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Abstract 
Image classification and face recognition has been a popular subject matter for the last 
several decades. Images are usually handled as transformed as vectors which makes 
their classification a dimensionality reduction task. Some of the well-known algorithms 
in the area, such as the Sparsity Preserving Projection (SPP), create new theoretical 
concepts families, while other successfully modify or combine useful properties of the 
former ones. Compiled algorithms like Sparse Discriminant Preserving Projections 
(SDPP) employ the properties of the Sparse Representation (SR) as in their objective 
functions they include a supervised modification of the sparse weight matrix that 
considers the intra-class relations. By examining the construction of the SDPP 
algorithm and by providing some arguments on the supervised SR, in this paper we 
propose a new subspace learning algorithm, called Inverted Sparse Discriminant 
Preserving Projection (ISDPP). Likewise SDPP, ISDPP integrates supervised SR with 
the Fisher’s criterion. In contrast to SDPP, ISDPP incorporates a between-class SR with 
the Fischer’s within-class scatter matrix. A preliminary round of experiments support 
the initiative and provide an expectation for possible superior performance of the 
proposed ISDPP that is confirmed in the next round of empirical examinations. 
Keywords: Dimensionality reduction, Sparse Representation, Face Recognition 

1. Introduction 
Image classification and face recognition have received a lot of attention for the last 
several decades already. The interest in it stems from its wide practical applicability 
in numerous fields in science and life like medical research, public safety, space 
science, documents manipulations and many others. The images’ pixels matrices, 
converted as vectors – one of the main approach of handling images objects – are 
classical examples of high-dimensional data objects. In addition, the improving 
technical devises produce more and more qualitative and sizable images. This makes 
the task of image classification a dimensionality reduction problem, which is the 
essence of the subject of the algorithms in the area, prior to a final classification with 
a standard classifier. As a differentiated machine learning subject matter, the 
dimensionality reduction (DR) includes numerous theoretical concepts and algorithms 
that are applied for the solution of various problems in both unsupervised and 
supervised context. In general, the DR does simultaneously 1) work for the detection 
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of a new valuable variables-subspace that is much smaller than the original one, and 
2) dramatically reduce the required computational recourses.  

Since the images are large and complex data objects for a DR, the problem 
resolution has many aspects. Therefore, the numerous methods in the stream can be 
analysed and classified by some of their main characteristics (properties) and/or by 
the data structure they consider, like the following proposed: A) globality-locality 
reflection (representation) B) linearity-non-linearity C) presence (requirement) of 
parameter(s) D) unsupervised-supervised E) having the small-sample-size problem 
(SSS) F) having the out-of-sample problem. 

Principal Component Analysis (PCA) [1]-[4] and Linear Discriminant Analysis 
(LDA) [3],[4] are fundamental bases of the DR subject matter. They have natural 
intuitive concepts that are a ground of the composition of many of the following DR 
algorithms. PCA and LDA are based on the Euclidian distances and reflect the global 
structure of the data. They have immediate and quite simple application. PCA, 
however, does not consider the input data label information, which may lead to a loss 
of a critical pattern information. Contrarily, LDA takes into account the classes labels, 
which makes it more effective than PCA in many applications. Unfortunately, LDA 
cannot be applied directly to a data with the so called small sample size problem (SSS) 
when the number of the features is greater than the training observations – something 
that is very common in the image classification). To address this, Belhumeur et al. [3] 
propose a two stage PCA+LDA method, in which PCA is exploited to make the 
within-class scatter matrix nonsingular. However, this causes a loss of an important 
discriminative information. On the other side, the proposed by Li et al. [5] maximal 
margin criterion (MMC) overcome the SSS more efficiently. 

All the above methods capture the global Euclidian structure of the images and 
cannot characterize their local structure. To address this many manifold learning 
algorithms have been proposed based on the idea that the data points are samples from 
a low-dimensional manifold embedded in a high-dimensional space. Some 
representative algorithms are locally linear embedding (LLE) [6], Isometric Feature 
Mapping (ISOMAP) [7], Laplacian eigenmaps (LE) [8], etc, whereas each of them 
attempt to preserve a different geometrical property of the underlying manifold. 
Unfortunately all these methods suffer from the so called out of sample problem, 
consisting in the difficulty to find new sample images in the embedding space by 
utilizing the low-embedding results of the training data set. 

To overcome this, some improved methods like the introduced by He et al. 
Neighbourhood preserving embedding (NPE) [9] and Locality preserving projection  
(LPP) [10] have been proposed. NPE and LPP work with Euclidian distances as well, 
which makes them sensitive to data noise and outliers. To address this, Yu et al. [11] 
present the ILPP-L1 that is based on the 𝑙𝑙1-norm-distances reaching a better 
robustness towards undesired outliers’ impact on the cost of a bit more complicated 
subspace extraction, whereas the new space’s vectors are extracted one by one 
consecutively. As NPE and LPP consider only the local structure of the data, some 
extended methods like the presented by Yu et al. Discriminant Locality Preserving 
Projections (DLPP) [12] integrate “global” with “locality” information by taking into 
account the data labels. However, DLPP suffers from the small sample size problem 
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as well. To overcome this Lu et al. [13] propose the DLPP/MMC that embed the 
concept of the maximal margin criterion (MMC) and thus elegantly eliminates the 
SSS. 

 
The introduced by Qiao et al. Sparsity Preserving Projection (SPP) [14], sets the 

creation of a very attractive DR theory family. SPP seeks for a projection that 
preserves the sparse reconstruction relationship of the data points. Its main idea is 
imbedded in the computation of a sparse reconstruction weight matrix (also shortened 
as sparse weight matrix), whereat each row of the matrix is the observation 𝑥𝑥𝑖𝑖 
presented as a reconstruction from the remaining data points with the requirement for 
sparsity. 

A lot of DR algorithms combine verified beneficial properties and techniques of 
different models. For instance, the Discriminant Sparse Neighbourhood Preserving 
Embedding (DSNPE) of Gui et al. [15] compiles parts of SPP and MMC. DSNPE 
tries to simultaneously preserve the sparsity property and to maximise the margin 
between the classes, whereas the sparse weight matrix is calculated within the classes. 
Similarly, the Sparse Locality Preserving Discriminative Projections (SLPDP), 
proposed by Zhang et al. [16], assembles LPP with the MMC and aims preservation 
of the neighbourhood together with a between-classes margin maximisation, whereas, 
in the computation of the Laplacian matrix, the adjacency weight matrix is replaced 
by the within-class sparse weight matrix. On the other hand, the Sparse Discriminant 
Preserving Projections (SDPP), suggested by Zhang et al. [17], employs the 
relationship of the within-class sparse representation, to the between-class scatter 
matrix, seen is a carrier of the global structure of the data. 

The remainder of this paper is organized as follows. Section 2 introduces related 
works. The proposed Inverted Sparse Discriminant Preserving Projection algorithm is 
introduced in section 3. We show our experimental results in section 4 and the paper 
is concluded in section 5. 

2. Related works 

2.1 Linear Discriminant Analysis (LDA) 

The objective function of LDA is defined as: 

𝑚𝑚𝑚𝑚𝑥𝑥
𝑤𝑤

𝑤𝑤𝑇𝑇𝑆𝑆𝐵𝐵𝑤𝑤
𝑤𝑤𝑇𝑇𝑆𝑆𝑤𝑤𝑤𝑤

  

where:  

𝑺𝑺𝑩𝑩 =∑ 𝑛𝑛𝑖𝑖(𝑚𝑚(𝑖𝑖) − 𝑚𝑚)(𝑚𝑚(𝑖𝑖) − 𝑚𝑚)𝑇𝑇
𝐶𝐶

𝑖𝑖=1
     (1) 

𝑺𝑺𝒘𝒘 = ∑ 𝑛𝑛𝑖𝑖𝑐𝑐
𝑖𝑖=1 ∑ 𝑛𝑛𝑖𝑖(𝑥𝑥𝑗𝑗(𝑖𝑖) − 𝑚𝑚)(𝑥𝑥𝑗𝑗(𝑖𝑖) − 𝑚𝑚)𝑇𝑇

𝑛𝑛𝑖𝑖

𝑗𝑗=1
   (2) 



497

JIOS, VOL. 45. NO. 2 (2021), PP. 495-511

KIRILOV INVERTED SPARSE DISCRIMINANT PRESERVING... 

  

of a new valuable variables-subspace that is much smaller than the original one, and 
2) dramatically reduce the required computational recourses.  

Since the images are large and complex data objects for a DR, the problem 
resolution has many aspects. Therefore, the numerous methods in the stream can be 
analysed and classified by some of their main characteristics (properties) and/or by 
the data structure they consider, like the following proposed: A) globality-locality 
reflection (representation) B) linearity-non-linearity C) presence (requirement) of 
parameter(s) D) unsupervised-supervised E) having the small-sample-size problem 
(SSS) F) having the out-of-sample problem. 

Principal Component Analysis (PCA) [1]-[4] and Linear Discriminant Analysis 
(LDA) [3],[4] are fundamental bases of the DR subject matter. They have natural 
intuitive concepts that are a ground of the composition of many of the following DR 
algorithms. PCA and LDA are based on the Euclidian distances and reflect the global 
structure of the data. They have immediate and quite simple application. PCA, 
however, does not consider the input data label information, which may lead to a loss 
of a critical pattern information. Contrarily, LDA takes into account the classes labels, 
which makes it more effective than PCA in many applications. Unfortunately, LDA 
cannot be applied directly to a data with the so called small sample size problem (SSS) 
when the number of the features is greater than the training observations – something 
that is very common in the image classification). To address this, Belhumeur et al. [3] 
propose a two stage PCA+LDA method, in which PCA is exploited to make the 
within-class scatter matrix nonsingular. However, this causes a loss of an important 
discriminative information. On the other side, the proposed by Li et al. [5] maximal 
margin criterion (MMC) overcome the SSS more efficiently. 

All the above methods capture the global Euclidian structure of the images and 
cannot characterize their local structure. To address this many manifold learning 
algorithms have been proposed based on the idea that the data points are samples from 
a low-dimensional manifold embedded in a high-dimensional space. Some 
representative algorithms are locally linear embedding (LLE) [6], Isometric Feature 
Mapping (ISOMAP) [7], Laplacian eigenmaps (LE) [8], etc, whereas each of them 
attempt to preserve a different geometrical property of the underlying manifold. 
Unfortunately all these methods suffer from the so called out of sample problem, 
consisting in the difficulty to find new sample images in the embedding space by 
utilizing the low-embedding results of the training data set. 

To overcome this, some improved methods like the introduced by He et al. 
Neighbourhood preserving embedding (NPE) [9] and Locality preserving projection  
(LPP) [10] have been proposed. NPE and LPP work with Euclidian distances as well, 
which makes them sensitive to data noise and outliers. To address this, Yu et al. [11] 
present the ILPP-L1 that is based on the 𝑙𝑙1-norm-distances reaching a better 
robustness towards undesired outliers’ impact on the cost of a bit more complicated 
subspace extraction, whereas the new space’s vectors are extracted one by one 
consecutively. As NPE and LPP consider only the local structure of the data, some 
extended methods like the presented by Yu et al. Discriminant Locality Preserving 
Projections (DLPP) [12] integrate “global” with “locality” information by taking into 
account the data labels. However, DLPP suffers from the small sample size problem 

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES 

  

as well. To overcome this Lu et al. [13] propose the DLPP/MMC that embed the 
concept of the maximal margin criterion (MMC) and thus elegantly eliminates the 
SSS. 

 
The introduced by Qiao et al. Sparsity Preserving Projection (SPP) [14], sets the 

creation of a very attractive DR theory family. SPP seeks for a projection that 
preserves the sparse reconstruction relationship of the data points. Its main idea is 
imbedded in the computation of a sparse reconstruction weight matrix (also shortened 
as sparse weight matrix), whereat each row of the matrix is the observation 𝑥𝑥𝑖𝑖 
presented as a reconstruction from the remaining data points with the requirement for 
sparsity. 

A lot of DR algorithms combine verified beneficial properties and techniques of 
different models. For instance, the Discriminant Sparse Neighbourhood Preserving 
Embedding (DSNPE) of Gui et al. [15] compiles parts of SPP and MMC. DSNPE 
tries to simultaneously preserve the sparsity property and to maximise the margin 
between the classes, whereas the sparse weight matrix is calculated within the classes. 
Similarly, the Sparse Locality Preserving Discriminative Projections (SLPDP), 
proposed by Zhang et al. [16], assembles LPP with the MMC and aims preservation 
of the neighbourhood together with a between-classes margin maximisation, whereas, 
in the computation of the Laplacian matrix, the adjacency weight matrix is replaced 
by the within-class sparse weight matrix. On the other hand, the Sparse Discriminant 
Preserving Projections (SDPP), suggested by Zhang et al. [17], employs the 
relationship of the within-class sparse representation, to the between-class scatter 
matrix, seen is a carrier of the global structure of the data. 

The remainder of this paper is organized as follows. Section 2 introduces related 
works. The proposed Inverted Sparse Discriminant Preserving Projection algorithm is 
introduced in section 3. We show our experimental results in section 4 and the paper 
is concluded in section 5. 

2. Related works 

2.1 Linear Discriminant Analysis (LDA) 

The objective function of LDA is defined as: 

𝑚𝑚𝑚𝑚𝑥𝑥
𝑤𝑤

𝑤𝑤𝑇𝑇𝑆𝑆𝐵𝐵𝑤𝑤
𝑤𝑤𝑇𝑇𝑆𝑆𝑤𝑤𝑤𝑤

  

where:  

𝑺𝑺𝑩𝑩 =∑ 𝑛𝑛𝑖𝑖(𝑚𝑚(𝑖𝑖) − 𝑚𝑚)(𝑚𝑚(𝑖𝑖) − 𝑚𝑚)𝑇𝑇
𝐶𝐶

𝑖𝑖=1
     (1) 

𝑺𝑺𝒘𝒘 = ∑ 𝑛𝑛𝑖𝑖𝑐𝑐
𝑖𝑖=1 ∑ 𝑛𝑛𝑖𝑖(𝑥𝑥𝑗𝑗(𝑖𝑖) − 𝑚𝑚)(𝑥𝑥𝑗𝑗(𝑖𝑖) − 𝑚𝑚)𝑇𝑇

𝑛𝑛𝑖𝑖

𝑗𝑗=1
   (2) 



498

JIOS, VOL. 45. NO. 2 (2021), PP. 495-511

KIRILOV INVERTED SPARSE DISCRIMINANT PRESERVING... 

  

The 𝑺𝑺𝑩𝑩 and 𝑺𝑺𝒘𝒘 are called between-class scatter and within-class scatter matrices, 
respectively, 𝑚𝑚(𝑖𝑖) is the mean vector of class 𝑖𝑖, 𝑚𝑚 is the total mean of all observations 
and 𝑛𝑛𝑖𝑖 is the number of observations from class 𝑖𝑖. 

2.2 Sparsity preserving projection (SPP) 

Sparsity Preserving Projection (SPP) belongs to the generalized graph embedding 
framework [17]. It aim is to preserve the sparse reconstruction relationship of the data 
[16]. 

Given a data set of 𝑛𝑛 samples 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, ⋯ 𝑥𝑥𝑛𝑛] ∈ ℝ𝑚𝑚×𝑛𝑛, SPP seeks for a 
reconstruction of each sample 𝑥𝑥𝑖𝑖 by as few as possible from the remaining 
observations from 𝑿𝑿, or: 

min‖𝑠𝑠𝑖𝑖‖0,  𝑠𝑠. 𝑡𝑡.  𝑥𝑥𝑖𝑖 = 𝑿𝑿𝑠𝑠𝑖𝑖, 1 = 𝟏𝟏𝑇𝑇𝑠𝑠𝑖𝑖     (3) 

‖. ‖0 is the 𝑙𝑙0-norm, denoting the number of non-zeros in the coefficients’ vector, 
𝑠𝑠𝑖𝑖 = [𝑠𝑠𝑖𝑖1 , 𝑠𝑠𝑖𝑖2 , . . . , 𝑠𝑠𝑖𝑖𝑖𝑖−1 , 0, 𝑠𝑠𝑖𝑖𝑖𝑖+1 , . . . , 𝑠𝑠𝑖𝑖𝑛𝑛]𝑇𝑇, 𝑠𝑠𝑖𝑖 ∈ ℝ𝑛𝑛, where its 𝑖𝑖-th coefficient 
equals zero as an observation can not be presented by itself and 𝟏𝟏𝑇𝑇 ∈ ℝ𝑛𝑛 is a vector 
of all ones. Unfortunately Eq. (3) is NP-hard to solve as the function is not convex 
[14]. This difficulty is overcome as the optimization is translated into a 𝑙𝑙1-
minimisation problem or: 

min‖𝑠𝑠𝑖𝑖‖1,  𝑠𝑠. 𝑡𝑡.  𝑥𝑥𝑖𝑖 = 𝑿𝑿𝑠𝑠𝑖𝑖, 1 = 𝟏𝟏𝑇𝑇𝑠𝑠𝑖𝑖     (4) 

Further, in many practical problems when the data 𝑿𝑿 is noisy, the constraint 𝑥𝑥𝑖𝑖 =
𝑿𝑿𝑠𝑠𝑖𝑖 does not always hold [14]. Therefore, Qiao et al. [14] propose two stable 
extensions of the optimization. One of them is to relax the constraint  𝒙𝒙 = 𝑿𝑿𝑿𝑿 as 
‖𝒙𝒙 − 𝑿𝑿𝑿𝑿‖ < 𝜀𝜀, where 𝜀𝜀 can be viewed as an error tolerance. Thus Eq. (4) is modified 
as: 

min‖𝑠𝑠𝑖𝑖‖1,  s.t.  ‖𝒙𝒙 − 𝑿𝑿𝑿𝑿‖ < 𝜀𝜀, 1 = 𝟏𝟏𝑇𝑇𝑠𝑠𝑖𝑖    (5) 

The objection function of SPP seeks to best preserve each optimal vector 𝑿𝑿𝒊𝒊 by: 

𝑚𝑚𝑖𝑖𝑛𝑛
𝑤𝑤

∑ ‖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑋𝑋𝑠𝑠𝑖𝑖‖2𝑛𝑛
𝑖𝑖=1  = 𝑚𝑚𝑖𝑖𝑛𝑛

𝑤𝑤

 𝒘𝒘𝑻𝑻𝑿𝑿𝑺𝑺𝜶𝜶𝑿𝑿𝑻𝑻𝒘𝒘
𝒘𝒘𝑻𝑻𝑿𝑿𝑿𝑿𝑻𝑻𝒘𝒘

 , 

where: 

𝑺𝑺𝜶𝜶 = 𝑰𝑰 − 𝑺𝑺 − 𝑺𝑺𝑻𝑻 + 𝑺𝑺𝑻𝑻𝑺𝑺      (6) 

and 𝑺𝑺 = [𝑠𝑠1, 𝑠𝑠2 … 𝑠𝑠𝑛𝑛]𝑇𝑇, where 𝑠𝑠𝑖𝑖, 𝑖𝑖 = 1, 2, … , 𝑛𝑛, is the optimal solution of Eq. (5). 
SPP owns some important characteristics: 

− it is linear and doesn’t suffer from the out of sample problem; 
− it is parameter-free; 
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− it does naturally preserve some discriminant information of the data; 
− it is robust to data noise; 

2.3 Sparse Discriminant Preserving Projection (SDPP) 
Sparse Discriminant Preserving Projection (SDPP) combines features of SPP and 
LDA. The discriminant ability of the sparse representation is further strengthen as the 
vectors of the sparse weight matrix 𝑺𝑺 are constructed within the classes. According to 
the authors of SDPP, Zhang et al. [17], SPP does not consider the global structure of 
the data. Therefore in SDPP they involve the Fisher’s between-class scatter matrix 𝑺𝑺𝑩𝑩 
as a carrier of information of the global structure of the data and construct the model’s 
objective function as following: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡 𝑤𝑤𝑇𝑇𝑆𝑆𝛼𝛼𝑤𝑤
𝑡𝑡𝑡𝑡 𝑤𝑤𝑇𝑇𝑆𝑆𝐵𝐵𝑤𝑤        (7) 

where 𝑺𝑺𝜶𝜶 is obtained by Eq. (6) after Eq. (5) has been modified as: 

min‖𝑠𝑠𝑖𝑖
𝑘𝑘‖1,  s.t. ‖𝒙𝒙𝒊𝒊 − 𝑿𝑿𝒌𝒌𝒔𝒔𝒊𝒊

𝒌𝒌‖ < 𝜀𝜀, 1 = 𝟏𝟏𝑇𝑇𝑠𝑠𝑖𝑖
𝑘𝑘, label (𝑥𝑥𝑖𝑖) = 𝑘𝑘,  (8) 

where if 𝑚𝑚𝑘𝑘 is the number of samples with label 𝑘𝑘, 

 𝑠𝑠𝑖𝑖
𝑘𝑘 = [𝑠𝑠ⅈ,1

𝑘𝑘 , . . . , 𝑠𝑠ⅈ,𝑖𝑖−1
𝑘𝑘 , 0, 𝑠𝑠ⅈ,𝑖𝑖+1

𝑘𝑘 , . . . , 𝑠𝑠ⅈ,𝑛𝑛𝑘𝑘
𝑘𝑘 ]𝑇𝑇

 and  𝑚𝑚 = ∑ 𝑚𝑚𝑘𝑘
𝑐𝑐
𝑘𝑘=1 . 

Thus the sparse weight matrix is: 

𝑺𝑺 = 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑(𝑺𝑺𝟏𝟏, 𝑺𝑺𝟐𝟐, . . . 𝑺𝑺𝒄𝒄)     

where 
 𝑆𝑆𝑘𝑘 = [𝑠𝑠1

𝑘𝑘, 𝑠𝑠2
𝑘𝑘, . . . , 𝑠𝑠 𝑛𝑛𝑘𝑘

𝑘𝑘 ], and 𝑘𝑘 = 1, 2,…, 𝑐𝑐, are the available classes. 𝑺𝑺𝑩𝑩 in Eq. (7) 
is the LDA’s between-class scatter matrix from Eq. (1). 

3. The proposed Inverted Sparse Discriminant Preserving Projection 

3.1 Motivation 

The motivation of the new proposed algorithm comes with an observation of the 
construction idea of SDPP and has two main aspects. First, we challenge the extend 
of a discriminative information that the sparsity preserving element in that model 
contributes and provide a suggestion of the increase of its potential. Secondly, we try 
to keep the construction idea of SDPP in which a supervised sparsity element is 
integrated with a supervised “global” part. 

On the first aspect: In the unsupervised sparse representation an observation is 
reconstructed by the remaining samples where it is excluded from its own 
reconstruction. Analogically, when the classes’ labels are available, a class should be 
reconstructed by the remaining classes from the dataset. One can expect that a sample, 
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The 𝑺𝑺𝑩𝑩 and 𝑺𝑺𝒘𝒘 are called between-class scatter and within-class scatter matrices, 
respectively, 𝑚𝑚(𝑖𝑖) is the mean vector of class 𝑖𝑖, 𝑚𝑚 is the total mean of all observations 
and 𝑛𝑛𝑖𝑖 is the number of observations from class 𝑖𝑖. 

2.2 Sparsity preserving projection (SPP) 

Sparsity Preserving Projection (SPP) belongs to the generalized graph embedding 
framework [17]. It aim is to preserve the sparse reconstruction relationship of the data 
[16]. 

Given a data set of 𝑛𝑛 samples 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, ⋯ 𝑥𝑥𝑛𝑛] ∈ ℝ𝑚𝑚×𝑛𝑛, SPP seeks for a 
reconstruction of each sample 𝑥𝑥𝑖𝑖 by as few as possible from the remaining 
observations from 𝑿𝑿, or: 

min‖𝑠𝑠𝑖𝑖‖0,  𝑠𝑠. 𝑡𝑡.  𝑥𝑥𝑖𝑖 = 𝑿𝑿𝑠𝑠𝑖𝑖, 1 = 𝟏𝟏𝑇𝑇𝑠𝑠𝑖𝑖     (3) 

‖. ‖0 is the 𝑙𝑙0-norm, denoting the number of non-zeros in the coefficients’ vector, 
𝑠𝑠𝑖𝑖 = [𝑠𝑠𝑖𝑖1 , 𝑠𝑠𝑖𝑖2 , . . . , 𝑠𝑠𝑖𝑖𝑖𝑖−1 , 0, 𝑠𝑠𝑖𝑖𝑖𝑖+1 , . . . , 𝑠𝑠𝑖𝑖𝑛𝑛]𝑇𝑇, 𝑠𝑠𝑖𝑖 ∈ ℝ𝑛𝑛, where its 𝑖𝑖-th coefficient 
equals zero as an observation can not be presented by itself and 𝟏𝟏𝑇𝑇 ∈ ℝ𝑛𝑛 is a vector 
of all ones. Unfortunately Eq. (3) is NP-hard to solve as the function is not convex 
[14]. This difficulty is overcome as the optimization is translated into a 𝑙𝑙1-
minimisation problem or: 

min‖𝑠𝑠𝑖𝑖‖1,  𝑠𝑠. 𝑡𝑡.  𝑥𝑥𝑖𝑖 = 𝑿𝑿𝑠𝑠𝑖𝑖, 1 = 𝟏𝟏𝑇𝑇𝑠𝑠𝑖𝑖     (4) 

Further, in many practical problems when the data 𝑿𝑿 is noisy, the constraint 𝑥𝑥𝑖𝑖 =
𝑿𝑿𝑠𝑠𝑖𝑖 does not always hold [14]. Therefore, Qiao et al. [14] propose two stable 
extensions of the optimization. One of them is to relax the constraint  𝒙𝒙 = 𝑿𝑿𝑿𝑿 as 
‖𝒙𝒙 − 𝑿𝑿𝑿𝑿‖ < 𝜀𝜀, where 𝜀𝜀 can be viewed as an error tolerance. Thus Eq. (4) is modified 
as: 

min‖𝑠𝑠𝑖𝑖‖1,  s.t.  ‖𝒙𝒙 − 𝑿𝑿𝑿𝑿‖ < 𝜀𝜀, 1 = 𝟏𝟏𝑇𝑇𝑠𝑠𝑖𝑖    (5) 

The objection function of SPP seeks to best preserve each optimal vector 𝑿𝑿𝒊𝒊 by: 

𝑚𝑚𝑖𝑖𝑛𝑛
𝑤𝑤

∑ ‖𝑤𝑤𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑤𝑤𝑇𝑇𝑋𝑋𝑠𝑠𝑖𝑖‖2𝑛𝑛
𝑖𝑖=1  = 𝑚𝑚𝑖𝑖𝑛𝑛

𝑤𝑤

 𝒘𝒘𝑻𝑻𝑿𝑿𝑺𝑺𝜶𝜶𝑿𝑿𝑻𝑻𝒘𝒘
𝒘𝒘𝑻𝑻𝑿𝑿𝑿𝑿𝑻𝑻𝒘𝒘

 , 

where: 

𝑺𝑺𝜶𝜶 = 𝑰𝑰 − 𝑺𝑺 − 𝑺𝑺𝑻𝑻 + 𝑺𝑺𝑻𝑻𝑺𝑺      (6) 

and 𝑺𝑺 = [𝑠𝑠1, 𝑠𝑠2 … 𝑠𝑠𝑛𝑛]𝑇𝑇, where 𝑠𝑠𝑖𝑖, 𝑖𝑖 = 1, 2, … , 𝑛𝑛, is the optimal solution of Eq. (5). 
SPP owns some important characteristics: 

− it is linear and doesn’t suffer from the out of sample problem; 
− it is parameter-free; 
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− it does naturally preserve some discriminant information of the data; 
− it is robust to data noise; 

2.3 Sparse Discriminant Preserving Projection (SDPP) 
Sparse Discriminant Preserving Projection (SDPP) combines features of SPP and 
LDA. The discriminant ability of the sparse representation is further strengthen as the 
vectors of the sparse weight matrix 𝑺𝑺 are constructed within the classes. According to 
the authors of SDPP, Zhang et al. [17], SPP does not consider the global structure of 
the data. Therefore in SDPP they involve the Fisher’s between-class scatter matrix 𝑺𝑺𝑩𝑩 
as a carrier of information of the global structure of the data and construct the model’s 
objective function as following: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡 𝑤𝑤𝑇𝑇𝑆𝑆𝛼𝛼𝑤𝑤
𝑡𝑡𝑡𝑡 𝑤𝑤𝑇𝑇𝑆𝑆𝐵𝐵𝑤𝑤        (7) 

where 𝑺𝑺𝜶𝜶 is obtained by Eq. (6) after Eq. (5) has been modified as: 

min‖𝑠𝑠𝑖𝑖
𝑘𝑘‖1,  s.t. ‖𝒙𝒙𝒊𝒊 − 𝑿𝑿𝒌𝒌𝒔𝒔𝒊𝒊

𝒌𝒌‖ < 𝜀𝜀, 1 = 𝟏𝟏𝑇𝑇𝑠𝑠𝑖𝑖
𝑘𝑘, label (𝑥𝑥𝑖𝑖) = 𝑘𝑘,  (8) 

where if 𝑚𝑚𝑘𝑘 is the number of samples with label 𝑘𝑘, 

 𝑠𝑠𝑖𝑖
𝑘𝑘 = [𝑠𝑠ⅈ,1

𝑘𝑘 , . . . , 𝑠𝑠ⅈ,𝑖𝑖−1
𝑘𝑘 , 0, 𝑠𝑠ⅈ,𝑖𝑖+1

𝑘𝑘 , . . . , 𝑠𝑠ⅈ,𝑛𝑛𝑘𝑘
𝑘𝑘 ]𝑇𝑇

 and  𝑚𝑚 = ∑ 𝑚𝑚𝑘𝑘
𝑐𝑐
𝑘𝑘=1 . 

Thus the sparse weight matrix is: 

𝑺𝑺 = 𝑑𝑑𝑚𝑚𝑑𝑑𝑑𝑑(𝑺𝑺𝟏𝟏, 𝑺𝑺𝟐𝟐, . . . 𝑺𝑺𝒄𝒄)     

where 
 𝑆𝑆𝑘𝑘 = [𝑠𝑠1

𝑘𝑘, 𝑠𝑠2
𝑘𝑘, . . . , 𝑠𝑠 𝑛𝑛𝑘𝑘

𝑘𝑘 ], and 𝑘𝑘 = 1, 2,…, 𝑐𝑐, are the available classes. 𝑺𝑺𝑩𝑩 in Eq. (7) 
is the LDA’s between-class scatter matrix from Eq. (1). 

3. The proposed Inverted Sparse Discriminant Preserving Projection 

3.1 Motivation 

The motivation of the new proposed algorithm comes with an observation of the 
construction idea of SDPP and has two main aspects. First, we challenge the extend 
of a discriminative information that the sparsity preserving element in that model 
contributes and provide a suggestion of the increase of its potential. Secondly, we try 
to keep the construction idea of SDPP in which a supervised sparsity element is 
integrated with a supervised “global” part. 

On the first aspect: In the unsupervised sparse representation an observation is 
reconstructed by the remaining samples where it is excluded from its own 
reconstruction. Analogically, when the classes’ labels are available, a class should be 
reconstructed by the remaining classes from the dataset. One can expect that a sample, 
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representing a class, will be “described” better by the observations from the different 
classes than by the observations from its own class as its reconstruction will reflect its 
relation to samples that defer from it a priori (as belonging to another classes). In 
contrast, in the within-class sparse representation case, an observation will be 
represented only by the same group members which may lead to an omission of 
discriminative information. 

Another reason for the expectation for a better discriminative information 
preservation when the sparse weight matrix is defined between the classes, is related 
to the number of observations that participate in the obtainment of the sparsity weight 
vectors 𝒔𝒔𝒊𝒊. In general, it is more likely that the count of the observations from all 
remaining classes will exceed the same class’ one and therefore would contribute 
more discriminative information to the particular 𝒔𝒔𝒊𝒊. We can demonstrate this with the 
following illustrative example: if we consider a training dataset that has fully equally 
distributed classes – e.g. containing 10 classes with 10 samples each – in the 
computation of the between-class sparsity vector 𝑠𝑠𝑖𝑖 of each sample 𝑥𝑥𝑖𝑖 will participate 
90 instead of only nine observations. 

On the second aspect: As LDA is a “global” method we expect that the within-
class scatter matrix 𝑺𝑺𝒘𝒘 Eq. (2) would similarly work for the inclusion of global 
structure preservation, the way the between-class scatter matrix 𝑺𝑺𝑩𝑩 Eq. (1) does in 
SDPP. 

By taking into account the above considerations we propose a new subspace 
learning algorithm called Inverted Sparse Discriminant Preserving Projection 
(ISDPP). Similarly to SDPP, ISDPP simultaneously utilize the properties of SPP with 
the addition of an information on the global structure of the data contained in the 
Fisher’s criterion. In contrast to SDPP, ISDPP embeds a SR with a sparse weight 
matrix, the sparse weight vectors of which are computed between the classes. On the 
other hand, the preservation of the global structure of the data is achieved by the 
inclusion of the LDA’s within-class scatter matrix Eq. (2). Thus, while the 
optimization problem of SDPP is to minimize the objective function Eq. (7), ISDPP 
seeks a projection that maximises the ratio between the Sparse Representation element 
– derived by sparsity weight vectors computed between the classes – and the Fisher’s 
within-class scatter matrix.  

Thus, the objective function of the proposed ISDPP is formulated as: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡 𝑤𝑤𝑇𝑇𝑺𝑺𝜶𝜶𝑤𝑤
𝑡𝑡𝑡𝑡 𝑤𝑤𝑇𝑇𝑺𝑺𝒘𝒘𝑤𝑤        (9) 

Where 𝑺𝑺𝜶𝜶 is obtained from Eq. (6) and the sparse weight matrix 𝑺𝑺 and its vectors 
are constructed as following: 

min‖𝑠𝑠𝑚𝑚
𝑘𝑘‖1,  s.t. ‖𝑥𝑥𝑚𝑚 − 𝑋𝑋�̅�𝑘𝑠𝑠𝑚𝑚‖ < 𝜀𝜀, 1 = 1𝑇𝑇𝑠𝑠𝑖𝑖

𝑘𝑘, label (𝑥𝑥𝑚𝑚) = 𝑘𝑘. (10) 

The �̅�𝑘 stands for is not class 𝑘𝑘. The notation 𝑿𝑿�̅�𝒌 means that to the obtainment of 
the sparse weight vector 𝑠𝑠𝑚𝑚

𝑘𝑘, corresponding to sample 𝑚𝑚 from class 𝑘𝑘, contribute the 
samples from all classes other than 𝑘𝑘. If 𝑚𝑚𝑘𝑘 is the number of samples with label 𝑘𝑘 and 
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𝑛𝑛�̅�𝑘 is the number of samples with different label (�̅�𝑘), the length of 𝑠𝑠𝑖𝑖𝑘𝑘 will be 𝑛𝑛�̅�𝑘. The 
vector 𝑠𝑠𝑖𝑖𝑘𝑘, the optimal solution of Eq. (10), is completed with 𝑛𝑛𝑘𝑘-zero coefficients on 
the places of the respective samples from class 𝑘𝑘. If we denote the final reconstruction 
weight vector corresponding to sample 𝑖𝑖 with 𝑠𝑠𝑖𝑖�̂�𝑘 and 𝑛𝑛𝑘𝑘+ 𝑛𝑛�̅�𝑘 = 𝑛𝑛, then: 

𝑠𝑠𝑖𝑖�̂�𝑘 = [0(𝑚𝑚), 𝑠𝑠𝑖𝑖(𝑗𝑗)𝑘𝑘 ]𝑇𝑇, where 𝑚𝑚 denotes all indexes of the observations from class 
𝑘𝑘 as they are ordered in the dataset 𝑿𝑿 and 𝑗𝑗 denotes all indexes of the remaining 
observations from the other classes with an order in 𝑠𝑠𝑖𝑖�̂�𝑘 the same as the order of 𝑿𝑿�̅�𝒌 in 
𝑿𝑿. The sum of the 𝑚𝑚-elements is 𝑛𝑛𝑘𝑘 and the sum of the 𝑗𝑗-elements is 𝑛𝑛�̅�𝑘, respectively. 
Then for the sparse weight matrix 𝑺𝑺 we have: 

𝑺𝑺 = [𝑠𝑠1�̂�𝑘, 𝑠𝑠2�̂�𝑘 . . . , 𝑠𝑠𝑛𝑛�̂�𝑘 ]
𝑇𝑇
 (11) 

4. Experimental results 

4.1 Experiments on the sparse representation 

In this experimental round we examine if the between-class sparse weight matrix does 
add a valuable discriminative information to the SPP, when supervised, how the two 
alternated supervised SPP’s compare to each other and also to the unsupervised SPP. 

To evaluate this, we compare the classification results after a subspace learning 
done by SPP with sparse weight matrices’ vectors computed by Eqs. (5), (8) and (10), 
respectively. We set the value of the parameter 𝜀𝜀 as 10. For a better differentiation, 
we denote the algorithm with Eq. (8) as SPP-W and the one with Eq. (10) as SPP-B 
(“W” and “B” for a within- or between-class notation, respectively). 

For the above proposition we involve the public face images database ORL. ORL 
contains 400 grey scale images of 40 persons with a resolution of 112 × 92 pixels. 
Each person has 10 images that have variations in the lightning, facial expressions 
(smiling/not smiling, open/closed eyes) and/or other details (glasses/no glasses) – Fig. 
1 shows the images of the first one person. All images are cropped and resized to 32 
× 32 pixels. The experiment is conducted as the SPP, SPP-B and SPP-W are trained 
over the sampled training set for features extractions. The test samples are projected 
over the generated subspaces and evaluated with the application of kNN classifier. 
We choose to use 1-nearst-neightbuor which is consistent with the literature in the 
area. The procedure is performed with a random sample of three and five images per 
person for training with 10 runs for each case. As a pre-processing step we perform 
PCA and retain 98% of the images’ energy. Tables 1-2 show the obtained average 
recognition accuracies (RA) – up to the 150th dimension – and their standard 
deviations over the 10 independent runs for the two scenarios. These are also plotted 
on Fig. 2 and Fig. 3. 
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representing a class, will be “described” better by the observations from the different 
classes than by the observations from its own class as its reconstruction will reflect its 
relation to samples that defer from it a priori (as belonging to another classes). In 
contrast, in the within-class sparse representation case, an observation will be 
represented only by the same group members which may lead to an omission of 
discriminative information. 

Another reason for the expectation for a better discriminative information 
preservation when the sparse weight matrix is defined between the classes, is related 
to the number of observations that participate in the obtainment of the sparsity weight 
vectors 𝒔𝒔𝒊𝒊. In general, it is more likely that the count of the observations from all 
remaining classes will exceed the same class’ one and therefore would contribute 
more discriminative information to the particular 𝒔𝒔𝒊𝒊. We can demonstrate this with the 
following illustrative example: if we consider a training dataset that has fully equally 
distributed classes – e.g. containing 10 classes with 10 samples each – in the 
computation of the between-class sparsity vector 𝑠𝑠𝑖𝑖 of each sample 𝑥𝑥𝑖𝑖 will participate 
90 instead of only nine observations. 

On the second aspect: As LDA is a “global” method we expect that the within-
class scatter matrix 𝑺𝑺𝒘𝒘 Eq. (2) would similarly work for the inclusion of global 
structure preservation, the way the between-class scatter matrix 𝑺𝑺𝑩𝑩 Eq. (1) does in 
SDPP. 

By taking into account the above considerations we propose a new subspace 
learning algorithm called Inverted Sparse Discriminant Preserving Projection 
(ISDPP). Similarly to SDPP, ISDPP simultaneously utilize the properties of SPP with 
the addition of an information on the global structure of the data contained in the 
Fisher’s criterion. In contrast to SDPP, ISDPP embeds a SR with a sparse weight 
matrix, the sparse weight vectors of which are computed between the classes. On the 
other hand, the preservation of the global structure of the data is achieved by the 
inclusion of the LDA’s within-class scatter matrix Eq. (2). Thus, while the 
optimization problem of SDPP is to minimize the objective function Eq. (7), ISDPP 
seeks a projection that maximises the ratio between the Sparse Representation element 
– derived by sparsity weight vectors computed between the classes – and the Fisher’s 
within-class scatter matrix.  

Thus, the objective function of the proposed ISDPP is formulated as: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡 𝑤𝑤𝑇𝑇𝑺𝑺𝜶𝜶𝑤𝑤
𝑡𝑡𝑡𝑡 𝑤𝑤𝑇𝑇𝑺𝑺𝒘𝒘𝑤𝑤        (9) 

Where 𝑺𝑺𝜶𝜶 is obtained from Eq. (6) and the sparse weight matrix 𝑺𝑺 and its vectors 
are constructed as following: 

min‖𝑠𝑠𝑚𝑚
𝑘𝑘‖1,  s.t. ‖𝑥𝑥𝑚𝑚 − 𝑋𝑋�̅�𝑘𝑠𝑠𝑚𝑚‖ < 𝜀𝜀, 1 = 1𝑇𝑇𝑠𝑠𝑖𝑖

𝑘𝑘, label (𝑥𝑥𝑚𝑚) = 𝑘𝑘. (10) 

The �̅�𝑘 stands for is not class 𝑘𝑘. The notation 𝑿𝑿�̅�𝒌 means that to the obtainment of 
the sparse weight vector 𝑠𝑠𝑚𝑚

𝑘𝑘, corresponding to sample 𝑚𝑚 from class 𝑘𝑘, contribute the 
samples from all classes other than 𝑘𝑘. If 𝑚𝑚𝑘𝑘 is the number of samples with label 𝑘𝑘 and 

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES 

  

𝑛𝑛�̅�𝑘 is the number of samples with different label (�̅�𝑘), the length of 𝑠𝑠𝑖𝑖𝑘𝑘 will be 𝑛𝑛�̅�𝑘. The 
vector 𝑠𝑠𝑖𝑖𝑘𝑘, the optimal solution of Eq. (10), is completed with 𝑛𝑛𝑘𝑘-zero coefficients on 
the places of the respective samples from class 𝑘𝑘. If we denote the final reconstruction 
weight vector corresponding to sample 𝑖𝑖 with 𝑠𝑠𝑖𝑖�̂�𝑘 and 𝑛𝑛𝑘𝑘+ 𝑛𝑛�̅�𝑘 = 𝑛𝑛, then: 

𝑠𝑠𝑖𝑖�̂�𝑘 = [0(𝑚𝑚), 𝑠𝑠𝑖𝑖(𝑗𝑗)𝑘𝑘 ]𝑇𝑇, where 𝑚𝑚 denotes all indexes of the observations from class 
𝑘𝑘 as they are ordered in the dataset 𝑿𝑿 and 𝑗𝑗 denotes all indexes of the remaining 
observations from the other classes with an order in 𝑠𝑠𝑖𝑖�̂�𝑘 the same as the order of 𝑿𝑿�̅�𝒌 in 
𝑿𝑿. The sum of the 𝑚𝑚-elements is 𝑛𝑛𝑘𝑘 and the sum of the 𝑗𝑗-elements is 𝑛𝑛�̅�𝑘, respectively. 
Then for the sparse weight matrix 𝑺𝑺 we have: 

𝑺𝑺 = [𝑠𝑠1�̂�𝑘, 𝑠𝑠2�̂�𝑘 . . . , 𝑠𝑠𝑛𝑛�̂�𝑘 ]
𝑇𝑇
 (11) 

4. Experimental results 

4.1 Experiments on the sparse representation 

In this experimental round we examine if the between-class sparse weight matrix does 
add a valuable discriminative information to the SPP, when supervised, how the two 
alternated supervised SPP’s compare to each other and also to the unsupervised SPP. 

To evaluate this, we compare the classification results after a subspace learning 
done by SPP with sparse weight matrices’ vectors computed by Eqs. (5), (8) and (10), 
respectively. We set the value of the parameter 𝜀𝜀 as 10. For a better differentiation, 
we denote the algorithm with Eq. (8) as SPP-W and the one with Eq. (10) as SPP-B 
(“W” and “B” for a within- or between-class notation, respectively). 

For the above proposition we involve the public face images database ORL. ORL 
contains 400 grey scale images of 40 persons with a resolution of 112 × 92 pixels. 
Each person has 10 images that have variations in the lightning, facial expressions 
(smiling/not smiling, open/closed eyes) and/or other details (glasses/no glasses) – Fig. 
1 shows the images of the first one person. All images are cropped and resized to 32 
× 32 pixels. The experiment is conducted as the SPP, SPP-B and SPP-W are trained 
over the sampled training set for features extractions. The test samples are projected 
over the generated subspaces and evaluated with the application of kNN classifier. 
We choose to use 1-nearst-neightbuor which is consistent with the literature in the 
area. The procedure is performed with a random sample of three and five images per 
person for training with 10 runs for each case. As a pre-processing step we perform 
PCA and retain 98% of the images’ energy. Tables 1-2 show the obtained average 
recognition accuracies (RA) – up to the 150th dimension – and their standard 
deviations over the 10 independent runs for the two scenarios. These are also plotted 
on Fig. 2 and Fig. 3. 
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Figure 1. All 10 images of person 1 from the ORL database. 

 
Figure 2. Recognition accuracy (%) vs. number of projected vectors of the SPP’s algorithms on the 

ORL database with a sample of 3 images per subject for training. 

Method/ Dim. Avg/ Std. 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

SPP 
Avg. 8.6 15.3 24.8 37.3 49.2 62.6 71.5 73.9 73.4 73.0 71.9 73.1 73.1 73.1 73.1 
Std. 1.7 2.1 3.6 3.4 3.4 2.8 1.7 3.1 3.5 3.5 3.9 3.5 3.5 3.5 3.5 

SPP-W 
Avg. 10.1 17.9 22.6 26.5 27.9 29.5 29.5 34.1 58.5 73.5 80.5 82.3 82.3 82.3 82.3 
Std. 1.9 2.0 1.5 3.0 3.3 2.9 3.4 3.1 5.2 2.5 2.6 2.5 2.5 2.5 2.5 

SPP-B 
Avg. 39.2 67.4 70.2 84.6 84.6 84.6 84.6 84.6 84.6 84.6 84.6 84.6 84.6 84.6 84.6 
Std. 3.2 2.9 2.6 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

Table 1. Recognition accuracy (%) vs. number of projected vectors of the SPP’s algorithms on the ORL 
database with a sample of 3 images per subject for training. 
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Figure 3. Recognition accuracy (%) vs. number of projected vectors of the SPP’s algorithms on the 

ORL database with a sample of 5 images per subject for training. 

Method/ Dim. Avg/ Std. 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

SPP 
Avg. 4.6 9.3 12.8 17.8 24.3 31.8 39.8 49.6 59.4 69.6 75.8 77.1 78.5 78.7 77.7 
Std. 1.3 1.3 2.7 3.5 3.7 4.8 5.4 7.1 6.4 4.8 3.6 3.2 2.6 3.0 3.5 

SPP-W 
Avg. 71.1 88.5 91.7 92.8 92.7 92.8 92.5 91.9 91.5 91.3 90.2 89.6 88.8 88.3 87.9 
Std. 6.4 3.2 2.1 2.4 2.3 2.4 3.1 2.9 2.8 3.0 2.8 2.3 2.7 2.1 2.5 

SPP-B 
Avg. 48.3 78.6 79.8 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 
Std. 4.2 3.8 4.3 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 

Table 2.  Recognition accuracy (%) vs. number of projected vectors of the SPP’s algorithms on the 
ORL database with a sample of 5 images per subject for training. 

4.1.1 Results 
In this experimental phase we observe a clear advantage of the supervised 
modifications of SPP over the classical SPP. This is in line with the expectations and 
demonstrates explicitly the additional discriminant information contribution of the SR 
when it is embedded as supervised in compiled algorithms. In regard to the SPP-W 
versus SPP-B comparison, SPP-W reaches higher absolute recognition accuracy in 
the 50%-training-samples case. On the other side, SPP-B stays more robust when the 
training sample decreases. That confirms the considerations that the out-of-the-class 
samples approach could provide a stable preservation of discriminant information. 
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modifications of SPP over the classical SPP. This is in line with the expectations and 
demonstrates explicitly the additional discriminant information contribution of the SR 
when it is embedded as supervised in compiled algorithms. In regard to the SPP-W 
versus SPP-B comparison, SPP-W reaches higher absolute recognition accuracy in 
the 50%-training-samples case. On the other side, SPP-B stays more robust when the 
training sample decreases. That confirms the considerations that the out-of-the-class 
samples approach could provide a stable preservation of discriminant information. 
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 4.2 Experiments on the introduced ISDPP 

To evaluate the performance of the proposed ISDPP algorithm we conduct further 
experiments on the public ORL and AR databases and compare it with the 
effectiveness of other well-known algorithms like DSNPE, SLPDP and SDPP. 

4.2.1 Experiments with the ORL database, experimental design. 

This experimental round involves the ORL database, described above. In order to 
simultaneously examine the robustness of the proposed ISDPP we decide to occlude 
the 112 × 92 pixels training samples with a random 24 × 24 pixels square, in which 
each pixel of the square takes a random value from the interval [0, 1], whereas a value 
of zero represents pure black and a value of one pure white color, respectively – Fig. 
4 shows an example of three original and randomly “occluded” images from the 
database. Further, the images are cropped to 32 × 32 pixels and a PCA with 98% 
energy retention is performed. Similarly to the first experimental round above, we 
define training sets with three and five random images per subject, respectively, and 
do 10 runs for each case.  The new proposed ISDPP is executed together with the 
other three algorithms for a subspace learning over the so defined training subsets. 
The parameter 𝜀𝜀 in the sparse representations has the value of 10 and for the parameter 
𝛾𝛾 in SPNPE we take the value of 1 (as in [15]) and the value of 0.1 in SLPDP (as in 
[16]), respectively. The test samples are mapped to the respective projections and 
evaluated with 1-NN classifier. The obtained classification results are presented in 
Tables 3-4 and visualised on Fig. 5, 6. 
 

 
Figure 4. Example of three original and randomly “occluded” images from the ORL database 
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Figure 5. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 

with another algorithms on the ORL database with a sample of 3 images per subject for training. 

Method/ Dim. Avg/ Std. 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

DSNPE 
Avg. 40.1 63.1 77.9 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 
Std. 4.1 5.6 2.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 

SLPDP 
Avg. 13.5 29.5 60.4 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 
Std. 2.5 5.4 4.0 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

SDPP 
Avg. 18.9 30.7 38.3 41.0 43.4 45.8 45.9 46.9 47.0 47.6 47.2 48.4 49.3 47.4 47.1 
Std. 8.5 11.1 13.6 14.6 14.7 14.3 16.2 15.6 16.6 17.6 18.8 19.1 19.1 19.1 19.5 

ISDPP 
Avg. 83.9 85.6 86.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 

Std. 2.9 3.0 2.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

Table 3. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 
with another algorithms on the ORL database with a sample of 3 images per subject for training. 

4.2.2 Experiments with the AR database, experimental design. 

The AR face database contains over 4000 color face images of 126 individuals (70 
men and 56 women). In our experiment we use a subset of the AR face database 
provided and preprocessed by Martinez et al. [18]. This subset contains 1400 face 
images, with a resolution of 165 x 120 pixels, corresponding to 100 person (50 men 
and 50 women), where each person has 14 different images with illumination change 
and expressions – Fig. 7 shows the images of one person from the database. 
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Figure 5. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 

with another algorithms on the ORL database with a sample of 3 images per subject for training. 

Method/ Dim. Avg/ Std. 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

DSNPE 
Avg. 40.1 63.1 77.9 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 84.1 
Std. 4.1 5.6 2.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 

SLPDP 
Avg. 13.5 29.5 60.4 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 77.6 
Std. 2.5 5.4 4.0 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 

SDPP 
Avg. 18.9 30.7 38.3 41.0 43.4 45.8 45.9 46.9 47.0 47.6 47.2 48.4 49.3 47.4 47.1 
Std. 8.5 11.1 13.6 14.6 14.7 14.3 16.2 15.6 16.6 17.6 18.8 19.1 19.1 19.1 19.5 
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Avg. 83.9 85.6 86.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 
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Table 3. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 
with another algorithms on the ORL database with a sample of 3 images per subject for training. 

4.2.2 Experiments with the AR database, experimental design. 

The AR face database contains over 4000 color face images of 126 individuals (70 
men and 56 women). In our experiment we use a subset of the AR face database 
provided and preprocessed by Martinez et al. [18]. This subset contains 1400 face 
images, with a resolution of 165 x 120 pixels, corresponding to 100 person (50 men 
and 50 women), where each person has 14 different images with illumination change 
and expressions – Fig. 7 shows the images of one person from the database. 
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Figure 6. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 

with another algorithms on the ORL database with a sample of 5 images per subject for training. 

Method/ Dim. Avg/ Std. 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

DSNPE 
Avg. 49.1 76.5 85.9 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3 
Std. 5.6 5.4 3.4 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 

SLPDP 
Avg. 20.5 47.2 77.2 85.8 85.8 85.8 85.8 85.8 85.8 85.8 85.8 85.8 85.8 85.8 85.8 
Std. 4.6 6.3 5.1 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 4.3 

SDPP 
Avg. 27.5 47.1 56.2 62.7 65.1 67.0 68.5 68.0 70.4 71.3 71.4 71.8 71.1 70.6 69.8 
Std. 7.5 11.0 9.4 10.5 10.5 11.3 10.5 11.3 11.6 10.3 9.5 9.9 10.8 11.1 12.5 

ISDPP 
Avg. 90.9 93.0 93.8 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2 

Std. 2.3 1.4 1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Table 4. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 
with another algorithms on the ORL database with a sample of 5 images per subject for training. 

We design two scenarios with four and seven images per subject for training. 
Similarly, we occlude the training images with a random 32 × 32 pixels square – Fig. 
8 shows an example of three original and randomly “occluded” images from the 
database – and perform a PCA over the training set with a 98% energy retention. For 
the sparse representations we use the second modified sparse representation, Eq. (16) 
from [14] and the parameter 𝛾𝛾 in SPNPE takes the value of 1 and 0.1 in SLPDP, 
respectively. The obtained recognition accuracies of the methods are presented on 
Tables 5-6 and Fig. 9, 10. 
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Figure 7.  The images of one person from the AR database. 

 
Figure 8. Example of three original and randomly “occluded” images from the AR database 

 
Figure 9. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 

with another algorithms on the AR database with a sample of 4 images per subject for training. 
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Table 4. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 
with another algorithms on the ORL database with a sample of 5 images per subject for training. 

We design two scenarios with four and seven images per subject for training. 
Similarly, we occlude the training images with a random 32 × 32 pixels square – Fig. 
8 shows an example of three original and randomly “occluded” images from the 
database – and perform a PCA over the training set with a 98% energy retention. For 
the sparse representations we use the second modified sparse representation, Eq. (16) 
from [14] and the parameter 𝛾𝛾 in SPNPE takes the value of 1 and 0.1 in SLPDP, 
respectively. The obtained recognition accuracies of the methods are presented on 
Tables 5-6 and Fig. 9, 10. 
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with another algorithms on the AR database with a sample of 4 images per subject for training. 
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Method/ Dim. Avg/ Std.  10 20 30 40 50 60 70 80 90 100 110 120 130 140 

DSNPE 
Avg.  6.5 16.5 32.1 48.5 62.8 70.5 75.2 79.2 82.8 85.1 85.1 85.1 85.1 85.1 
Std.  1.3 2.6 3.5 3.9 2.4 2.0 2.1 1.7 1.7 1.1 1.1 1.1 1.1 1.1 

SLPDP 
Avg.  4.0 8.3 13.5 19.4 27.0 37.9 50.3 65.9 80.3 81.2 81.2 81.2 81.2 81.2 
Std.  0.8 1.0 2.2 3.0 2.9 4.7 6.8 6.2 1.5 1.4 1.4 1.4 1.4 1.4 

SDPP 
Avg.  7.3 18.6 27.6 33.0 38.0 41.7 42.9 45.2 46.9 48.5 50.2 50.6 51.0 52.1 
Std.  1.7 1.6 2.9 3.4 2.7 2.5 3.1 4.2 4.1 4.2 4.2 3.8 3.8 4.6 

ISDPP 
Avg.  60.2 71.3 74.0 76.7 78.5 80.9 82.5 84.3 86.2 86.5 86.5 86.5 86.5 86.5 

Std.  1.9 2.5 2.7 2.7 3.0 2.5 2.5 2.4 1.7 1.8 1.8 1.8 1.8 1.8 

Table 5. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 
with another algorithms on the AR database with a sample of 4 images per subject for training. 

 
Figure 10. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 

with another algorithms on the AR database with a sample of 7 images per subject for training. 

4.3 Experiments on the ISDPP - results 
In these experimental runs we register a clear advantage of the ISDPP algorithm over 
the comparison ones. In addition, the maximal recognition accuracy of the ISDPP is 
reached faster or, in the worst case, together with the maximal RA of the other models 
and with the minimal average standard deviation in the half of the cases. The 
significance of the results is further increased by considering the circumstance of the 
sizable artificial occlusion of the training data. 
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Method/ Dim. Avg/ Std. 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

DSNPE 
Avg. 8.1 21.5 38.1 54.8 68.5 75.0 79.6 82.5 84.0 85.8 85.8 85.8 85.8 85.8 85.8 
Std. 0.7 1.9 1.4 1.9 2.7 2.4 2.0 1.9 1.0 0.9 0.9 0.9 0.9 0.9 0.9 

SLPDP 
Avg. 5.6 12.1 21.3 31.4 43.7 57.7 68.6 78.0 82.3 82.3 82.3 82.3 82.3 82.3 82.3 
Std. 1.0 1.0 1.9 1.9 3.3 0.6 1.3 1.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

SDPP 
Avg. 10.9 19.8 30.1 36.7 40.7 44.0 47.4 48.5 49.1 48.8 48.3 47.7 45.0 28.4 11.5 
Std. 1.5 3.0 4.2 4.1 2.4 3.1 2.9 2.7 3.1 2.6 2.9 2.9 1.7 12.0 6.0 

ISDPP 
Avg. 59.4 69.7 73.5 78.4 81.3 83.6 86.5 89.3 89.8 89.8 89.8 89.8 89.8 89.8 89.8 

Std. 1.4 1.8 2.0 2.0 2.1 1.7 1.1 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Table 6. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 
with another algorithms on the AR database with a sample of 7 images per subject for training. 

5. Conclusion and further work 
In this paper we propose a new subspace learning algorithm, called Inverted Sparse 
Discriminant Preserving Projection (ISDPP). ISDPP borrows the conceptional idea of 
SDPP and likewise combines a supervised sparse representation (SR) with the 
Fisher’s criterion. Prior to the ISDPP construction, we argue the way a supervised SR 
may be constructed and assume that the contribution of a discriminant information of 
the between-the-classes SR could exceed the intra-class one. As it is difficult for one 
to define the effect of a component of a model in the productivity effectiveness of the 
assembled algorithm it is part of, we decided to compare separately the classification 
performance of the SR under the three scenarios when the sparse weight matrix 
remains unsupervised or is built within- and between-the-classes, respectively. The 
results on the public images ORL database in this preliminary experimental phase 
support the construction idea of ISDPP. In the following experiments on the ORL and 
AR database we observe a stable and robust superior recognition accuracy of the new 
proposed algorithm compared to other well-known successful algorithms like 
DSNPE, SLPDP and SDPP, that is achieved under the conditions of randomly 
occluded training data. As our experiments are conducted on well-structured, taken in 
controlled environment, face images data, the recognition accuracy we observe may 
have a big gap from a real face recognition application. However, we argue that the 
proposed method could serve as a useful pattern recognition tool in more complex 
face recognition strategies applied on images with higher variations and/or such taken 
in the wild. As a further work, we intend to conduct experiments on face images with 
higher variations or images from another, various, types. 
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Method/ Dim. Avg/ Std.  10 20 30 40 50 60 70 80 90 100 110 120 130 140 

DSNPE 
Avg.  6.5 16.5 32.1 48.5 62.8 70.5 75.2 79.2 82.8 85.1 85.1 85.1 85.1 85.1 
Std.  1.3 2.6 3.5 3.9 2.4 2.0 2.1 1.7 1.7 1.1 1.1 1.1 1.1 1.1 

SLPDP 
Avg.  4.0 8.3 13.5 19.4 27.0 37.9 50.3 65.9 80.3 81.2 81.2 81.2 81.2 81.2 
Std.  0.8 1.0 2.2 3.0 2.9 4.7 6.8 6.2 1.5 1.4 1.4 1.4 1.4 1.4 

SDPP 
Avg.  7.3 18.6 27.6 33.0 38.0 41.7 42.9 45.2 46.9 48.5 50.2 50.6 51.0 52.1 
Std.  1.7 1.6 2.9 3.4 2.7 2.5 3.1 4.2 4.1 4.2 4.2 3.8 3.8 4.6 

ISDPP 
Avg.  60.2 71.3 74.0 76.7 78.5 80.9 82.5 84.3 86.2 86.5 86.5 86.5 86.5 86.5 

Std.  1.9 2.5 2.7 2.7 3.0 2.5 2.5 2.4 1.7 1.8 1.8 1.8 1.8 1.8 

Table 5. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 
with another algorithms on the AR database with a sample of 4 images per subject for training. 

 
Figure 10. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 

with another algorithms on the AR database with a sample of 7 images per subject for training. 

4.3 Experiments on the ISDPP - results 
In these experimental runs we register a clear advantage of the ISDPP algorithm over 
the comparison ones. In addition, the maximal recognition accuracy of the ISDPP is 
reached faster or, in the worst case, together with the maximal RA of the other models 
and with the minimal average standard deviation in the half of the cases. The 
significance of the results is further increased by considering the circumstance of the 
sizable artificial occlusion of the training data. 
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Method/ Dim. Avg/ Std. 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 

DSNPE 
Avg. 8.1 21.5 38.1 54.8 68.5 75.0 79.6 82.5 84.0 85.8 85.8 85.8 85.8 85.8 85.8 
Std. 0.7 1.9 1.4 1.9 2.7 2.4 2.0 1.9 1.0 0.9 0.9 0.9 0.9 0.9 0.9 

SLPDP 
Avg. 5.6 12.1 21.3 31.4 43.7 57.7 68.6 78.0 82.3 82.3 82.3 82.3 82.3 82.3 82.3 
Std. 1.0 1.0 1.9 1.9 3.3 0.6 1.3 1.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

SDPP 
Avg. 10.9 19.8 30.1 36.7 40.7 44.0 47.4 48.5 49.1 48.8 48.3 47.7 45.0 28.4 11.5 
Std. 1.5 3.0 4.2 4.1 2.4 3.1 2.9 2.7 3.1 2.6 2.9 2.9 1.7 12.0 6.0 

ISDPP 
Avg. 59.4 69.7 73.5 78.4 81.3 83.6 86.5 89.3 89.8 89.8 89.8 89.8 89.8 89.8 89.8 

Std. 1.4 1.8 2.0 2.0 2.1 1.7 1.1 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Table 6. Recognition accuracy (%) vs. number of projected vectors of the proposed ISDPP together 
with another algorithms on the AR database with a sample of 7 images per subject for training. 

5. Conclusion and further work 
In this paper we propose a new subspace learning algorithm, called Inverted Sparse 
Discriminant Preserving Projection (ISDPP). ISDPP borrows the conceptional idea of 
SDPP and likewise combines a supervised sparse representation (SR) with the 
Fisher’s criterion. Prior to the ISDPP construction, we argue the way a supervised SR 
may be constructed and assume that the contribution of a discriminant information of 
the between-the-classes SR could exceed the intra-class one. As it is difficult for one 
to define the effect of a component of a model in the productivity effectiveness of the 
assembled algorithm it is part of, we decided to compare separately the classification 
performance of the SR under the three scenarios when the sparse weight matrix 
remains unsupervised or is built within- and between-the-classes, respectively. The 
results on the public images ORL database in this preliminary experimental phase 
support the construction idea of ISDPP. In the following experiments on the ORL and 
AR database we observe a stable and robust superior recognition accuracy of the new 
proposed algorithm compared to other well-known successful algorithms like 
DSNPE, SLPDP and SDPP, that is achieved under the conditions of randomly 
occluded training data. As our experiments are conducted on well-structured, taken in 
controlled environment, face images data, the recognition accuracy we observe may 
have a big gap from a real face recognition application. However, we argue that the 
proposed method could serve as a useful pattern recognition tool in more complex 
face recognition strategies applied on images with higher variations and/or such taken 
in the wild. As a further work, we intend to conduct experiments on face images with 
higher variations or images from another, various, types. 
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