
105

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JIOS, VOL. 41, NO. 1 (2017) SUBMITTED 12/16; ACCEPTED 02/17

Detecting Source Code Plagiarism on .NET Programming
Languages using Low-level Representation and Adaptive

Local Alignment

Faqih Salban Rabbani faqih.salban@gmail.com
Faculty of Information Technology
Maranatha Christian University, Indonesia

Oscar Karnalim oscar.karnalim@it.maranatha.edu
Faculty of Information Technology
Maranatha Christian University, Indonesia

Abstract
Even though there are various source code plagiarism detection approaches, only a few
works which are focused on low-level representation for deducting similarity. Most of
them are only focused on lexical token sequence extracted from source code. In our
point of view, low-level representation is more beneficial than lexical token since its
form is more compact than the source code itself. It only considers semantic-preserving
instructions and ignores many source code delimiter tokens. This paper proposes a
source code plagiarism detection which rely on low-level representation. For a case
study, we focus our work on .NET programming languages with Common Intermediate
Language as its low-level representation. In addition, we also incorporate Adaptive
Local Alignment for detecting similarity. According to Lim et al, this algorithm
outperforms code similarity state-of-the-art algorithm (i.e. Greedy String Tiling) in
term of effectiveness. According to our evaluation which involves various plagiarism
attacks, our approach is more effective and efficient when compared with standard
lexical-token approach.
Keywords: source code plagiarism detection, source code similarity, low-level
language, .NET programming language, adaptive local alignment

1. Introduction
Source code plagiarism is a major issue which emerges in Programming course [1].
Students can easily obtain their colleague’s work, modify it, and then submit it as their
work in no time. Even though plagiarism can be conducted easily, detecting this illegal
behavior is not a trivial task. Plagiarism can be conducted by every student, even the
smartest one who knows programming concept well [2, 3]. Thus, plagiarism attacks
incorporated on student assignments may be varied. It may be the simplest one such
as verbatim copy (conducted by weak student) or the most complicated one which

UDC 004.415.3
Original Scientific Paper

106

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

RABBANI AND KARNALIM DETECTING SOURCE CODE PLAGIARISM ON .NET...

incorporates various logic and structure changes (conducted by smart students).
Detecting these plagiarism variants may require considerable effort and time since
lecturer should enlist all possible plagiarism attacks and check each possible source
code pair. However, since the plagiarists still should be penalized, automatic source
code plagiarism detection is developed to extenuate lecturer’s work. Lecturers are not
required to check each source code manually. Instead, they can feed all student source
codes into the system and take its result as a consideration for detecting plagiarism.

In general, there are three major approaches for detecting source code plagiarism:
text-based, attribute-based, and structure-based approach [4, 5]. Text-based approach
determines similarity by considering source code as a raw text; attribute-based
approach determines similarity based on source code attributes (e.g. number of
operator and operand); and structure-based approach determines similarity based on
source code structure. Among these approaches, structure-based approach is the most
popular one due to its effectiveness [6]. This approach is quite sensitive to instruction
order which is important on determining source code plagiarism.

This paper proposes a structure-based source code plagiarism detection which is
focused on .NET programming language. All .NET source codes are converted into
.NET Common Intermediate Language (CIL) and their similarity is determined based
on Adaptive Local Alignment (ALA) algorithm. .NET CIL is a compiled form of all
.NET source codes which is generated after compilation phase. This form is more
compact than the source code itself since it only contains semantic-preserving
information. On the other hand, ALA is incorporated as our similarity algorithm since
it outperforms Greedy String Tiling (GST) algorithm in terms of sensitivity and
specificity [7]. GST algorithm is a state-of-the-art algorithm which had been
frequently incorporated on various structure-based plagiarism detection approaches
[8, 9, 10, 3]. To our knowledge, there are no related works which combine both .NET
CIL and adaptive local alignment for detecting source code plagiarism. Beside
proposing a source code plagiarism detection approach, we also evaluate the impact
of our approach when compared with standard token-based approach in terms of
effectiveness and efficiency. This evaluation is conducted based on various plagiarism
attacks from Karnalim’s dataset [3] and evaluated based on both single and multiple
attack schemas.

2. Related Works
Plagiarism is an act for reusing other people’s work without explicitly acknowledging
the author beforehand [9, 11, 12]. In Computer Programming education, it becomes
more serious problem since most source codes are written electronically and most
students understand a lot about copy-and-paste technique [1]. Students can easily
replicate and plagiarize other student’s work in a no time. In addition, even though
plagiarism can be detected manually, it is not recommended to be conducted due to
its considerable effort. Programming assignments are usually given every week and
each of them consists of at least a dozens of source codes [9]. According on these
reasons, automatic plagiarism detection is highly desirable to be developed on this
domain.

107

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Based on Sraka & Kaucic’s work [2], there are various reasons for conducting
source code plagiarism. The most common reason is the incapability for solving the
given task by themselves. They plagiarize other people’s work since they are weak in
programming and have low computational thinking. However, this finding does not
mean that smart students are never involved on this illegal behavior. Some smart
students may plagiarize based on two reasons: 1) They do not have sufficient time to
do it; and 2) They are too lazy to do it by themselves. Therefore, detecting source code
plagiarism is not a trivial task. Plagiarism attacks may vary from the verbatim copy
into the most complicated one such as logic modification and code encapsulation.
Most smart students incorporate high-level plagiarism attack since they understand a
lot about program structure and semantic.

In general, there are three major approaches for detecting source code plagiarism.
These approaches are text-based, attribute-based, and structure-based approach [4, 5].
Text-based approach is the only approach which is programming-independent since
it treats source code as raw text. The work of Heintze [13], Brixtel et al [14], Hoad &
Zobel [15], and Cosma & Joy [16] are several works which fall into this category.
Heintze [13] incorporates fingerprinting method for detecting plagiarism. Each
involved source code is translated into a compact collection of integers (i.e.
fingerprint) and two source codes are recognized as plagiarized to each other iff both
fingerprints are similar. Brixtel et al [14] incorporates multiple level plagiarism
recognition which vary from character to corpus level. These multiple recognitions
are incorporated to keep its sensitivity toward various plagiarism attacks. Hoad &
Zobel [15] and Cosma & Joy [16] incorporate information retrieval approach for
detecting plagiarism. Hoad & Zobel [15] incorporates ranking approach which is
based on information retrieval concept [17]. The most similar source code is expected
to have the highest score when its plagiarized source code is given as a query. On the
other hand, Cosma & Joy [16] incorporates Latent Semantic Analysis (LSA) to find
source code similarity. Source codes are treated as natural language documents and
fed into LSA to deduct their similarity. Nevertheless, most text-based approaches
ignore programming language structure and semantic which are important for
detecting high-level plagiarism attacks.

Attribute-based approach considers two source codes are plagiarized to each other
iff both source codes yield similar key properties. Some earlier work with this
approach are conducted by Donaldson et al [18], Halsthead [19], and Halsthead [20].
Based on their work, four key properties are incorporated for measuring similarity.
These properties are the number of unique operators, the number of unique operands,
the total number of operators, and the total number of operands. However, since these
properties do not adequately represent the source code itself, several further works
incorporate additional properties such as the number of variables, methods, loops,
conditional statements, and method invocations [6]. Several works are also focused
on programmer style properties such as the position of the brackets and comments
[21, 22]. When incorporating programmer style, plagiarism is detected iff programmer
style properties on the current submission are extremely different with previously
submitted assignments.

108

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

RABBANI AND KARNALIM DETECTING SOURCE CODE PLAGIARISM ON .NET...

In order to compare the similarity between given key properties, several attribute-
based approaches do not rely on exact-match similarity measurement. Instead, they
incorporate more sophisticated mechanisms such as machine learning [21, 22, 23, 24,
25] and information retrieval approach [26]. Bandara & Wijayarathna [21] combines
three classification algorithm to detect plagiarism: Naïve Bayes, K-Nearest Neighbor
(KNN), and AdaBoost Meta-learning algorithm. Source code key properties are fed
into combined algorithm for detecting plagiarism and a source code is considered as
a plagiarized code iff its classification result yields different author. For example, a
source code submitted by A is considered as a plagiarized code since it is recognized
as B’s source code based on classification result. Other classification approaches [22,
23, 24] also incorporate similar plagiarism detection mechanism with Bandara &
Wijayarathna [21]. Yet, they differ on incorporated classification algorithm and
involved key properties. Lange & Mancoridis [22] incorporates KNN and genetic
algorithm; Ohno & Murao [23] incorporates coding-style statistics; and Engels et al
[24] incorporates feature-based neural networks. Based on the fact that classification
requires a considerable amount of training dataset, Jadalla & Elnagar [25] and
Ramirez-de-la-Cruz [26] incorporates other mechanisms instead of classification.
Jadalla & Elnagar incorporates clustering approach wherein plagiarized source codes
are clustered as a single cluster based on their respective key properties. Whereas,
Ramirez-de-la-Cruz incorporates cosine similarity from Information Retrieval
approach to measure source code similarity based on high-level features.

Even though attribute-based approach yields more accurate result than text-based
approach, it is important to note that two different source codes may yield similar key
properties. For example, source code of bubble and insertion sort may yield similar
number of loops (i.e. two loops) even though both of them are different in terms of
how to solve the problem. In addition, as student computational thinking is developed
during the course, their programming style may be changed significantly over time.
Thus, programming-style-based properties may not reliable enough since it may cause
a tremendous number of true positives. Some students may be detected as plagiarists
since they change their programming style on their own.

Structure-based approach is the most sophisticated approach among three major
approaches for detecting source code plagiarism [6]. It is relatively robust to various
plagiarism attacks since this approach is typically focused on the ordinal structure of
the given source code. This finding is also strengthened by the fact that structure-
based approach is frequently used on publicly available plagiarism detection systems
such as JPlag [8], MOSS [27], Sim [28], Plaque [29], YAP [30], Plaggie [31], FPDS
[32], and Marble [33]. In general, most structure-based approaches detect plagiarism
by converting source codes into lexical token sequences and compare them based on
a particular similarity algorithm. This pattern is typically popular since it is frequently
incorporated on most publicly available plagiarism detection systems. It is also
incorporated on many related research works about source code plagiarism detection
such as Lim et al [34], Shah et al [35], Kustanto & Liem [9], Ji et al [36], Djuric &
Gasevic [6], and Pawelczak [37]. Nevertheless, not all structure-based approaches rely
on standard lexical token sequence. Several works incorporate unique yet effective
mechanism to exploit source code structure further.

109

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Several works incorporate additional preprocessing to generate more declarative
lexical token sequence [38, 39, 40]. Chilowics et al [38] incorporates function
factorization when generating lexical token sequence. All function calls are replaced
with their respective function contents before compared. In such manner, their
approach is resistant from encapsulation-based attacks such as method inlining and
outlining. Ellis & Anderson [39] replaces lexical token sequence with inorder form of
generated parse tree. Each source code is converted into a parse tree and its contents
are translated into token sequence by applying inorder traversal. Chilowicz et al [40]
also incorporates parse-tree approach. Yet, their work generates token sequence based
on fingerprinting mechanism instead of inorder traversal.

Instead of incorporating lexical token sequence, several works incorporate low-
level codes as a resource for detecting plagiarism. Source codes are translated into
their respective low-level form and compared using a particular similarity algorithm.
There are several reasons why low-level codes is more effective than standard lexical
token sequence for detecting source code plagiarism [3]: 1) Low-level codes only
contain semantic-preserving instructions since these codes had been optimized at
compilation phase. In other words, similarity is purely determined based on semantic
structure; 2) Most syntactic sugars are translated into their natural semantic. For
example, for and while traversals are translated into similar goto sequences. This
mechanism may prevent syntactic-sugar-based plagiarism attacks automatically; 3)
All comments are completely removed so that plagiarism attacks which relies on
comment modification are unavailing; and 4) Local variable identifiers are technically
renamed based on their respective order. This mechanism may prevent all identifier-
renaming plagiarism attacks.

In general, there are four works which incorporates low-level code for detecting
source code plagiarism: the work of Ji et al [36], Karnalim [3], Juričić [41], and Juričić
et al [10]. The first two works are focused on Java programming language whereas
the other two are focused on .NET programming language. Ji et al approach [36] is
quite similar with standard lexical-token-sequence approach except that it replaces
token sequence with bytecode sequence (bytecode is a low-level representation of
Java programming language). Their work is extended by Karnalim [3] by
incorporating several additional mechanisms such as method inlining, recursive
handling, instruction generalization, and instruction interpretation. On the other hand,
Juričić and Juričić et al approach [41, 10] detect source code similarity based on .NET
Common Intermediate Language (CIL) which is the low-level representation of most
.NET programming languages. Two source codes are considered as plagiarized to
each other iff their CIL sequences are similar. The only difference between Juričić’s
and Juričić et al’s work is their incorporated similarity algorithm. Juričić incorporates
Levensthein distance whereas Juričić et al incorporates Greedy String Tiling (GST)
algorithm.

In this paper, we propose two major contributions which are: 1) we extend Juričić
et al approach by replacing GST with Adaptive Local Alignment. According to Lim
et al [34], this algorithm outperforms GST in terms of sensitivity and specificity; and
2) we evaluate the effectiveness and efficiency of our approach for handling various
plagiarism attacks in more detailed manner. We evaluate its impact per plagiarism

110

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

RABBANI AND KARNALIM DETECTING SOURCE CODE PLAGIARISM ON .NET...

attack where each plagiarism case only consists of one plagiarism attack. As in
previous work about CIL-based plagiarism detection [10, 41], all evaluations are
conducted based on generic dataset where each case may contain one or more
plagiarism attacks. They do not evaluate its impact when handling various plagiarism
attacks separately (i.e. each case only consists of one plagiarism attack). In addition,
plagiarism attacks incorporated in previous works are not explicitly enlisted in terms
of its attack type and occurrence frequency per case. Thus, we cannot know which
plagiarism attacks are best handled by CIL approach.

3. Methodology
When comparing source codes for detecting plagiarism, our approach adapts pairwise
approach where each source code is paired with all other source codes to measure its
similarity. In general, similarity value for each source code pair is measured by
following flowchart given on Figure 1. It is extended from Juričić et al’s work [10] by
incorporating different similarity algorithm and a particular mechanism to handle
uncompilable source codes. As seen on the given flowchart, our source code similarity
measurement only works on .NET source codes (e.g. C# and Visual Basic) since we
rely on .NET CIL sequence. At the first phase, both source codes will be compiled
into their respective .NET CIL executable file. Afterwards, these executable files are
fed into .NET CIL disassembler to generate readable text that consist of .NET CIL
information. Then, CIL sequences from both readable texts are filtered and their
similarity is measured using Adaptive Local Alignment. Nevertheless, since not all
source codes on student assignments are compilable, our approach also incorporates
lexical tokens for handling the uncompilable ones. When at least one of the given
source code is uncompilable, source code similarity will be measured based on
standard lexical token sequence. In our work, standard lexical token sequence is
generated by ANTLR [42] and grammar listed on ANTLR GitHub repository [43].

Figure 1. Flowchart for Determining Source Code Similarity

111

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

3.1. Compilation Phase and .NET CIL Disassembler
Compilation phase is conducted programmatically so that lecturer is not required to
open each student source code on IDE and compile them manually. Lecturer is only
required to provide student source codes and let our proposed approach to do the rest.
After compiled, each source code is converted into .NET CIL executable form. Even
though this form is our target representation for detecting plagiarism, extracting .NET
CIL sequence from its executable form directly requires a considerable effort since it
is represented as file binaries. Thus, ILDASM [44] is incorporated as a parser to read
and extract .NET CIL sequence. ILDASM is a disassembler tool included in Visual
Studio or Framework SDK which is able to read .NET CIL information of given
executable file and store it on a readable text [41].
 By incorporating ILDASM, each executable file is converted into readable text
which contains .NET CIL information. The example of readable text generated by
ILDASM can be seen on Figure 2. It is generated based on Hello World program
written in C#. As seen on Figure 2, Hello World program generates two methods when
compiled into CIL. The first one represents the original main method whereas the
latter one represents technical method. Technical method is an auto-generated method
which is required for executing CIL-based program.

Figure 2. Readable Text Generated by ILDASM for Hello World Program

112

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

RABBANI AND KARNALIM DETECTING SOURCE CODE PLAGIARISM ON .NET...

3.2. .NET CIL Preprocessing
As seen in Figure 2, readable text generated by ILDASM contains various information
about the given source code. However, since our approach only relies on CIL
sequence, all unrelated information is discarded. We only extract CIL lines which are
usually started with IL as its prefix and merges them as a big chunk of CIL sequence.
In other words, all instructions from various methods and classes are merged into one
CIL sequence. We do not apply semantic-preserving preprocessing which is suggested
by Ji et al [36] and Karnalim [3] since it may require additional processing time. In
addition, most semantic-preserving preprocessing phases rely on instruction-specific
features and file structure. These aspects may be changed or updated on the further
release of .NET CIL.
 Each CIL line generally consists of three components which are instruction
position, mnemonic, and attributes. Instruction position represent CIL position on its
method container. It typically starts with 0 for each method and each instruction may
take more than 1 instruction slot. As seen in technical method on Figure 2, IL
instruction starts with 0 and instruction IL_0001 takes 5 instruction slots since its
successor starts from 6 (IL_0006). IL_0001 represents method call so that it takes
more slots to store its method information and parameter invocation. Nevertheless,
not all instruction position is marked with non-negative integers. Instead, several
instructions are marked with alphabet to represent sub-instruction. As seen in main
method on Figure 2, several instructions after IL_0005 are marked with alphabet
(IL_000a, IL_000b, IL_000c, and IL_000d).
 Mnemonic represents instruction semantic where each mnemonic may require
zero or more attributes to conduct its functionality. These attributes are typically
placed after each mnemonic on CIL line. For example, ldc on IL_0003 from main
method has two attributes which are .i4 and .3. ldc represents pushing a value into
runtime stack; .i4 represents 32-bit integer as its pushed value type; and .3 represents
the value of pushed 32-bit integer is 3. Nevertheless, it is important to note that not all
instruction attributes start with dot mark. As seen in IL_0005 from main method, it
incorporates string as its attributes. The complete list of CIL instructions and their
respective semantic can be seen on [45].
 After CIL lines are extracted, we filter each CIL line by only considering its
mnemonic and return it as our preprocessed result. For example, if readable text on
Figure 2 is fed into our preprocessing phase, its result will be nop, ldc, stloc, ldc, stloc,
ldstr, ldloc, ldoloc, mul, box, call, nop, ret, ldarg, call, nop, and ret. Instruction
position and attributes are excluded based on following reasons: 1) Instruction order
has been implicitly incorporated on generated CIL sequence as sequence order.
Therefore, instruction position is unnecessary; 2) Instruction attributes are over-
technical and incorporating them on CIL sequence may yield over-sensitive
plagiarism detection; and 3) Excluding instruction attributes automatically generalizes
data type usage so that it can handle data-type-based plagiarism attacks.

113

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

3.3. Similarity Measurement using Adaptive Local Alignment
The similarity between two CIL sequences are measured using Adaptive Local
Alignment proposed by Lim et al [34]. This algorithm is extended from Local
Alignment [7] by incorporating token frequencies for weighting each token. Each
token is assigned with its inverse frequency so that token with low frequency is
assigned with high score and token with high frequency is assigned with low score.
In such manner, when two token sequences share rare tokens, its similarity score will
be increased significantly. We believe that this weighting mechanism is inspired from
real-case plagiarism detection. If two source codes incorporate similar “unique”
pattern, then their chance to be detected as a plagiarism case will be higher.

Lim et al only incorporates keywords and operators on their token sequence. From
our perspective, we believe that identifiers are excluded from their approach since
identifier renaming is frequently popular among plagiarists and incorporating them
for detecting plagiarism may yield over-sensitive result. However, according to the
fact that all identifiers, at some extent, are renamed on CIL [45], identifier renaming
is unavailing when handled with our approach. Thus, our work incorporates identifiers
in addition to keywords and operators on token sequence for detecting plagiarism. We
believe that identifiers may strengthen the sensitivity of our approach for detecting
plagiarism.
 All setting parameters required for Adaptive Local Alignment are adapted from
Lim et al’s work [34]. Matched token is scored by its respective inverse frequency;
mismatched token and gap are scored by multiplying its respective inverse frequency
with -1; α is assigned as 0.6; and β is assigned as 0.4. In addition, to normalize resulted
similarity value, we incorporate minimum matching similarity which detail can be
seen in (1). sim(A,B) represents normalized similarity value where A and B are
compared CIL sequences. It is calculated by dividing total weight of shared
subsequence (i.e. sim_weight(A,B)) with minimum size from both CIL sequences (i.e.
min(weight(A),weight(B))). weight(A) and weight(B) represent the total weight of A
and B respectively.

sim(A,B) = (1)

4. Evaluation

4.1. Evaluating Our Approach toward Various Plagiarism Attacks Separately
This evaluation is conducted to determine the strengths and weaknesses about our CIL
approach when handling various plagiarism attacks separately. This evaluation is
conducted based on Karnalim’s dataset [3] which is rewritten in C#. Karnalim’s
dataset is selected for our evaluation since it enlists possible plagiarism attacks in
general. These plagiarism attacks are generated based on lecturer assistants who have
a lot of experience for handling plagiarism attempts. The detail of how these
plagiarism attacks are collected can be read in [3]. However, instead of taking the

114

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

RABBANI AND KARNALIM DETECTING SOURCE CODE PLAGIARISM ON .NET...

whole dataset, we only take plagiarism cases which level is 3 or higher based on Faidhi
& Robinson specification [46]. Level 0 to 2.5 are completely excluded since we intend
to measure the impact of our approach only on plagiarism attacks that affect low-level
form (CIL representation). Level 0 to 2.5 attacks do not affect CIL since their attacks
are automatically removed and handled by the compiler when generating CIL. In
short, our evaluation dataset consists of 42 plagiarism cases from Karnalim’s dataset
where each plagiarism case is enlisted as level 3 or higher plagiarism attack based on
Faidhi & Robinson specification [46].

In this evaluation, standard lexical-token approach is incorporated as a baseline
for measuring the improvement of our approach. It is selected as our baseline due to
its popularity on various plagiarism detection works. However, to make it comparable
with our CIL approach, we incorporate similar measurement algorithm (i.e. Adaptive
Local Alignment) as its similarity measurement. For convenience, our CIL approach
will be referred as CILS whereas standard token-based approach will be referred as
STDS at the rest of this paper.
 Based on the fact that each plagiarism case on Karnalim’s dataset are considered
as true-positive plagiarism, the effectiveness of our approach is increased
proportionally to its average similarity result. The closer its average similarity result
to 100%, the more effective that approach is. In other words, we can compare CILS
and STDS approach effectiveness simply based on their average similarity. An
approach with higher average similarity is considered to be more effective for
handling plagiarism attacks. Similarity result for each plagiarism case using CILS and
STDS can be seen on Figure 3. Horizontal axis represents plagiarism cases whereas
vertical axis represents similarity value. From 42 cases on our dataset, CILS
outperforms STDS on 32 cases. It only loses on 10 cases which are 3008, 5004, 5008,
5009, 5012, 5016, 5017, 6003, 6010, and 6011. When discovered further, CILS
similarity on these cases is extremely lower due to its small token size. CILS tends to
have extremely smaller size of tokens than STDS since it only considers semantic-
preserving instructions. Consequently, when normalized using (1), even one
mismatched token or gap may yield significant similarity drop. Mismatched token and
gap are two terminologies which are defined on Adaptive Local Alignment.
Mismatched token represents token subsequence which are not shared on both
sequences and gap represents the distance required to generate the matched one.

To strengthen our finding about CILS loss, the detail of mismatched tokens and
gaps toward these cases are given on Figure 4. However, to simplify the detail, we
merge the number of mismatched tokens and gaps as penalties. According to Lim et
al [34], the number of penalties is calculated based on (2) where gap’s impact is
doubled. As seen in Figure 4, the number of CILS penalties is quite similar to the
number of STDS penalties. It only differs significantly on 5008, 5016, 5017, 6003,
and 6011. Yet, out of 5 significant cases, 4 of them yield lower number of penalties
on CILS. It only yields higher penalties on 5017 since involved plagiarism attack on
this case is over-technical. 5017 replaces standard loop for traversing a collection with
for-each. Even though standard loop and for-each is quite similar in term of lexical
source code structure, it yields significant difference when converted into CIL. for-

115

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

each is intended to handle traversal for all collection so that its CIL representation is
more complex than the standard loop itself.

Figure 3. Similarity Result based on Karnalim’s Dataset

Figure 4. The number of CILS and STDS Penalties on Plagiarism Cases where CILS Similarity is lower
than STDS

penalty(A,B) =mismatch(A,B) + 2*gap(A,B) (2)

In general, CILS outperforms STDS based on following facts: 1) CILS
outperforms STDS in most cases (32 of 42 cases); 2) Most CILS losses are caused by
its limited token size. When compared in term of penalty, CILS are still more
beneficial than STDS; 3) In term of average similarity, CILS outperforms STDS by
1.408% difference. CILS yields 93.893% average similarity whereas STDS yields
92.485%.

116

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

RABBANI AND KARNALIM DETECTING SOURCE CODE PLAGIARISM ON .NET...

Efficiency between CILS and STDS is measured based on the number of involved
processes for executing the given approach. We incorporate approximate estimated
time instead of the real one based on following reasons: 1) Real execution time is
greatly affected by hardware and operating system dependency; 2) Using real
execution time for comparison purpose only works well iff running programs take a
considerable amount of time; and 3) Each source code on our dataset is small in size.
Thus, it may yield faulty result when measured using real execution time since running
time for each source code is considerably fast. It will be greatly affected by hardware
and operating system dependency.

Approximate estimated time for CILS and STDS can be defined as (3) and (4)
respectively where A and B are token size for each given sequence. Each phase on
Figure 1 except similarity measurement takes linear complexity for both sequences.
These phases take A+B processes each. On the contrary, similarity measurement itself
takes A*B processes since its algorithm is based on matrix-like representation.
TCILS(A,B) is calculated based on 4 steps on CILS which are: compilation phase, .NET
CIL disassembler, .NET CIL preprocessing, and similarity measurement. We assume
that all source codes are compilable to generate worst case for its estimated time. A0
and B0 are the number of token in source code before compiled. Both of them are
required to measure the number of processes on compilation phase since source code
compilation takes linear complexity based on the given source code. On the other
hand, TSTDS(A,B) is calculated based 2 steps on STDS: generating token sequence and
similarity measurement. Generating token sequence takes linear number of processes
whereas similarity measurement takes A*B processes.

TCILS(A,B) = (A0+B0) + 2*(A+B) + (A*B) (3)

TSTDS(A,B) = (A+B) + (A*B) (4)

Approximate estimated time for each plagiarism case using CILS and STDS can
be seen on Figure 5. Horizontal axis represents plagiarism cases whereas vertical axis
represents approximate estimated time based on TCILS and TSTDS. As seen in Figure 5,
CILS involves smaller number of processes than STDS in all cases. It reduces about
94.552% number of processes when compared with STDS. This significant difference
is natural since CILS involves lower token size than STDS. Average token size of
CILS is 80.691% lower than STDS. Thus, even though approximate estimated time
equation for CILS takes higher complexity than STDS, CILS is still more efficient
than STDS due to its lower token size.

4.2. Evaluating Our Approach toward Multiple Plagiarism Attacks
This evaluation is conducted to measure the impact of our proposed approach for
handling real-case plagiarisms which typically incorporate various plagiarism attacks
at once. In order to do that, we ask three respondents to plagiarize three C# source
codes with any possible plagiarism attacks (3 respondents * 3 source codes = 9
plagiarism cases). C# source codes utilized in this evaluation are UVa750, UVa10003,
and UVa11450 which are taken from Competitive Programming 3 book [47].

117

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

However, since these source codes are originally written in Java, they are rewritten to
C# by the first author. In addition, to keep our dataset consist of various plagiarism
attacks, we limit our respondents to lecturer assistants. Lecturer assistants should have
a lot of experience for handling plagiarism attempts so that they may incorporate
various plagiarism attacks at once.

Figure 5. Approximate Estimated Time based on Karnalim’s Dataset

 Similarity result for each plagiarism case using CILS and STDS can be seen on
Figure 6. Horizontal axis represents similarity value and vertical axis represents
plagiarism case conducted by our respondents. In general, CILS characteristics on
multiple plagiarism attacks is similar with its characteristics when handling plagiarism
attacks separately. CILS similarity may significantly drop even though it only suffers
small mismatches and gaps. However, even though CILS similarity is lower than
STDS in many cases, its deficiency is still small since its average similarity is only
1.54% lower than STDS.
 When perceived from the number of penalties, STDS yields higher number of
penalties than CILS for handling multiple plagiarism attacks. As seen in Figure 7,
STDS yields higher penalties in all cases than CILS. This finding is quite different
with our previous finding about CILS-STDS penalty on single plagiarism attacks. As
in single plagiarism attacks, the number of CILS and STDS penalties is quite similar
to each other. When discovered further, STDS tends to yield more penalties on longer
source code due to more delimiter tokens incorporated on source code. These tokens
may obfuscate similar pattern and reduce the effectiveness of Adaptive Local
Alignment.

118

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

RABBANI AND KARNALIM DETECTING SOURCE CODE PLAGIARISM ON .NET...

Figure 6. Similarity Result based on Multiple Plagiarism Attacks

Figure 7. The number of CILS and STDS Penalties toward Multiple Plagiarism Attacks

In terms of efficiency, CILS still outperforms STDS since the number of involved
tokens in CILS is extremely smaller than STDS. The detail of approximate estimated
time from both approaches can be seen on Figure 8. It is calculated based on TCILS and
TSTDS defined in (3) and (4) respectively. When compared based on the average
number of involved processes, CILS involves 86.09% processes lower than STDS.
Thus, it can be stated that CILS is more efficient than STDS in terms of involved
processes.

5. Conclusion and Future Works
In this paper, we have extended Juričić et al approach [10] by incorporating Adaptive
Local Alignment (ALA) as a replacement of their Greedy String Tiling (GST). This
replacement is conducted based on Lim et al’s work [34] which states that ALA
performs better than GST in terms of sensitivity and specificity. In addition, we also

119

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

evaluate the impact of our approach (CILS) when compared to standard lexical-token
approach (STDS). In general, CILS is more resistible for handling various plagiarism
attacks separately. It outperforms STDS with 1.408% difference. Even though CILS
may yield lower similarity than STDS due to its smaller token size, its number of
penalties is still lower than STDS, especially on longer source code. However, CILS
is weak against plagiarism cases which are focused on API and technical mechanism.
These plagiarism cases yield significant change when converted into intermediate
form. In terms of efficiency, CILS is more efficient than STDS since it reduces a vast
amount of processes due to its limited token size. It reduces about 80.691% processes
when compared with STDS based on Karnalim’s dataset [3].

Figure 8. Approximate Estimated Time on Multiple Plagiarism Attacks

When handling multiple plagiarism attacks, CILS yields lower accuracy than
STDS. It yields 1.54% lower similarity based on our dataset. When discovered further,
its deficiency is caused by implemented normalization in (1). This finding strengthens
our previous finding about CILS effectiveness. CILS similarity may become over-
sensitive since one mismatch or gap may reduce its similarity percentage significantly.
However, when perceived in the number of penalties, CILS yields extremely smaller
number of penalties than STDS since STDS considers code delimiter token as its
token member. These tokens may obfuscate similar pattern and reduce the
effectiveness of Adaptive Local Alignment. In term of efficiency, CILS is still more
efficient than STDS on multiple plagiarism attacks. It even reduces more token size
since CIL representation is more compact than the source code itself. In general, we
can conclude that CILS is better than STDS in terms of effectiveness and efficiency.

In next research, our proposed method will be expanded to handle cross-language
source code plagiarism for all .NET programming languages. It is expected to detect
plagiarism even though given source codes are written on different .NET
programming languages. Moreover, we will also propose a plagiarism detection
system which enable our approach to be implemented in programming course.

120

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

RABBANI AND KARNALIM DETECTING SOURCE CODE PLAGIARISM ON .NET...

References

[1] G. Cosma and M. Joy, "Towards a Definition of Source-Code Plagiarism,"
IEEE Transactions on Education, vol. 51, no. 2, pp. 195 - 200, 2008.

[2] D. Sraka and B. Kaucic, "Source Code Plagiarism," in The 31st
International Conference on Information Technology Interfaces, 2009.

[3] O. Karnalim, "Detecting Source Code Plagiarism on Introductory
Programming Course Assignments Using a Bytecode Approach," in The
10th International Conference on Information & Communication
Technology and Systems (ICTS), Surabaya, 2016.

[4] C. K. Roy and J. R. Cordy, "A Survey on Software Clone Detection
Research," School of Computing, Queen's University, Canada, 2007.

[5] S. Burrows, S. M. M. Tahaghoghi and J. Zobel, "Efficient and effective
plagiarism detection for large code repositories," Software-Practice &
Experience, vol. 37, no. 2, 2007.

[6] Z. Duric and D. Gasevic, "A Source Code Similarity System for
Plagiarism Detection," The Computer Journal, vol. 55, 2012.

[7] T. F. Smith and M. S. Waterman, "Identification of common molecular
subsequences," Journal of Molecular Biology, vol. 147, 1981.

[8] L. Prechelt, G. Malpohl and M. Philippsen, "Finding plagiarisms among a
set of programs with JPlag," Journal of Universal Computer Science, vol.
8, no. 11, 2002.

[9] C. Kustanto and I. Liem, "Automatic Source Code Plagiarism Detection,"
in SNPD '09. 10th ACIS International Conference on Software
Engineering, Artificial Intelligences, Networking and Parallel/Distributed
Computing, Daegu, 2009.

[10] V. Juricic, T. Juric and M. Tkalec, "Performance evaluation of plagiarism
detection method based on the intermediate language," INFuture2011:
"Information Sciences and e-Society", 2011.

[11] S. Hannabuss, "Contested texts: issues of plagiarism," Library
Management, vol. 22, 2001.

[12] H. Maurer, F. Kappe and B. Zaka, "Plagiarism - A Survey," Journal of
Universal Computer Sciences, vol. 12, no. 8, 2006.

[13] N. Heintze, "Scalable document fingerprinting," in USENIX Workshop on
Electronic Commerce, Oakland, 1996.

[14] R. Brixtel, M. Fontaine, B. Lesner and C. Bazin, "Language-independent
clone detection applied to plagiarism detection," in 10th IEEE Working
Conference on Source Code Analysis and Manipulation, Timisoara, 2010.

[15] T. Hoad and J. Zobel, "Methods for identifying versioned and plagiarised
documents," Journal of The American Society for Information Science and
Technology, vol. 54, no. 3, 2002.

121

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[16] G. Cosma and M. Joy, "Evaluating the performance of LSA for source-
code plagiarism detection," Informatica, vol. 36, pp. 409-424, 2012.

[17] B. Croft, D. Metzler and T. Strohman, Search Engine : Information
Retrieval in Practice, Boston: Pearson Education .Inc, 2010.

[18] J. Donaldson, A. Lancaster and P. Sposat, "A Plagiarism Detection
System," in The 12th SIGCSE Technical Symposium on Computer Science
Education, New York, 1981.

[19] M. H. Halstead, "Natural laws controlling algorithm strcuture?," ACM
SIGPLAN Notices, vol. 7, no. 2, 1972.

[20] M. H. Halstead, "Elements of software science (Operating and
programming systems series)," Elsevier Science, New York, 1977.

[21] U. Bandara and G. Wijayarathna, "A machine learning based tool for
source code plagiarism detection," International Journal of Machine
Learning and Computing, vol. 1, no. 4, 2011.

[22] R. C. Lange and S. Mancoridis, "Using code metric histograms and
genetic algorithms to perform author identification for software forensics,"
in The 9th annual conference on Genetic and evolutionary computation,
New York, 2007.

[23] A. Ohno and H. Murao, "A two-step in-class source code plagiarism
detection method utilizing improved CM algorithm and SIM,"
International Journal of Innovative Computing, Information, and Control,
vol. 7, no. 8, 2011.

[24] S. Engels, V. Lakshmanan and M. Craig, "Plagiarism detection using
feature-based neural networks," in The 38th SIGCSE technical symposium
on Computer science education, New York, 2007.

[25] A. Jadalla and A. Elnagar, "PDE4Java: Plagiarism Detection Engine for
Java source code: a clustering approach," International Journal of
Business Intelligence and Data Mining, vol. 3, no. 2, 2008.

[26] A. Ramirez-de-la-Cruz, G. Ramirez-de-la-Rosa, C. Sanchez-Sanchez, H.
Jimenez-Salazar, C. Rodriguez-Lucatero and W. A. Luna-Ramirez, "High
level features for detecting source code plagiarism across programming
languages," in Cross-Language Detection of SOurce COde Re-use
Conference, 2015.

[27] S. Schleimer, D. S. Wilkerson and A. Aiken, "Winnowing: Local
Algorithms for Document Fingerprinting," in The ACM SIGMOD
International Conference on Management of Data, San Diego, 2003.

[28] D. Gitchell and N. Tran, "Sim: a utility for detecting similarity in
computer programs," in The 13th Technical Symposium on Computer
Science Education, New Orleans, 1999.

[29] P. Clough, "Plagiarism in natural and programming languages: an
overview of current tools and technologies," Department of Computer
Science, University of Sheffeld, 2000.

122

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

RABBANI AND KARNALIM DETECTING SOURCE CODE PLAGIARISM ON .NET...

[30] M. J. Wise, "YAP3: Improved detection of similarities in computer
programs and other texts," ACM SIGCSE Bulletin, vol. 28, no. 1, 1996.

[31] A. Ahtiainen, S. Surakka and M. Rahikainen, "Plaggie: GNU-licensed
source code plagiarism detection engine for Java exercises," in The 6th
Baltic Sea Conference on Computing Education Research, Uppsala, 2006.

[32] M. Mozgovoy, K. Frederiksson, D. R. White, M. S. Joy and E. Sutinen,
"Fast plagiarism detection system," Lecture Notes in Computer Science,
vol. 3772, 2005.

[33] J. Hage, P. Rademaker and N. Van Vugt, "Plagiarism detection for Java: a
tool comparison," in The 11th Computer Science Education Research
Conference, Heerlen, 2011.

[34] J.-S. Lim, J.-H. Ji, H.-G. Cho and G. Woo, "Plagiarism detection among
source codes using adaptive local alignment of keywords," in The 5th
International Conference on Ubiquitous Information Management and
Communication, Seoul, 2011.

[35] D. Shah, H. Jethani and S. H. Joshi, "(CLSCR) Cross Language Source
Code Reuse Detection Using Intermediate Language.," in FIRE Workshop,
2015.

[36] J.-H. Ji, G. Woo and H.-G. Cho, "A Plagiarism Detection Technique for
Java Program Using Bytecode Analysis," in ICCIT '08. Third
International Conference on Convergence and Hybrid Information
Technology, Busan, 2008.

[37] D. Pawelczak, "Online detection of source-code plagiarism in
undergraduate programming courses," in The International Conference on
Frontiers in Education: Computer Science and Computer Engineering
(FECS), Athens, 2013.

[38] M. Chilowicz, É. Duris and G. Roussel, "Finding Similarities in Source
Code Through Factorization," in 8th Workshop on Language Descriptions,
Tools and Applications, 2008.

[39] M. G. Ellis and C. W. Anderson, "Plagiarism Detection in Computer
Code," 2005.

[40] M. Chilowicz, E. Duris and G. Roussel, "Syntax tree fingerprinting for
source code similarity detection," in IEEE 17th International Conference
on Program Comprehension, Vancouver, 2009.

[41] V. Juričić, "Detecting source code similarity using low-level languages,"
in 33rd International Conference on Information Technology Interfaces,
Dubrovnik, 2011.

[42] T. Parr, "ANTLR," 2014. [Online]. Available: http://www.antlr.org/.
[Accessed 07 12 2015].

123

JIOS, VOL. 41, NO. 1 (2017), PP. 105-123

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[43] "GitHub - antlr/grammars-v4: Grammars written for ANTLR v4;
expectation that the grammars are free of actions.," [Online]. Available:
https://github.com/antlr/grammars-v4. [Accessed 8 12 2016].

[44] "Ildasm.exe (IL Disassembler)," [Online]. Available:
https://msdn.microsoft.com/en-us/library/f7dy01k1(v=vs.110).aspx.
[Accessed 8 12 2016].

[45] "Partition III - CIL - Microsoft," [Online]. Available:
download.microsoft.com/download/7/3/3/733ad403.../ms%20partition%2
0iii.pdf. [Accessed 8 12 2016].

[46] J. A. W. Faidhi and S. K. Robinson, "An Empirical approach for detecting
program similarity and plagiarism within a university programming
environment," Computer & Education, vol. 11, no. 1, pp. 11-19, 1987.

[47] S. Halim and F. Halim, Competitive Programming 3, lulu, 2013.

