y f y M i t
y f y M





 
   
  



(11)

3.9. Zipper Hash Construction
Zipper hash construction was developed by Liskov [32] that makes an ideal hash
function from weak ideal compression function. Zipper hash structure was
developed as a strengthen structure against multicolission attack. Let

     : 0,1 0,1 0,1b n nf   and      : 0,1 0,1 0,1b n ng   becompression functions.
On input message M the following procedure is executed:

0

1
'
0
' '

1 1

,
(,), 1, ,

(,), 1, ,

i i i

t

i i t i

H IV
H f H M i t

H H

H g H M i t



  

 
  
 
  





(12)

3.10. RMX Construction
Randomized hashing was proposed by Halevi and Krawczyk [33]. It is somewhat
different from other typical variants of Merkle-Damgård, instead it is a generic fix
that can be applied on any construction. The RMX transform is in its essence a
message modification technique. It prepends a random string s to the message as a
first message block to be processed and then the same random string is XORed with
each message block. The idea is to randomize the message inputs by XORing a salt
input into the message.

RMX was proposed as a general transform that is particularly well-suited for
digital signature applications of hash functions, where a message M is first
randomised with a salt s to produce a randomized message M  . A digital signature
sign is then generated from M  . The original message M, the salt s and the signature
sign are then sent to the verifier. When the verifier receives these parameters, it first
randomises M with s to produce M and carries out standard signature verification

298

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

using M and sign. It aims the provision of security guarantees even when the
compression function is compromised with respect to collision security. It was
formally showed that just finding collisions on the compression function is not
sufficient in order to break the resultant signatures: instead, the attacker needs to
solve a much harder cryptanalytical problem, closer to finding second preimages.
The authors claim that randomized hashing will strengthen any hash function, even
the weakest ones.

0

1

(,)
(,), 1, ,

()
i i i

t

y f IV s
y f y M s i t
h M y



 
   
 



(13)

3.11. Dither Hash Construction
The dither hash function by Rivest is another variant of MD construction which
includes an additional counter-like input [34]. The design intension behind the dither
construction is to add an iteration-dependent input to the compression function in
order to defeat certain generic attacks. The additional input, called the “dithering”
input, to the compression function is formed by the consecutive elements of a fixed
sequence. This gives the attacker less control over the input of the compression
function, and makes the hash of a message block dependent on its position in the
whole message. In particular, its goal is to prevent attacks based on expandable
messages.

Figure 10.Dither construction

In the dither hash function, every call to the compression function f has the three
inputs: the dithering sequence 1, , tD D D  which depends on the iteration, the

299

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

chaining value, and the next message block from 1, , tM M M  and generates hash
as follows:

0

1

,
(, ,), 1, ,

()
i i i i

t

H IV
H f H M D i t
h M H



 
  
 



(14)

Figure 10 shows the Dither construction. The dither value can be selected in many
ways: one of the ways by following the suggestion of Kelsey and Schneier the dither
value can be selected as the index, iD i . This approach is called the dithering by
counter but this approach requires that compression function accept an arbitrary
large input. Another suggestion for selecting the dither value can be a sequence of
alternative 0’s and 1’s.

A pseudorandom sequence can also be used as a dither value. This provides
protection against message block repetition. In his proposal Rivest suggested the use
the infinite abelian square-free sequence. The abelian square-free sequence is an
aperiodic sequence over a finite alphabet with the property that no sub-word is
repeated. However, the method proposed for integrating the dither value into
concrete hash functions is inefficient, in the sense that it increases the number of
calls to the compression function. No indifferentiability result is known for the
Dither hash function.

3.12. HAIFA Construction
HAsh Iterative FrAmework (HAIFA) is a modified Merkle-Damgård construction
proposed by Dunkelman and Biham [35]. It preserved all the good properties of
Merkle-Damgård construction. HAIFA modifies Merkle-Damgård by introducing
extra input parameters to the compression function. These are: a salt value and the
number of bits hashed so far, which thwarts many of the generic attacks against the
plain Merkle-Damgård construction since the input to every compression function
call becomes unique and highly dependent on where the compression function call is
made through the hashing chain. The inclusion of a bit counter ensures the suffix
and prefix properties of the design and helps to prove it indifferentiable from a
random oracle In fact, HAIFA can be considered a dedicated-key hash function.
The idea of adding additional input parameters to the compression function has been
previously proposed by Rivest through a process called dithering. The HAIFA is
built by iterating a compression function:

         : 0,1 0,1 0,1 0,1 0,1n s nb mf    
(15)

The padding in HAIFA is very similar to the padding of Merkle-Damgård
construction.Moreover, the padding is done by appending a single '1' bit followed by
as many '0' bit as needed to complete an b-bit block after the message length and the
digest size are appended. Then input M subsequently divided into t blocks

300

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

1, , tM M M  , each of bit-length b. iH is found by computing 1(, , ,)i if H M bc s

where bc denotes the bit counter i.e. number of hashed bits so far and s denotes the
salt, and this operation is repeated until message blocks ends in the iteration part.
There does not exist any difference between iteration method of Merkle-Damgård
and HAIFA. Only difference is between the compression functions. The hash
function h can then be described as follows:

0

1

,
(, , ,), 1, ,

()
i i i

t

H IV
H f H M bc s i t
h M H



 
  
 



(16)

An obvious drawback of HAIFA is efficiency degradation since the compression
function now has more input parameters to process. Furthermore, HAIFA cannot be
(easily) used to patch existing Merkle-Damgård based hash functions because a
compression function designed for the Merkle-Damgård construction would not
naturally accommodate the extra HAIFA parameter inputs. The idea is incorporated
also in few SHA-3 candidates: BLAKE, ECHO and SHAvite-3.

3.13. BCM
The backwards chaining mode was proposed by Andreeva and Preneel. It uses three
keys 1 2 3, ,k k k and of fixed length (b + 2n) bits, where 2k b and 1 3k k n  where
n is the state and b is the block size. It XORs the key 1k and the most significant n
bits of block 2M with the fixed initial chaining variable IV. The message block 1M
together with the resulting value from the XOR computation form the input to the
first application of f. In the iteration the message block iM and the chaining variable

1iH  in-line are XORed with the most significant n bits of the next-in-line message
block 1iM  and form the inputs to the ith compression function f. The one but last
block 1tM  is interpreted differently than the rest of the message blocks. Here the
difference is that the least significant n bits of 1tM  are XORed with the key 1k , the
chaining variable 2tH  is XORed with the first significant bits of 2k and tM . The
final input to the last compression function is provided by the last message block

tM and the chaining variable 1tH  XORed with keys 2k and 3k , respectively.

3.14. Nested Iteration
NI is basically a keyed variant of the Merkle-Damgård construction making use of
two keys , {0,1}kk k  . Beside being unforgeable, Bellare and Ristenpart later
proved in [36] that NI is also indistinguishable from PRF, indifferentiable from RO,
and if strengthening was used, NI is also collision resistant.

301

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

0

1

1

,
(, ,), 1, , 1
(, ,)

i i i

t t t

H IV
H f H M k i t
H f H M k





 
   
 



(17)

3.15. Shoup Construction
In [37], Shoup proposed an elegant keyed construction. Shoup's hash function (SH)
derives from the linear XOR hash function and optimizes it in terms of the number
of keys. It uses logarithmic number of keys (instead of linear), following a specific
sequence. In addition to the key input of the compression function, the chaining
variables of every compression function iteration in SH is further XORed with a key
mask. A variant of the SH construction has been proposed by Bellare and Ristenpart
in [37] that makes the last compression function call a wrapping call (this last
application of the compression function is called an envelope). Thus, this variant is
called the Envelop Shop (ESH).

0

1

,

(,), 1, ,mask
i i i

H IV

H f H k M i t

 


   

(18)

3.16. Chaining Shift
The Chaining Shift (CS) construction was proposed by Maurer and Sjodin in [38] as
a more efficient solution than the NI construction. The CS construction was shown
to be unforgeable, indistinguishable from PRF, indifferentiable from RO, and the
strengthened variant of it (with strengthened padding) is collision resistant.

0 1

1

2 1

,
(,), 1, , 1
(,)

i i i

t t t

H IV
H f H M i t
H f IV H M








   
 



(19)

4. Conclusion
A cryptographic hash function plays a vital role in many security applications and
protocols such as digital signatures and authentication schemes. Among several
security requirements collision resistance is an important property of a cryptographic
hash function. The security of hash function depends on the collision resistance
property of the underlying compression functions. Merkle-Damgård construction
method failed to preserve this important security property. In recent years, it has

302

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

been shown that hash functions based on weak Merkle-Damgård construction are
vulnerable to different attacks. As a result researchers have given different
construction methods to design the hash functions such as Haifa, Dither and Tree.
This paper reviews different popular alternative construction methods to Merkle-
Damgård method and also discusses how these methods have strengthened the weak
MD method. The use of hash functions based on Merkle-Damgård construction in
different security products, services, algorithms and protocols makes them
vulnerable to different cryptanalytic attacks.

References
[1] A.J. Menezes, P.C. vanOorschot, and S.A. Vanstone, “Handbook of

applied cryptography,” 1997.

[2] W. Diffie and M. Hellman, 1976, “New Directions in Cryptography,”
IEEE Transaction on Information Theory, 1976, vol. 22, pp. 644-654.

[3] R. C. Merkle, “One Way Hash Functions and DES,” Crypto’89, 1989,
LNCS, vol. 435, pp. 428-446.

[4] I. Damgård, “A Design Principle for Hash Functions,” Crypto’89, 1989,
LNCS, vol. 435, pp. 416-427.

[5] R. Rivest, “The MD4 Message Digest Algorithm,” Request for Comments
(RFC) 1320, Internet Engineering Task Force, 1992.
http://www.rfceditor.org/rfc/pdfrfc/rfc1320.txt.pdf.

[6] R. Rivest, “The MD5 Message Digest Algorithm,” Request for Comments
(RFC) 1321, Internet Engineering Task Force, 1992.

[7] NIST, “Secure Hash Standard (SHS),” Federal Information Processing
Standards 180. 1993.

[8] NIST, “Secure Hash Standard (SHS),” Federal Information Processing
Standards 180-1, 1995.

[9] B. Preneel, A. Bosselaers and H. Dobbertin, “RIPEMD-160: A
Strengthened Version of RIPEMD,” FSE’96, 1996, LNCS, vol. 1039,
pp. 71–82.

[10] A. Joux, “Multicollisions in Iterated Hash Functions: Application to
Cascaded Constructions,” Crypto’04, 2004, LNCS, vol. 3152, pp. 306-316.

[11] J. Kelsey and B. Schneier, “Second Preimages on n-bit Hash Functions for
Much Less than 2n work,” Eurocrypt’05, 2005, LNCS, vol. 3494,
pp. 474-490.

[12] J. Kelsey and T. Kohno, “Herding Hash Functions and the Nostradamus
Attack,” Eurocrypt’06, 2006, LNCS, vol. 4004, pp. 183–200.

303

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[13] X. Lai and J. Massey, “Hash functions based on block ciphers,”
Eurocrypt’92, 1992, vol. 92, pp. 55-70.

[14] P. Sarkar and P. Scellenberg, “A Parallel Algorithm for Extending
Cryptographic Hash Functions,” Indocrypt’01, 2001, LNCS, vol. 2247,
pp. 40-49.

[15] J. Carter and M. Wegman, “Universal Classes of Hash Functions,” Journal
of computer and system sciences, 1979, vol. 18, pp. 143-154.

[16] M. Naor and M. Yung, “Universal One-way Hash Functions and their
Cryptographic Applications,” Proceedings of the twenty-first annual ACM
symposium on Theory of computing, 1989, pp. 33-43.

[17] M. Bellare and P. Rogaway, “Collision-resistant Hashing: Towards
Making UOWHF's Practical,” Crypto’97, 1997, LNCS, vol. 1294,
pp. 470-484.

[18] M. Bellare and D. Micciancio, “A New Paradigm for Collision-free
Hashing: Incrementality at Reduced Cost,” Eurocrypt’97, 1997, LNCS,
vol. 1233, pp. 163-192.

[19] G. Bertoni, J. Daemen, M. Peeters and G. Van Assche, “Sponge
Functions,” Ecrypt Hash Workshop, 2007, vol. 2007.

[20] Keccak Design Team, “The Keccak Sponge Function Family,”
http://keccak.noekeon.org/.

[21] J. Guo, T. Peyrin and A. Poschmann, “The PHOTON Family of
Lightweight Hash Functions,”Crypto’11, 2011, LNCS, vol. 6841,
pp. 222-239.

[22] S. Lucks, “A Failure-Friendly Design Principle for Hash Functions,”
Asiacrypt’05, 2005, LNCS, vol. 3788, pp. 474-494.

[23] K. Yasuda, “A Double-Piped Mode of Operation for MACs, PRFs and
PROs: Security beyond the Birthday Barrier,” Eurocrypt '09, 2009, LNCS,
vol. 5479, pp. 242-259.

[24] P. Gauravaram, W. Millan, E. Dawson, and K. Viswanathan, “Constructing
Secure Hash Functions by Enhancing Merkle-Damgård Construction,”
Information Security and Privacy, 2006, LNCS, vol. 4058, pp. 407-420.

[25] D. Joscak and J. Tuma, “Multi-block Collisions in Hash Functions Based
on 3C and 3C+ Enhancements of the Merkle- Damgård Construction,”
ICISC’06, 2006, LNCS, vol. 4296, pp. 257-266.

[26] P. Gauravaram and J. Kelsey, “Linear-XOR and Additive Checksums Dont
Protect Damgård-Merkle Hashes from Generic Attacks,” CT-RSA’08,
2008, LNCS, vol. 4964, pp. 36-51.

304

JIOS, VOL. 41, NO. 2 (2017), PP. 283-304

TIWARI MERKLE-DAMGÅRD CONSTRUCTION METHOD...

[27] J. Coron,Y. Dodis, C. Malinaud and P. Puniya, “Merkle-Damgård
Revisited: How to Construct a Hash Function,” Crypto’05, 2005, LNCS,
vol. 3621, pp. 430-448.

[28] M. Bellare and P. Rogaway, “Collision-resistant Hashing: Towards
Making UOWHF's Practical,” Crypto’97, 1997, LNCS, vol. 1294,
pp. 470-484.

[29] M. Bellare and T. Ristenpart, “Multi-Property-Preserving Hash Domain
Extension and the EMD Transform,” Asiacrypt’06, 2006, LNCS,
vol. 4284, pp. 299-314.

[30] H. Krawczyk, M. Bellare and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” RFC 2104, Feb. 1997.

[31] S. Hirose, J. H. Park and A. Yun, “A Simple Variant of the Merkle-
Damgård Scheme with a Permutation,” Asiacrypt’08, 2008, LNCS, vol.
4833, pp. 113-129.

[32] M. Liskov, “Constructing an Ideal Hash Function from Weak Ideal
Compression Functions,” Selected Areas in Cryptography, 2006, LNCS,
vol. 4356, pp. 358-375.

[33] S. Halevi and H. Krawczyk, “Strengthening Digital Signatures via
Randomized Hashing,” Crypto’06, 2006, LNCS, vol. 4117, pp. 41-59.

[34] R. Rivest, “Abelian Square-free Dithering for Iterated Hash Functions”,
Ecrypt Hash Function Workshop, 2005, vol.21.

[35] E. Biham and O. Dunkelman, “A Framework for Iterative Hash Functions-
HAIFA,” Cryptology ePrint Archive, Report 2007/278, 2007.

[36] M. Bellare and T. Ristenpart, “Hash Functions in the Dedicated-Key
Setting: Design Choices and MPP Transforms,” ICALP '07, 2007, LNCS,
vol. 4596, pp. 399-410.

[37] V. Shoup, “A Composition Theorem for Universal One-Way Hash
Functions,” Eurocrypt’00, 2000, LNCS, vol. 1807, pp. 445-452.

[38] U. Maurer and J. Sjodin, “Single-key AIL-MACs from any FIL-MAC,”
ICALP’05, 2005, LNCS, vol. 3580, pp. 472-484.

