
285

UDC 004.413
Preliminary Communication Article

JIOS, VOL. 33, NO. 2 (2009) SUBMITTED 04/09; ACCEPTED 10/09

Suitability of Modern Software Development Methodologies for
Model Driven Development

Ruben Picek ruben.picek@foi.hr
University of Zagreb
�������	
�	�
��������
�	���	���

������	��
�����	

Abstract
As an answer to today’s growing challenges in software industry, wide spectrum of new
approaches of software development has occurred. One prominent direction is currently most
promising software development paradigm called Model Driven Development (MDD).
Despite a lot of skepticism and problems [8], MDD paradigm is being used and improved to
accomplish many inherent potential benefits. In the methodological approach of software
development it is necessary to use some kind of development process. Modern methodologies
can be classified into two main categories: plan-driven/traditional or heavyweight and agile or
lightweight. But when it is a question about MDD and development process for MDD,
currently known methodologies are very poor or better said they don't have any explanation of
MDD process[5], [7]. As the result of research, in this paper, author examines the possibilities
of using existing modern software methodologies in context of MDD paradigm.
Keywords: Model Driven Development, Software Development, Modern Methodologies,
Methodologies for Model Driven Development

1. Introduction
Detailed consideration of today's methodologies inevitably leads to the questions: How MDD
paradigm fits with existing methodologies? Is it at all possible to use these methodologies for
MDD or do we need to develop new methodology for it?

All the methodologies that are applied in today’s, traditional development are based on
the generic development phases: planning, analysis, design, coding, testing and delivery. In
practice, during the development of a new system, most of the time and risks is spent on
manually coding.

However, MDD paradigm changes the view of software development. It raises the level
of abstraction, putting emphasis on the initial stages of development, especially during the
analysis in which models has to be developed. Based on those models, programming code
would be fully or partly generated using integrated development environment (IDE). Models
which are created have to be accurate, consistent with sufficient level of details in order to
achieve automatization using model transformations. MDD paradigm is still in development
and some of the problems are not resolved: there are limited possibilities of development tools
(problems with model transformation implementation), problems in defying standard
modeling notation and languages for describing the model transformation.

Comparing these two "worlds" and taking into consideration their basic ideas, the
differences are clear. Some of the classical phases are being automated. Because focus is
shifted from the lower (implementation) to the upper (modeling) levels of abstraction, some
activities lose their significance and new activities like creating transformation definition,
implementing model transformations, modeling in some DSL language appears. Also, new
roles in a team, which requires new forms of knowledge, are needed.

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

286

PICEK SUITABILITY OF MODERN SOFTWARE DEVELOPMENT...

Do these differences exclude use of today's modern methodologies for MDD or they point
the elements that these methodologies have to be improved and adjust? Author in article
analyzes which of those two views are more suitable.

2. Modern Software Methodologies
In today’s environment, in which software development is faced with many challenges
because requirements of new and/or existing systems are growing, systems are complex and it
is hard to build them on time and within budget limitations, awareness of the importance of
using right methodology in software development is rising with each project. It is unthinkable
to develop modern applications without proven methodology. In the last 30 years many
different approaches for developing software were tried. If we want to classify today’s
methodologies one of the classification could be:

� plan-driven/traditional or heavyweight and
� agile or lightweight

While plan-driven/traditional methodologies emphasis detail planning, modeling and system
documenting, agile methodologies emphasize that, due to today's environment in which
software has to be created quickly and without redundant documentation, rapid developing
and delivering a software will satisfy client requirements which changes frequently anyway.
Although there are no clearly defined borders between these two categories, plan-
driven/traditional methodologies emphasize consistent commitment to the development
process, while agile methodologies emphasize values and principles on which they are based.

In practice many organization use hybrid methodologies which are mix of above defined
types and their own best practices.

2.1. Plan-driven/traditional methodologies

A main feature of methodologies in this category is good governance with system complexity
- one of the two main challenges in software development. How they achieve this? The main
characteristics of plan-driven/traditional methodologies are:

� Extensive planning.
� Large number of artifacts and formally described activities that are required to

obey during the software development.
� Demand time, discipline and a large quantity of documentation that must track

entire development cycle.
These methodologies are applied in the large, complex software systems development in
which teams consisting of large number of people participate. The two most frequently used
methodologies are: RUP (eng. Rational Unified Process) and MSF (eng. Microsoft Solution
Framework).

2.2. Agile methodologies

Plan-driven/traditional methodologies dedicate considerable amount of time in defining how
to develop software, and after that, focus is shift to programming and testing. On the other
hand, in agile methodologies focus is on software, and they are trying to offer a way of
developing SW with less extensive and not so detailed methodology, which brings quick and
active processes. The idea is managing changes during the software development which is
second of the two main challenges in software development.
 With this idea, in the middle 1990's, developing less extensive software development
methodologies, which typically contained only a few rules and activities that are light for
tracking, began. Formally the term agile development was adopted after manifest "Agile
Software Development Manifesto" was published in 2001 [4].

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

287

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Of the 12 agile development principles published in the manifest, the 4 principles are basic
[4]:

� Individuality and interaction are more important than processes and tools.
� Software that works is more important than comprehensive documentation.
� Cooperation with the client is more important than formal contract.
� Response to changes is more important than following formal plans.

As a result of agile approach following agile methodologies are developed [1], [17]:

� XP - Extreme Programming,
� Scrum,
� Crystal group of methodologies,
� Feature Driven Development,
� Dynamic System Development Method,
� Adaptive Software Development,
� Open Source Software Development,
� Agile Modeling
� Lean Software Development

3. Model Driven Development Paradigm
It can be said that, in last few years, software development evolve in significant manner.
MDD represents a set of approaches, theories and methodological frameworks for
industrialized software development, based on the systematic use of models as primary
artifacts throughout the software development cycle [9].

3.1. Core Issues of Model Driven Development

The basic idea of this paradigm is to move the development efforts from programming to the
higher level of abstraction, by using models as primary artifacts and by transforming models
into source code or other artifacts. The ultimate objective is the automated development (fully
or partly). Models are the key artifacts and the focus shifts from the programming to the
modeling [18].
 Traditionally, models are mostly used as sketches that informally convey some aspects of
a system or they can be used as blueprints to describe a detailed design that is then manually
implemented [20]. In MDD, models are used not just as sketches or blueprints, but as primary
artifacts from which efficient implementations are generated, transforming models into
programming code or other executable artifacts. According to Selic [15], the essence of model
driven development is about two things. One is abstraction, in terms of how we think about
the problem and then how we specify our solutions. Second thing that often gets forgotten is
the introduction of more and more automation into the software development by using
computer based tools and integrated environments.
 The heart of MDD paradigm is: models, modeling and model transformation. In order to
be suitable for the MDD, models must satisfy additional criteria – they must be machine
readable. Machine-readability of models is a prerequisite for being able to generate artifacts.
Automated model transformations are the key for realization of the MDD idea [3].
 MDD paradigm addresses a core set of problems which are present in software
development. Main identified problems are:

� Overwhelming complexity: MDD manages complexity by managing level of
abstraction.

� Not considering appropriate viewpoints: MDD provides multiple views to address
multiple concerns.

� System does not meet functional, performance and other system concerns: MDD
integrates forms and functions.

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

288

PICEK SUITABILITY OF MODERN SOFTWARE DEVELOPMENT...

� Lack of scalability: MDD consists of isomorphic composite recursive structures and
method to address scalability.

Many industrial software practitioners express concern about the technical difficulties
involved in translating models into code. From author’s viewpoint this is the most important
issue. Some of these important issues are discussed in section 3.3.

3.2. Benefits of Model Driven Development

According to [20], [19] MDD has the potential to greatly improve current practices in
software development. This potential manifests in overcoming the current challenges –
reducing the cost of development and increasing the consistency and quality of software.

Some of the more significant benefits include:
� Reducing risk: Many activities are strictly designed to reduce risk. Models increase

understanding, reducing what is unknown, both technically and operationally, so that
technical knowledge increases as iterations are completed. By increasing knowledge and
reducing variance, MDD reduces risk.

� Enhancing team and stakeholder communication: Because words can be imprecise, teams
use models to improve communication by making specific a particular aspect of a system.
Models make system issues visible through the use of diagrams with which ambiguous is
eliminated.

� Explicit processes for reasoning about system issues and performing trade studies: Many
design decision are implicit –resulting from architect’s experience. But the knowledge has
to be explicate which indicate that the process also has to be explicate.

� Early detection of errors: Well designed process enables early error detection and
resolution. The cost of errors rises significantly when is discovered in late phases of life
cycle.

� Traceability: often is common requirement for the systems begin built. It is also needed to
do effective fault or impact analysis to determine causes for faults and to determine which
parts of the system will be affected by a requirements change.

Beside this advantages, authors in [20], [19] include following: increased developer
productivity, maintainability, reuse of legacy, adaptability, consistency, repeatability, capture
of domain knowledge, models as long-term assets and ability to delay technology decisions.

The potential benefits of using models are significantly greater in software than in other
engineering disciplines because of the potential for a seamless link between models and the
systems they represent. Unfortunately, models have rarely produced anticipated benefits. The
key lies in resolving pragmatic issues related to the artifacts and culture of the previous
generation of software technologies.

3.3. Review of Model Driven Development

This part of the article, provide a systematic look at MDD from the developers perspective
and it is presented as a brief discussion of problems
 The primary goal in MDD paradigm is to raise the level of abstraction at which
developers operate. It should reduce both the amount of developer's efforts and the
complexity of the software artifacts that the developers use [10], [12]. Of course, there is
always a trade-off between simplification by raising the level of abstraction and
oversimplification, where details for any useful transformation are missing.
 As you can assume, problems are bound to model abstractions at different stages of the
software life cycle. The open issue is how to transform a model at one level of abstraction,
into a model or code at a lower level? In trying to answer this question, new ones arise. How
to use models? Some developers use models only for sketching, others for blueprinting while
MDD community presumed models as programming language.
 Which notation and modelling language should be used in order to provide automation?
The standardization of modelling notations is unquestionably an important step for achieving

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

289

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

MDD. Standardization provides developers with uniform modelling notations for a wide
range of modelling activities. In SW industry today, the Unified Modelling Language (UML)
is a standard language for specifying, visualizing, constructing, and documenting the artefacts
of software systems. The UML represents a collection of best engineering practices which
have been proven in the modelling of large and complex systems. Although UML is widely
recognized and used as modelling standard, it provoked a lot of criticism.
 Is UML suitable as model programming language? The notion of UML 2.0 as a model
programming language is predicated on the belief that the use of higher levels of abstraction
will make developers more productive than current programming languages. Is this belief
true? Furthermore Greenfield et al. [9] argue that although UML 2.0 is a useful modelling
language, it is not an appropriate language for MDD, because UML is designed for
documenting and not for programming. They promote use of special-purpose, domain-
specific languages (DSL’s). According to [12], MDD creates other problems, like:
redundancy, rampant round-trip problems, moving complexity rather than reducing it and
more expertise that is required.
 Selic in [16] point out that having right answers on questions like Will the code be fast
and compact enough? Will it be a correct rendering of design intent? is one of the key
elements of MDD success. The same thoughts were on minds when compilers were
introduced. Like all compilers, automatic code generators are idiosyncratic and often generate
program code that, as a result of various internal optimizations, is not easily traceable to the
original model. Thus, if an error is detected in the generated program, finding the place in the
model that must be fixed either at compile time or runtime might be difficult. In traditional
programming languages, we expect compilers to report errors in terms of the original source
code and, for runtime errors, we now expect a similar capability from our debuggers. The
need for such facilities for models is even greater because the semantic gap between the
modeling language’s high-level abstractions and the implementation code is wider. This
means that model-level error reporting and debugging facilities (in essence, “decompilers”)
must accompany practical automatic code generators. Otherwise, the practical difficulties
encountered in diagnosing problems could be significant enough to nullify much of MDD’s
advantage. Programmers faced with fixing code that they don’t understand will easily break it
and will likely be discouraged from relying on models in the future. This is a particularly
important factor to consider for model-driven development that is based on the notion of
customizable transformation “templates”. Other important questions are: how the generated
code is equivalent to hand-written code? How to merge two or more possible overlapping
models drawn in different IDE versions into one and generate code? and finally, how to
integrate this systems with existing legacy systems? We must wait to find right answers to
these questions. Currently we must argue that full realizations of the MDE vision may not be
possible in the near to medium-term primarily because of the wicked problems involved. This
discussion can be concluded with fact that MDD’s success is not predicted only on resolving
obvious technical issues like defining suitable modeling language and automatic code
generation.
 This is the state of the art. The MDD paradigm brings a lot of open issues on ice and
solutions are being searched in two directions: methodology and technology. The Object
Managements Group (OMG) proposed the approach called Model Driven Architecture
(MDA). Industrial leaders are also developing their own solutions, such as the Microsoft's
Software Factories (MSF) [10].

4. Analysis – How Today’s Methodologies Fits for Model Driven Development
With emergence of new types of software and development paradigms, need for discovering
suitable ways (new or improving existing) of methodological development, is growing. In
section 2, today’s methodologies were classified into 2 groups, this analysis analyzed
concepts that are characterized in theory for each category and then compared with MDD
concepts.

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

290

PICEK SUITABILITY OF MODERN SOFTWARE DEVELOPMENT...

4.1. Model Driven Development and Plan-Driven/Traditional Methodologies

MDD paradigm can be observed as a next evolutionary step in the software development,
which is mostly based on plan-driven/traditional methodologies (agile occurred in middle
90's). Analysis, in which MDD paradigm range currently meets main features of plan-
driven/traditional methodologies, can be seen in Table 1.

Table 1 presents comparison between characteristic of plan-driven/traditional methodologies
and MDD concepts.

Characteristics of plan-

driven/traditional methodologies
MDD paradigm concepts

Based on extensive planning and
detailed descriptions of problem
domain.

In planning, emphasis is put on achieve
problem domain understanding in order to
define usable models.

A large number of artifacts and strictly
formally described activities that are
required to abide during the software
development.

The main types of artifacts are models and
model transformations. Ordering enforcement
activities, it is necessary to respect to
successfully generate programming code.

Demand time, discipline and a large
quantity of documentation that must
track entire development cycle.

Time of development and documentation
writing is reduced by applying generators.
During defining models, mode to model
(M2M) and mode to code (M2C)
transformation, big discipline is required.
Writing documentation is not a follow-up
activity, but part of the model specification
process, from which documentation can be
generated any time.

Table 1. Suitability of MDD paradigm concepts with main characteristics of plan-
driven/traditional methodologies

From author opinion, segments that need to be adapted, changed or expanded to those plan-
driven/traditional methodologies would be minimally appropriate for MDD development
relates to [14]:
� Team: because of MDD characteristics, new roles and additional knowledge is required,

so that elements have to be formally added in methodologies [11].
� These new and important roles can be divided into two groups: domain and model

transformation and application design. In the first group, we can distinguish the following
roles: domain expert (involved in defining a DSL), language engineer (uses a meta
language to specify the concrete syntax and abstract syntax of a DSL), transformation
specialist (defines how models defined in DSL’s are executed or transformed into an
executable model using model transformation language) and implementation/platform
expert (has expertise knowing everything about executing / interpreting a model.

� In the second group, we can distinguish the following roles in which scope of activities
are changed (name is the same): business engineer (translates a business problem into a
formal application model specified in a DSL. This role needs both an understanding of the
problem domain and skills to express that understanding in a formal model.),
application/solution architect (decides on the application architecture – platform
implementation), test engineer (testing is performed at the Meta level).

� Development process: changing the importance and scope of activity in the some
development phases and introducing new activities (e.g. transformation definition,

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

291

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

implementing this transformation on models and modelling in some DSL language),
which should support automation is necessary to transform some aspects of development
phases. Model analysis and development with appropriate transformations have greater
importance than coding, so in that part especially has to transform some steps and add
those activities (e.g. defining model transformations, implementing transformations and
so on) which are typical for defining model transformations. It is important to stress that
transformations have to merge classical phases: analysis and coding into one which would
consist of defining model transformations and their execution in IDE and manually
coding (modelling + transforming + coding). This new activities, for each role, have to be
strictly defined. Having standard modelling language for defining model transformation is
also important. Some guidance in that segment is expected to.

� Technology: development environment and its capabilities is a critical component of
success because they brings the opportunity for fast reaction to changes in user
requirements, reduces the duration of iteration, gets faster feedback from users, saves time
in activities that are repeated and error prone and reduces risk. So, development
environment and its capabilities play a key role in MDD and act as a critical component
of success. Some guidelines have to be written in this segment.

� Modeling: the importance of models is recognized if someone wants to use them as
building blocks, so it is necessary to define when which elements has to be added in
models (marking models). The main types of artefacts are models and model
transformations (model to model -M2M and model to code - M2C). All details in
defining these artefacts have to be strictly formally respected (e.g. updating) to
successfully generate programming code.

� Problem domain: All domains aren’t suitable for MDD development. The solution is in
developing different domain specific modeling languages which bring as to new question:
Is it necessary to have one methodology for each domain with modeling language which
is proven as best practice?

4.2. Model Driven Development and Agile Methodologies

Can MDD paradigm be seen in the context of agile methodologies, when at first glance most
of them (XP, Feature Driven Development, Dynamic System Development Method, Adaptive
Software Development, Open Source Software Development) emphasize different aspects of
development (programming vs. modeling)? Author in papers [2], [5] find intentions that
MDD paradigm can be compatible with the principles of agile development. With this idea,
group of researchers decided to start the approach called agile MDD paradigm [2]. In further
analysis focus will be directed on displaying differences and similarities of these two
concepts. Differences are based on the fact that agile methodologies emphasize people, while
the MDD relies on advanced technology that define the technology independent models and
generate code. Another fundamental difference is visible in the fact that agile methodologies
emphasize software development with using programming as a basic technique while MDD is
based on modeling.

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

292

PICEK SUITABILITY OF MODERN SOFTWARE DEVELOPMENT...

Through Table 2 some aspects of those differences are clearly observable.

Aspect Agile methodologies MDD paradigm

People Represent the most significant
factor with the highest priority
during the software development.

People are seen from a technological
perspective, through roles in the
processes. In paradigm new roles
appears and social aspect is ignored.

Development
process

All activities during the process
are not defined in detail. The
emphasis is on the testing and
coding activities. Applies iterative
and incremental process.

In comparison with the plan-
driven/traditional process of
developing some of the phases
(design, coding, testing) are being
automated, and some activities are
added in order to achieve code
generation. Analysis with modeling
is a key phase. Defining and
implementing the transformation are
critical parts of the process.

Technology
and IDE

Has the lowest priority. Moreover,
it is important that the tools are
easy to leave the impression that
person has complete control over
the development.

Greatest importance is given to
technology. Depending on the tool
assesses the performance of
enforcement paradigm.

Modeling It has a marginal importance.
Understanding the system is
achieved through developing a
prototype.

The central activity. Development
depends on its quality (success or
fail).

Coding Manually Seeks to implement as much
generation (for now partial) of
programming code as possible.
Striving for the entire generating
code from the well-defined models.
Re-generation because of changes in
requirements is not a problem if the
changes are quality implemented
over the model.

Problem
domain

Environment with dynamic
change requirements.

Environment with stable
requirements.

Table 2. Differences between agile methodologies and MDD paradigm

 Although, at first glance, it may be concluded that the MDD paradigm better fits with the
plan-driven/traditional methodologies where some phases seek to be automated, it is possible
to find the common points with agile approach. That can be seen through the principles which
emphasize agile development.

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

293

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Table 3 shows the most significant similarities [5].

Aspect Agile methodologies MDD paradigm
Individuality and
interaction are more
important than
processes and tools.

Emphasize the link and
fellowship programmers and
human roles versus the
institutional processes and
development tools.

The structure and activities of the
team are not strictly defined.
Although generators applications
play a key role, the tools are based
on the specific domains.

Software that works
is more important
than comprehensive
documentation.

Updating key artifacts at all
levels of abstraction trying to
avoid inconsistencies.

Models at the highest level of
abstraction have to be always
updated. Consistency is achieved
by generating from those models.

Cooperation with the
client is more
important than
formal contract.

Client is permanently
engagement to project.

There is no special attention, but it
opens the possibility of including
client intensively for testing
applications. How MDD enables
quickly model transformation,
development does not lose time if
the customer is not satisfied with
the realization of a request. But,
for now, this is grounded in the
theoretical level of MDD
paradigm.

Response to changes
is more important
than following
formal plans.

Change managing is more
important than following
plan that does not match the
new (changed) requirements.

The generation of code, allows
quick reaction to the new request
or change in the already existing
one. It is enough to change the
model and restart the code
generation, what is considerably
simpler than to modify code
manually.

Table 3. Similarities between agile methodologies and MDD paradigm

 Based on these agile methodologies principles, it looks that, for the MDD development,
connection points can be found.
 IDE (MDD generators) naturally leads to the realization of some agile practices: brings
the opportunity for fast reaction to changes in user requirements, reduces the duration of
iteration, gets faster feedback from users, saves time in activities that are repeated and error
prone and reduces risk. Despite the differences that exist, the MDD paradigm can be seen in
the context of agile methodologies; they do not exclude each other. But, how agility
emphasizes general values and principles, and do not determine formal steps that needs to be
applied, remains an open question of suitability and compatibility degree of using agile
methodologies in the context of MDD development.

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

294

PICEK SUITABILITY OF MODERN SOFTWARE DEVELOPMENT...

5. Conclusion

 This paper presents a short review of current state in modern software methodologies and
model driven development. Article presents a core issues, problems, benefits and discussion
about MDD paradigm. Central activity in this article was analysis in which it is explained
how today's plan-driven/traditional and agile methodologies fits into the context of MDD.
 From this analysis a few things can be emphasizes:

� Although the MDD paradigm is investing considerable effort in order to solve
problems that encountered, methodology support has been largely overlooked. It
remains insufficient because it does not provide a concrete and comprehensive
process for governing software development activities. There are very few MDD
based software development methodologies available, and those with precise
processes are even fewer.

� Today's methodologies with an appropriate adjustments and changes can be used for
MDD projects. But, when you use it you are condemned to combine the parts you
think that are suitable. Using try and error method in developing hybrid MDD
methodology isn’t adequate approach of developing SW.

� Currently examples of using MDD within today's methodologies in the literature can’t
be found. It is partial because the MDD paradigm is still developing, and that there
are many problems beyond which skepticism and modesty exists in using MDD
paradigm.

� MDD paradigm has more sense in the context of traditional methodologies, and that
in the context of agile methodologies her contribution will be modest.

All of this leads to the conclusion that it is necessary for the MDD paradigm to ensure and
define its own process with phases, activities and roles with detail description.
 Attempting to realize the MDD vision it is necessary to ensure and define its own process
with phases, activities and roles with detail description [8]. This will provide insights that can
be used to significantly reduce the gap between evolving software complexity and the
technologies used to manage complexity.

References
[1] Abrahamsson, P. et al.: Agile Software Development Methods - Review and

Analysis, VTT Publications, 2002

[2] Ambler, W. S: Agile Model Driven Development (AMDD): The Key to Scaling
Agile Software Development, 2007, http://www.agilemodeling.com/essays/
amdd.htm, downloaded: December 14th 2008

[3] Balmelli, L., Brown, D., Cantor, M., Mott, M.: Model - Driven Systems
Development, IBM Systems Journal, Vol 45, No 3, 2006., p. 569-585.

[4] Beck, K., et al.: Agile Software Development Manifesto, 2001,
http://agilemanifesto.org/, downloaded: September 12th 2008

[5] Bettin, J: Model-Driven Software Development, SoftMetaWare, 2004
http://www.softmetaware.com/whitepapers.html, downloaded: January 22nd 2009

[6] Chitforoush, F., et al.: Methodology Support for the Model Driven Architecture,
Software Engineering Conference, APSEC 2007. 14th Asia-Pacific, Volume , Issue ,
pages:454 – 461, 2007

[7] Chitforoush, F., Yazdandoost, M., Ramsin,R.: Methodologiy Support for the Model
Driven Architecture, 14 Asia-Pacific Software Engineering Conference, 2007.,
IEEE DOI 10.1109/ASPEC.2007.58

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

295

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[8] Franc, R., Rumpe, B.: Model-driven Development of Complex Software: A
Research Roadmap, International Conference on Software Engineering,
Pages 37-54, 2007, ISBN:0-7695-2829-5, IEEE Computer Society
Washington, DC, USA

[9] Greenfield, J., Short, K., Cook, S. and Kent, S.: Software Factories - Assembling
Application with Patterns, Models, Frameworks and Tools, Wiley Publishing,
Indianapolis., 2006

[10] Greenfield, J., Short, K.: Moving to Software Factories, 2004,
http://blogs.msdn.com/askburton/archive/2004/09/20/232065.aspx, downloaded:
December 13th 2008

[11] Haan, J.: Roles in Model Driven Engineering, The Enterprise Architect, February
2009., http://www.theenterprisearchitect.eu/archive/2009/02/04/roles-in-model-
driven-engineering, downloaded: April 01th 2009

[12] Hailpern, B., Tarr, P.: Model-Driven Development: The Good, the Bad, and the
Ugly, IBM System Yournal, Vol 45, No 3. 2006, str. 451-461.,
http://www.research.ibm.com/journal/sj/453/hailpern.html, downloaded: September
02th 2008

[13] Mellor, S., Clark, A., Futagami, T.: Model Driven Development, IEEE Softwarep.
14-18., 2003

[14] Picek, R., Stubljar, S: (2009) Methodological Aspects of the Model Driven
Development, IADIS Multi Conference on Computer Science and Information
Systems, Proceedings of INFORMATICS 2009, ISBN 978-972-8924-86-7, p. 155-
159., Algarve, Portugal 17-19.06.2009.

[15] Pierson, H.: ARCast #5, http://channel9.msdn.com/ Showpost.aspx?postid=132943,
downloaded: August 02th 2008

[16] Selic, B.: The Pragmatics of Model-Driven Development, IEEE Software, p. 19-
25., 2003

[17] Sommerwille, I.: Software Engineering 8, Addison-Wesley, 2007

[18] Stein,D., Hanenberg, S.: Why Aspect-Oriented Software Development And Model
Driven Development Are Not The Same, Electronic Notes in Theoretical Computer
Science 163, p 71-82, 2006

[19] Swithinbank, P., Chessell, M., Gardner, T., Griffin, C., Man, J., Wylie, H., Yusuf,
L.: Patterns: Model-Driven Development Using IBM Rational Software Architect,
IBM Redbooks, 2005

[20] Yusuf, L., Chessel, M. and Gardner, T.: Implement Model-Driven Development to
Increase the Business Value of Your IT System, 2006, http://www-
128.ibm.com/developerworks/library/ar-mdd1/, downloaded: December 13th 2008

[21] Yusuf, L., Gardner,T.: Explore model-driven development (MDD) and related
approaches: A closer look at model-driven development and other industry
initiatives, 2006, http://www-128.ibm.com/developerworks/library/ar-mdd3/,
downloaded: December 13th 2008

JIOS, VOL. 33, NO. 2 (2009), PP. 285-295

