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Abstract 
Even though there are various source code plagiarism detection approaches, only a few 
works which are focused on low-level representation for deducting similarity. Most of 
them are only focused on lexical token sequence extracted from source code. In our 
point of view, low-level representation is more beneficial than lexical token since its 
form is more compact than the source code itself. It only considers semantic-preserving 
instructions and ignores many source code delimiter tokens. This paper proposes a 
source code plagiarism detection which rely on low-level representation. For a case 
study, we focus our work on .NET programming languages with Common Intermediate 
Language as its low-level representation. In addition, we also incorporate Adaptive 
Local Alignment for detecting similarity. According to Lim et al, this algorithm 
outperforms code similarity state-of-the-art algorithm (i.e. Greedy String Tiling) in 
term of effectiveness. According to our evaluation which involves various plagiarism 
attacks, our approach is more effective and efficient when compared with standard 
lexical-token approach. 
Keywords: source code plagiarism detection, source code similarity, low-level 
language, .NET programming language, adaptive local alignment 

1. Introduction  
Source code plagiarism is a major issue which emerges in Programming course [1]. 
Students can easily obtain their colleague’s work, modify it, and then submit it as their 
work in no time. Even though plagiarism can be conducted easily, detecting this illegal 
behavior is not a trivial task. Plagiarism can be conducted by every student, even the 
smartest one who knows programming concept well [2, 3]. Thus, plagiarism attacks 
incorporated on student assignments may be varied. It may be the simplest one such 
as verbatim copy (conducted by weak student) or the most complicated one which 
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incorporates various logic and structure changes (conducted by smart students). 
Detecting these plagiarism variants may require considerable effort and time since 
lecturer should enlist all possible plagiarism attacks and check each possible source 
code pair. However, since the plagiarists still should be penalized, automatic source 
code plagiarism detection is developed to extenuate lecturer’s work. Lecturers are not 
required to check each source code manually. Instead, they can feed all student source 
codes into the system and take its result as a consideration for detecting plagiarism. 

In general, there are three major approaches for detecting source code plagiarism: 
text-based, attribute-based, and structure-based approach [4, 5]. Text-based approach 
determines similarity by considering source code as a raw text; attribute-based 
approach determines similarity based on source code attributes (e.g. number of 
operator and operand); and structure-based approach determines similarity based on 
source code structure. Among these approaches, structure-based approach is the most 
popular one due to its effectiveness [6]. This approach is quite sensitive to instruction 
order which is important on determining source code plagiarism.  

This paper proposes a structure-based source code plagiarism detection which is 
focused on .NET programming language. All .NET source codes are converted into 
.NET Common Intermediate Language (CIL) and their similarity is determined based 
on Adaptive Local Alignment (ALA) algorithm. .NET CIL is a compiled form of all 
.NET source codes which is generated after compilation phase. This form is more 
compact than the source code itself since it only contains semantic-preserving 
information. On the other hand, ALA is incorporated as our similarity algorithm since 
it outperforms Greedy String Tiling (GST) algorithm in terms of sensitivity and 
specificity [7]. GST algorithm is a state-of-the-art algorithm which had been 
frequently incorporated on various structure-based plagiarism detection approaches 
[8, 9, 10, 3]. To our knowledge, there are no related works which combine both .NET 
CIL and adaptive local alignment for detecting source code plagiarism. Beside 
proposing a source code plagiarism detection approach, we also evaluate the impact 
of our approach when compared with standard token-based approach in terms of 
effectiveness and efficiency. This evaluation is conducted based on various plagiarism 
attacks from Karnalim’s dataset [3] and evaluated based on both single and multiple 
attack schemas. 

2. Related Works 
Plagiarism is an act for reusing other people’s work without explicitly acknowledging 
the author beforehand [9, 11, 12]. In Computer Programming education, it becomes 
more serious problem since most source codes are written electronically and most 
students understand a lot about copy-and-paste technique [1]. Students can easily 
replicate and plagiarize other student’s work in a no time. In addition, even though 
plagiarism can be detected manually, it is not recommended to be conducted due to 
its considerable effort. Programming assignments are usually given every week and 
each of them consists of at least a dozens of source codes [9]. According on these 
reasons, automatic plagiarism detection is highly desirable to be developed on this 
domain. 
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Based on Sraka & Kaucic’s work [2], there are various reasons for conducting 
source code plagiarism. The most common reason is the incapability for solving the 
given task by themselves. They plagiarize other people’s work since they are weak in 
programming and have low computational thinking. However, this finding does not 
mean that smart students are never involved on this illegal behavior. Some smart 
students may plagiarize based on two reasons: 1) They do not have sufficient time to 
do it; and 2) They are too lazy to do it by themselves. Therefore, detecting source code 
plagiarism is not a trivial task. Plagiarism attacks may vary from the verbatim copy 
into the most complicated one such as logic modification and code encapsulation. 
Most smart students incorporate high-level plagiarism attack since they understand a 
lot about program structure and semantic.  

In general, there are three major approaches for detecting source code plagiarism. 
These approaches are text-based, attribute-based, and structure-based approach [4, 5]. 
Text-based approach is the only approach which is programming-independent since 
it treats source code as raw text. The work of Heintze [13], Brixtel et al [14], Hoad & 
Zobel [15], and Cosma & Joy [16] are several works which fall into this category. 
Heintze [13] incorporates fingerprinting method for detecting plagiarism. Each 
involved source code is translated into a compact collection of integers (i.e. 
fingerprint) and two source codes are recognized as plagiarized to each other iff both 
fingerprints are similar. Brixtel et al [14] incorporates multiple level plagiarism 
recognition which vary from character to corpus level. These multiple recognitions 
are incorporated to keep its sensitivity toward various plagiarism attacks. Hoad & 
Zobel [15] and Cosma & Joy [16] incorporate information retrieval approach for 
detecting plagiarism. Hoad & Zobel [15] incorporates ranking approach which is 
based on information retrieval concept [17]. The most similar source code is expected 
to have the highest score when its plagiarized source code is given as a query. On the 
other hand, Cosma & Joy [16] incorporates Latent Semantic Analysis (LSA) to find 
source code similarity. Source codes are treated as natural language documents and 
fed into LSA to deduct their similarity. Nevertheless, most text-based approaches 
ignore programming language structure and semantic which are important for 
detecting high-level plagiarism attacks. 

Attribute-based approach considers two source codes are plagiarized to each other 
iff both source codes yield similar key properties. Some earlier work with this 
approach are conducted by Donaldson et al [18], Halsthead [19], and Halsthead [20]. 
Based on their work, four key properties are incorporated for measuring similarity. 
These properties are the number of unique operators, the number of unique operands, 
the total number of operators, and the total number of operands. However, since these 
properties do not adequately represent the source code itself, several further works 
incorporate additional properties such as the number of variables, methods, loops, 
conditional statements, and method invocations [6]. Several works are also focused 
on programmer style properties such as the position of the brackets and comments 
[21, 22]. When incorporating programmer style, plagiarism is detected iff programmer 
style properties on the current submission are extremely different with previously 
submitted assignments.  
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In order to compare the similarity between given key properties, several attribute-
based approaches do not rely on exact-match similarity measurement. Instead, they 
incorporate more sophisticated mechanisms such as machine learning [21, 22, 23, 24, 
25] and information retrieval approach [26]. Bandara & Wijayarathna [21] combines 
three classification algorithm to detect plagiarism: Naïve Bayes, K-Nearest Neighbor 
(KNN), and AdaBoost Meta-learning algorithm. Source code key properties are fed 
into combined algorithm for detecting plagiarism and a source code is considered as 
a plagiarized code iff its classification result yields different author. For example, a 
source code submitted by A is considered as a plagiarized code since it is recognized 
as B’s source code based on classification result. Other classification approaches [22, 
23, 24] also incorporate similar plagiarism detection mechanism with Bandara & 
Wijayarathna [21]. Yet, they differ on incorporated classification algorithm and 
involved key properties. Lange & Mancoridis [22] incorporates KNN and genetic 
algorithm; Ohno & Murao [23] incorporates coding-style statistics; and Engels et al 
[24] incorporates feature-based neural networks. Based on the fact that classification 
requires a considerable amount of training dataset, Jadalla & Elnagar [25] and 
Ramirez-de-la-Cruz [26] incorporates other mechanisms instead of classification. 
Jadalla & Elnagar incorporates clustering approach wherein plagiarized source codes 
are clustered as a single cluster based on their respective key properties. Whereas, 
Ramirez-de-la-Cruz incorporates cosine similarity from Information Retrieval 
approach to measure source code similarity based on high-level features. 

Even though attribute-based approach yields more accurate result than text-based 
approach, it is important to note that two different source codes may yield similar key 
properties. For example, source code of bubble and insertion sort may yield similar 
number of loops (i.e. two loops) even though both of them are different in terms of 
how to solve the problem. In addition, as student computational thinking is developed 
during the course, their programming style may be changed significantly over time. 
Thus, programming-style-based properties may not reliable enough since it may cause 
a tremendous number of true positives. Some students may be detected as plagiarists 
since they change their programming style on their own.  

Structure-based approach is the most sophisticated approach among three major 
approaches for detecting source code plagiarism [6]. It is relatively robust to various 
plagiarism attacks since this approach is typically focused on the ordinal structure of 
the given source code. This finding is also strengthened by the fact that structure-
based approach is frequently used on publicly available plagiarism detection systems 
such as JPlag [8], MOSS [27], Sim [28], Plaque [29], YAP [30], Plaggie [31], FPDS 
[32], and Marble [33]. In general, most structure-based approaches detect plagiarism 
by converting source codes into lexical token sequences and compare them based on 
a particular similarity algorithm. This pattern is typically popular since it is frequently 
incorporated on most publicly available plagiarism detection systems. It is also 
incorporated on many related research works about source code plagiarism detection 
such as Lim et al [34], Shah et al [35], Kustanto & Liem [9], Ji et al [36], Djuric & 
Gasevic [6], and Pawelczak [37]. Nevertheless, not all structure-based approaches rely 
on standard lexical token sequence. Several works incorporate unique yet effective 
mechanism to exploit source code structure further. 
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Several works incorporate additional preprocessing to generate more declarative 
lexical token sequence [38, 39, 40]. Chilowics et al [38] incorporates function 
factorization when generating lexical token sequence. All function calls are replaced 
with their respective function contents before compared. In such manner, their 
approach is resistant from encapsulation-based attacks such as method inlining and 
outlining. Ellis & Anderson [39] replaces lexical token sequence with inorder form of 
generated parse tree. Each source code is converted into a parse tree and its contents 
are translated into token sequence by applying inorder traversal. Chilowicz et al [40] 
also incorporates parse-tree approach. Yet, their work generates token sequence based 
on fingerprinting mechanism instead of inorder traversal.  

Instead of incorporating lexical token sequence, several works incorporate low-
level codes as a resource for detecting plagiarism. Source codes are translated into 
their respective low-level form and compared using a particular similarity algorithm. 
There are several reasons why low-level codes is more effective than standard lexical 
token sequence for detecting source code plagiarism [3]: 1) Low-level codes only 
contain semantic-preserving instructions since these codes had been optimized at 
compilation phase. In other words, similarity is purely determined based on semantic 
structure; 2) Most syntactic sugars are translated into their natural semantic. For 
example, for and while traversals are translated into similar goto sequences. This 
mechanism may prevent syntactic-sugar-based plagiarism attacks automatically; 3) 
All comments are completely removed so that plagiarism attacks which relies on 
comment modification are unavailing; and 4) Local variable identifiers are technically 
renamed based on their respective order. This mechanism may prevent all identifier-
renaming plagiarism attacks. 

In general, there are four works which incorporates low-level code for detecting 
source code plagiarism: the work of Ji et al [36], Karnalim [3], Juričić [41], and Juričić 
et al [10]. The first two works are focused on Java programming language whereas 
the other two are focused on .NET programming language. Ji et al approach [36] is 
quite similar with standard lexical-token-sequence approach except that it replaces 
token sequence with bytecode sequence (bytecode is a low-level representation of 
Java programming language). Their work is extended by Karnalim [3] by 
incorporating several additional mechanisms such as method inlining, recursive 
handling, instruction generalization, and instruction interpretation. On the other hand, 
Juričić and Juričić et al approach [41, 10] detect source code similarity based on .NET 
Common Intermediate Language (CIL) which is the low-level representation of most 
.NET programming languages. Two source codes are considered as plagiarized to 
each other iff their CIL sequences are similar. The only difference between Juričić’s 
and Juričić et al’s work is their incorporated similarity algorithm. Juričić incorporates 
Levensthein distance whereas Juričić et al incorporates Greedy String Tiling (GST) 
algorithm.  

In this paper, we propose two major contributions which are: 1) we extend Juričić 
et al approach by replacing GST with Adaptive Local Alignment. According to Lim 
et al [34], this algorithm outperforms GST in terms of sensitivity and specificity; and 
2) we evaluate the effectiveness and efficiency of our approach for handling various 
plagiarism attacks in more detailed manner. We evaluate its impact per plagiarism 
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attack where each plagiarism case only consists of one plagiarism attack. As in 
previous work about CIL-based plagiarism detection [10, 41], all evaluations are 
conducted based on generic dataset where each case may contain one or more 
plagiarism attacks. They do not evaluate its impact when handling various plagiarism 
attacks separately (i.e. each case only consists of one plagiarism attack). In addition, 
plagiarism attacks incorporated in previous works are not explicitly enlisted in terms 
of its attack type and occurrence frequency per case. Thus, we cannot know which 
plagiarism attacks are best handled by CIL approach.  

3. Methodology 
When comparing source codes for detecting plagiarism, our approach adapts pairwise 
approach where each source code is paired with all other source codes to measure its 
similarity. In general, similarity value for each source code pair is measured by 
following flowchart given on Figure 1. It is extended from Juričić et al’s work [10] by 
incorporating different similarity algorithm and a particular mechanism to handle 
uncompilable source codes. As seen on the given flowchart, our source code similarity 
measurement only works on .NET source codes (e.g. C# and Visual Basic) since we 
rely on .NET CIL sequence. At the first phase, both source codes will be compiled 
into their respective .NET CIL executable file. Afterwards, these executable files are 
fed into .NET CIL disassembler to generate readable text that consist of .NET CIL 
information. Then, CIL sequences from both readable texts are filtered and their 
similarity is measured using Adaptive Local Alignment. Nevertheless, since not all 
source codes on student assignments are compilable, our approach also incorporates 
lexical tokens for handling the uncompilable ones. When at least one of the given 
source code is uncompilable, source code similarity will be measured based on 
standard lexical token sequence. In our work, standard lexical token sequence is 
generated by ANTLR [42] and grammar listed on ANTLR GitHub repository [43]. 
 

 
Figure 1.  Flowchart for Determining Source Code Similarity 
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3.1. Compilation Phase and .NET CIL Disassembler 
Compilation phase is conducted programmatically so that lecturer is not required to 
open each student source code on IDE and compile them manually. Lecturer is only 
required to provide student source codes and let our proposed approach to do the rest. 
After compiled, each source code is converted into .NET CIL executable form. Even 
though this form is our target representation for detecting plagiarism, extracting .NET 
CIL sequence from its executable form directly requires a considerable effort since it 
is represented as file binaries. Thus, ILDASM [44] is incorporated as a parser to read 
and extract .NET CIL sequence. ILDASM is a disassembler tool included in Visual 
Studio or Framework SDK which is able to read .NET CIL information of given 
executable file and store it on a readable text [41].  
 By incorporating ILDASM, each executable file is converted into readable text 
which contains .NET CIL information. The example of readable text generated by 
ILDASM can be seen on Figure 2. It is generated based on Hello World program 
written in C#. As seen on Figure 2, Hello World program generates two methods when 
compiled into CIL. The first one represents the original main method whereas the 
latter one represents technical method. Technical method is an auto-generated method 
which is required for executing CIL-based program.  

 

 

Figure 2.  Readable Text Generated by ILDASM for Hello World Program 
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3.2. .NET CIL Preprocessing 
As seen in Figure 2, readable text generated by ILDASM contains various information 
about the given source code. However, since our approach only relies on CIL 
sequence, all unrelated information is discarded. We only extract CIL lines which are 
usually started with IL as its prefix and merges them as a big chunk of CIL sequence. 
In other words, all instructions from various methods and classes are merged into one 
CIL sequence. We do not apply semantic-preserving preprocessing which is suggested 
by Ji et al [36] and Karnalim [3] since it may require additional processing time. In 
addition, most semantic-preserving preprocessing phases rely on instruction-specific 
features and file structure. These aspects may be changed or updated on the further 
release of .NET CIL.  
 Each CIL line generally consists of three components which are instruction 
position, mnemonic, and attributes. Instruction position represent CIL position on its 
method container. It typically starts with 0 for each method and each instruction may 
take more than 1 instruction slot. As seen in technical method on Figure 2, IL 
instruction starts with 0 and instruction IL_0001 takes 5 instruction slots since its 
successor starts from 6 (IL_0006). IL_0001 represents method call so that it takes 
more slots to store its method information and parameter invocation. Nevertheless, 
not all instruction position is marked with non-negative integers. Instead, several 
instructions are marked with alphabet to represent sub-instruction. As seen in main 
method on Figure 2, several instructions after IL_0005 are marked with alphabet 
(IL_000a, IL_000b, IL_000c, and IL_000d).  
 Mnemonic represents instruction semantic where each mnemonic may require 
zero or more attributes to conduct its functionality. These attributes are typically 
placed after each mnemonic on CIL line. For example, ldc on IL_0003 from main 
method has two attributes which are .i4 and .3. ldc represents pushing a value into 
runtime stack; .i4 represents 32-bit integer as its pushed value type; and .3 represents 
the value of pushed 32-bit integer is 3. Nevertheless, it is important to note that not all 
instruction attributes start with dot mark. As seen in IL_0005 from main method, it 
incorporates string as its attributes. The complete list of CIL instructions and their 
respective semantic can be seen on [45].  
 After CIL lines are extracted, we filter each CIL line by only considering its 
mnemonic and return it as our preprocessed result. For example, if readable text on 
Figure 2 is fed into our preprocessing phase, its result will be nop, ldc, stloc, ldc, stloc, 
ldstr, ldloc, ldoloc, mul, box, call, nop, ret, ldarg, call, nop, and ret.  Instruction 
position and attributes are excluded based on following reasons: 1) Instruction order 
has been implicitly incorporated on generated CIL sequence as sequence order. 
Therefore, instruction position is unnecessary; 2) Instruction attributes are over-
technical and incorporating them on CIL sequence may yield over-sensitive 
plagiarism detection; and 3) Excluding instruction attributes automatically generalizes 
data type usage so that it can handle data-type-based plagiarism attacks.  
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3.3. Similarity Measurement using Adaptive Local Alignment 
The similarity between two CIL sequences are measured using Adaptive Local 
Alignment proposed by Lim et al [34]. This algorithm is extended from Local 
Alignment [7] by incorporating token frequencies for weighting each token.  Each 
token is assigned with its inverse frequency so that token with low frequency is 
assigned with high score and token with high frequency is assigned with low score. 
In such manner, when two token sequences share rare tokens, its similarity score will 
be increased significantly. We believe that this weighting mechanism is inspired from 
real-case plagiarism detection. If two source codes incorporate similar “unique” 
pattern, then their chance to be detected as a plagiarism case will be higher.  

Lim et al only incorporates keywords and operators on their token sequence. From 
our perspective, we believe that identifiers are excluded from their approach since 
identifier renaming is frequently popular among plagiarists and incorporating them 
for detecting plagiarism may yield over-sensitive result. However, according to the 
fact that all identifiers, at some extent, are renamed on CIL [45], identifier renaming 
is unavailing when handled with our approach. Thus, our work incorporates identifiers 
in addition to keywords and operators on token sequence for detecting plagiarism. We 
believe that identifiers may strengthen the sensitivity of our approach for detecting 
plagiarism. 
 All setting parameters required for Adaptive Local Alignment are adapted from 
Lim et al’s work [34]. Matched token is scored by its respective inverse frequency; 
mismatched token and gap are scored by multiplying its respective inverse frequency 
with -1; α is assigned as 0.6; and β is assigned as 0.4. In addition, to normalize resulted 
similarity value, we incorporate minimum matching similarity which detail can be 
seen in (1). sim(A,B) represents normalized similarity value where A and B are 
compared CIL sequences. It is calculated by dividing total weight of shared 
subsequence (i.e. sim_weight(A,B)) with minimum size from both CIL sequences (i.e. 
min(weight(A),weight(B))). weight(A) and weight(B) represent the total weight of A 
and B respectively.  
 

sim(A,B) =                                  (1) 

4. Evaluation 

4.1. Evaluating Our Approach toward Various Plagiarism Attacks Separately 
This evaluation is conducted to determine the strengths and weaknesses about our CIL 
approach when handling various plagiarism attacks separately. This evaluation is 
conducted based on Karnalim’s dataset [3] which is rewritten in C#. Karnalim’s 
dataset is selected for our evaluation since it enlists possible plagiarism attacks in 
general. These plagiarism attacks are generated based on lecturer assistants who have 
a lot of experience for handling plagiarism attempts. The detail of how these 
plagiarism attacks are collected can be read in [3]. However, instead of taking the 
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whole dataset, we only take plagiarism cases which level is 3 or higher based on Faidhi 
& Robinson specification [46]. Level 0 to 2.5 are completely excluded since we intend 
to measure the impact of our approach only on plagiarism attacks that affect low-level 
form (CIL representation). Level 0 to 2.5 attacks do not affect CIL since their attacks 
are automatically removed and handled by the compiler when generating CIL. In 
short, our evaluation dataset consists of 42 plagiarism cases from Karnalim’s dataset 
where each plagiarism case is enlisted as level 3 or higher plagiarism attack based on 
Faidhi & Robinson specification [46].  

In this evaluation, standard lexical-token approach is incorporated as a baseline 
for measuring the improvement of our approach. It is selected as our baseline due to 
its popularity on various plagiarism detection works. However, to make it comparable 
with our CIL approach, we incorporate similar measurement algorithm (i.e. Adaptive 
Local Alignment) as its similarity measurement. For convenience, our CIL approach 
will be referred as CILS whereas standard token-based approach will be referred as 
STDS at the rest of this paper.  
 Based on the fact that each plagiarism case on Karnalim’s dataset are considered 
as true-positive plagiarism, the effectiveness of our approach is increased 
proportionally to its average similarity result. The closer its average similarity result 
to 100%, the more effective that approach is. In other words, we can compare CILS 
and STDS approach effectiveness simply based on their average similarity. An 
approach with higher average similarity is considered to be more effective for 
handling plagiarism attacks. Similarity result for each plagiarism case using CILS and 
STDS can be seen on Figure 3. Horizontal axis represents plagiarism cases whereas 
vertical axis represents similarity value. From 42 cases on our dataset, CILS 
outperforms STDS on 32 cases. It only loses on 10 cases which are 3008, 5004, 5008, 
5009, 5012, 5016, 5017, 6003, 6010, and 6011. When discovered further, CILS 
similarity on these cases is extremely lower due to its small token size. CILS tends to 
have extremely smaller size of tokens than STDS since it only considers semantic-
preserving instructions. Consequently, when normalized using (1), even one 
mismatched token or gap may yield significant similarity drop. Mismatched token and 
gap are two terminologies which are defined on Adaptive Local Alignment. 
Mismatched token represents token subsequence which are not shared on both 
sequences and gap represents the distance required to generate the matched one. 

To strengthen our finding about CILS loss, the detail of mismatched tokens and 
gaps toward these cases are given on Figure 4. However, to simplify the detail, we 
merge the number of mismatched tokens and gaps as penalties. According to Lim et 
al [34], the number of penalties is calculated based on (2) where gap’s impact is 
doubled. As seen in Figure 4, the number of CILS penalties is quite similar to the 
number of STDS penalties. It only differs significantly on 5008, 5016, 5017, 6003, 
and 6011. Yet, out of 5 significant cases, 4 of them yield lower number of penalties 
on CILS. It only yields higher penalties on 5017 since involved plagiarism attack on 
this case is over-technical. 5017 replaces standard loop for traversing a collection with 
for-each. Even though standard loop and for-each is quite similar in term of lexical 
source code structure, it yields significant difference when converted into CIL. for-
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each is intended to handle traversal for all collection so that its CIL representation is 
more complex than the standard loop itself. 

 

 

Figure 3.  Similarity Result based on Karnalim’s Dataset 

 

Figure 4.  The number of CILS and STDS Penalties on Plagiarism Cases where CILS Similarity is lower 
than STDS 

penalty(A,B) =mismatch(A,B) + 2*gap(A,B)                         (2) 
 

In general, CILS outperforms STDS based on following facts: 1) CILS 
outperforms STDS in most cases (32 of 42 cases); 2) Most CILS losses are caused by 
its limited token size. When compared in term of penalty, CILS are still more 
beneficial than STDS; 3) In term of average similarity, CILS outperforms STDS by 
1.408% difference. CILS yields 93.893% average similarity whereas STDS yields 
92.485%.  
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Efficiency between CILS and STDS is measured based on the number of involved 
processes for executing the given approach. We incorporate approximate estimated 
time instead of the real one based on following reasons: 1) Real execution time is 
greatly affected by hardware and operating system dependency; 2) Using real 
execution time for comparison purpose only works well iff running programs take a 
considerable amount of time; and 3) Each source code on our dataset is small in size. 
Thus, it may yield faulty result when measured using real execution time since running 
time for each source code is considerably fast. It will be greatly affected by hardware 
and operating system dependency. 

Approximate estimated time for CILS and STDS can be defined as (3) and (4) 
respectively where A and B are token size for each given sequence. Each phase on 
Figure 1 except similarity measurement takes linear complexity for both sequences. 
These phases take A+B processes each. On the contrary, similarity measurement itself 
takes A*B processes since its algorithm is based on matrix-like representation. 
TCILS(A,B) is calculated based on 4 steps on CILS which are: compilation phase, .NET 
CIL disassembler, .NET CIL preprocessing, and similarity measurement. We assume 
that all source codes are compilable to generate worst case for its estimated time. A0 
and B0 are the number of token in source code before compiled. Both of them are 
required to measure the number of processes on compilation phase since source code 
compilation takes linear complexity based on the given source code. On the other 
hand, TSTDS(A,B) is calculated based 2 steps on STDS: generating token sequence and 
similarity measurement. Generating token sequence takes linear number of processes 
whereas similarity measurement takes A*B processes.  

 
TCILS(A,B) = (A0+B0) + 2*(A+B) + (A*B)                              (3) 

TSTDS(A,B) = (A+B) + (A*B)                                          (4) 
 

Approximate estimated time for each plagiarism case using CILS and STDS can 
be seen on Figure 5. Horizontal axis represents plagiarism cases whereas vertical axis 
represents approximate estimated time based on TCILS and TSTDS. As seen in Figure 5, 
CILS involves smaller number of processes than STDS in all cases. It reduces about 
94.552% number of processes when compared with STDS. This significant difference 
is natural since CILS involves lower token size than STDS. Average token size of 
CILS is 80.691% lower than STDS. Thus, even though approximate estimated time 
equation for CILS takes higher complexity than STDS, CILS is still more efficient 
than STDS due to its lower token size. 

4.2. Evaluating Our Approach toward Multiple Plagiarism Attacks 
This evaluation is conducted to measure the impact of our proposed approach for 
handling real-case plagiarisms which typically incorporate various plagiarism attacks 
at once. In order to do that, we ask three respondents to plagiarize three C# source 
codes with any possible plagiarism attacks (3 respondents * 3 source codes = 9 
plagiarism cases). C# source codes utilized in this evaluation are UVa750, UVa10003, 
and UVa11450 which are taken from Competitive Programming 3 book [47]. 
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However, since these source codes are originally written in Java, they are rewritten to 
C# by the first author. In addition, to keep our dataset consist of various plagiarism 
attacks, we limit our respondents to lecturer assistants. Lecturer assistants should have 
a lot of experience for handling plagiarism attempts so that they may incorporate 
various plagiarism attacks at once.  

 

 

Figure 5.  Approximate Estimated Time based on Karnalim’s Dataset 

 Similarity result for each plagiarism case using CILS and STDS can be seen on 
Figure 6. Horizontal axis represents similarity value and vertical axis represents 
plagiarism case conducted by our respondents. In general, CILS characteristics on 
multiple plagiarism attacks is similar with its characteristics when handling plagiarism 
attacks separately. CILS similarity may significantly drop even though it only suffers 
small mismatches and gaps. However, even though CILS similarity is lower than 
STDS in many cases, its deficiency is still small since its average similarity is only 
1.54% lower than STDS.  
 When perceived from the number of penalties, STDS yields higher number of 
penalties than CILS for handling multiple plagiarism attacks. As seen in Figure 7, 
STDS yields higher penalties in all cases than CILS. This finding is quite different 
with our previous finding about CILS-STDS penalty on single plagiarism attacks. As 
in single plagiarism attacks, the number of CILS and STDS penalties is quite similar 
to each other. When discovered further, STDS tends to yield more penalties on longer 
source code due to more delimiter tokens incorporated on source code. These tokens 
may obfuscate similar pattern and reduce the effectiveness of Adaptive Local 
Alignment.  
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Figure 6.  Similarity Result based on Multiple Plagiarism Attacks 

 

Figure 7.  The number of CILS and STDS Penalties toward Multiple Plagiarism Attacks 

In terms of efficiency, CILS still outperforms STDS since the number of involved 
tokens in CILS is extremely smaller than STDS. The detail of approximate estimated 
time from both approaches can be seen on Figure 8. It is calculated based on TCILS and 
TSTDS defined in (3) and (4) respectively. When compared based on the average 
number of involved processes, CILS involves 86.09% processes lower than STDS. 
Thus, it can be stated that CILS is more efficient than STDS in terms of involved 
processes. 

5. Conclusion and Future Works 
In this paper, we have extended Juričić et al approach [10] by incorporating Adaptive 
Local Alignment (ALA) as a replacement of their Greedy String Tiling (GST). This 
replacement is conducted based on Lim et al’s work [34] which states that ALA 
performs better than GST in terms of sensitivity and specificity. In addition, we also 
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evaluate the impact of our approach (CILS) when compared to standard lexical-token 
approach (STDS). In general, CILS is more resistible for handling various plagiarism 
attacks separately. It outperforms STDS with 1.408% difference. Even though CILS 
may yield lower similarity than STDS due to its smaller token size, its number of 
penalties is still lower than STDS, especially on longer source code. However, CILS 
is weak against plagiarism cases which are focused on API and technical mechanism. 
These plagiarism cases yield significant change when converted into intermediate 
form. In terms of efficiency, CILS is more efficient than STDS since it reduces a vast 
amount of processes due to its limited token size. It reduces about 80.691% processes 
when compared with STDS based on Karnalim’s dataset [3]. 

 

 

Figure 8.  Approximate Estimated Time on Multiple Plagiarism Attacks 

When handling multiple plagiarism attacks, CILS yields lower accuracy than 
STDS. It yields 1.54% lower similarity based on our dataset. When discovered further, 
its deficiency is caused by implemented normalization in (1). This finding strengthens 
our previous finding about CILS effectiveness. CILS similarity may become over-
sensitive since one mismatch or gap may reduce its similarity percentage significantly. 
However, when perceived in the number of penalties, CILS yields extremely smaller 
number of penalties than STDS since STDS considers code delimiter token as its 
token member. These tokens may obfuscate similar pattern and reduce the 
effectiveness of Adaptive Local Alignment. In term of efficiency, CILS is still more 
efficient than STDS on multiple plagiarism attacks. It even reduces more token size 
since CIL representation is more compact than the source code itself. In general, we 
can conclude that CILS is better than STDS in terms of effectiveness and efficiency.   

In next research, our proposed method will be expanded to handle cross-language 
source code plagiarism for all .NET programming languages. It is expected to detect 
plagiarism even though given source codes are written on different .NET 
programming languages. Moreover, we will also propose a plagiarism detection 
system which enable our approach to be implemented in programming course. 
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