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Abstract 
We investigate the notion of compromise in the strict preferential voting setting. We 
introduce divergence as an inverse measure of compromise in a collection of strict 
preferential votes. Classical functions of social choice theory are analyzed with respect 
to divergence. New social welfare functions and new social choice functions with the 
objective of compromise are defined directly from optimization of divergence and later 
analyzed with respect to the common desiderata of social choice theory. For a very 
natural function, a simple divergence minimizer, we prove it satisfies the properties of 
anonymity, neutrality, consistence, and continuity. Consequently, according to 
Young’s theorem of characterization it follows that this function is a scoring point 
function. Its scoring point vector is also given. Finally, we discuss the parameter p in 
the divergence measure which was introduced to address vagueness and fuzziness of 
compromise and to control for a variety of intended levels of compromise. 
Keywords: Social choice function, Social welfare function, Strict preferential voting, 
Compromise, Borda count, Plurality count, Divergence 

1. Background and motivation 
In this paper we are investigating the setting where voters vote by expressing strict 
preferences among candidates (or alternatives). Each voter votes by expressing his 
(strict) preference – a strict linear (implicitly transitive) order of candidates. 

A social welfare function (SWF) is a function which aggregates preferences into 
an outcome preference. Although other definitions exist in literature, we opt for the 
now standard one introduced by Kenneth Arrow [5]. Similarly, we opt for the 
definition of the social choice function (SCF) as a partial function which aggregates 
preferences to select a single winner. When such selection is not unique, i.e., following 
the SCF’s method produces a tie, we consider the result to be undefined.1 Ties in 

 
1 We opt for the definition of SCF as a partial function for the simplicity of the argument. Using the 
common terminology of the social choice theory, we don’t require SCF to satisfy the universal domain 
property. 
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elections in practice are handled in a variety of ways but this topic is left out of this 
paper. 

We assume some familiarity with the classical social welfare/choice functions: 
Borda count (where 𝑖𝑖-th rank in each preference is awarded a score of 𝑛𝑛 − 𝑖𝑖); Plurality 
count (where only the number of top rankings matters); and Condorcet method (with 
“dueling” of all candidate pairs – counting how many times one is placed before the 
other). 

1.1. Motivating example 

The following example illustrates the motivation of the paper. Suppose an election is 
held where 100 voters choose between three candidates: 𝐴𝐴, 𝐵𝐵 and 𝐶𝐶. A collection of 
all votes (preferences) is called a profile. 

Suppose our imaginary election produced a profile α which we summarize in 
Table 1. Numbers on the left are the tally of received preferences in the profile. 

 
 51 𝐴𝐴 ≻ 𝐵𝐵 ≻ 𝐶𝐶  
 49 𝐶𝐶 ≻ 𝐵𝐵 ≻ 𝐴𝐴  

 
Table 1. A summary of the motivating profile 𝛼𝛼 

 
Table 1 briefly summarizes that 51 voters in 𝛼𝛼 (a slight majority) have voted 𝐴𝐴 ≻ 𝐵𝐵 ≻
𝐶𝐶, whereas the other 49 voters have voted 𝐶𝐶 ≻ 𝐵𝐵 ≻ 𝐴𝐴. 

Who should win this election (with respect to 𝛼𝛼)? Classical social choice functions 
agree on the winner (candidate 𝐴𝐴). Borda count and Plurality count, however, disagree 
on other ranks. Borda count ranks candidates with respect to their score, where first 
candidate receives two points, second candidate one point, and third candidate no 
points, on each preference of the given profile. Therefore, according to Borda count, 
candidate 𝐴𝐴 scores 102 points, candidate 𝐵𝐵 scores 100 points, and candidate 𝐶𝐶 scores 
98 points; yielding Borda linear order of 𝐴𝐴 ≻ 𝐵𝐵 ≻ 𝐶𝐶. On the other hand, Plurality 
count ranks candidates with respect to the number of top positions attained in all the 
preferences in the profile. Candidate 𝐴𝐴 is top ranked in 51 preferences, candidate 𝐶𝐶 in 
49 preferences, whereas candidate 𝐵𝐵 is never ranked first. Plurality count produces  
𝐴𝐴 ≻ 𝐶𝐶 ≻ 𝐵𝐵 as an outcome preference for this profile. 

Note, however, that 49% of the voters regard candidate 𝐴𝐴 as the worst choice. 
How legitimate is 𝐴𝐴’s victory when viewed from this perspective? A sensible and 
intuitive approach would be to try to look for a compromise. Doing so could offer 
candidate 𝐵𝐵 as a compromise winner of profile 𝛼𝛼. 

We take a simple approach to model the notion of compromise in a given profile 
by extending the positional analysis to account for all positional information in each 
vote (preference): i.e., to also take into account how often a candidate placed second, 
third etc. 

For example, let us take a closer look at rankings of candidate 𝐴𝐴 in all the votes 
in profile 𝛼𝛼. 𝐴𝐴 is the top ranked candidate (difference to the top rank is 0) for 51 
voters. In the remaining 49 preferences candidate 𝐴𝐴 ranks 𝐴𝐴 places below top 
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(difference to the top rank is 2). We propose to measure and express this “accrued 
penalty” in 𝛼𝛼 with the following expression 

 
51 ⋅ 0𝑝𝑝 + 49 ⋅ 2𝑝𝑝,  for fixed 𝑝𝑝 > 1.   (1) 

 
This value reflects the voters’ dislike for candidate 𝐴𝐴 (to be selected for a winner) 

expressed in 𝛼𝛼. The motivating idea is that the least disliked candidate is a 
compromise winner. We denote expression (1) with 𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴). For other candidates we 
have: 

𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵) = 51 ⋅ 1𝑝𝑝 + 49 ⋅ 1𝑝𝑝 = 100, 
𝑑𝑑𝑑𝑑𝑑𝑑(𝐶𝐶) = 51 ⋅ 2𝑝𝑝 + 49 ⋅ 0𝑝𝑝 = 51 ⋅ 2𝑝𝑝. 
 

The idea here is that smaller values of 𝑑𝑑𝑑𝑑𝑑𝑑 reflect a greater level of compromise, 
with the smallest being the best. Unanimous ranking in a profile produces the lowest 
possible value of 𝑑𝑑𝑑𝑑𝑑𝑑(−) = 0. 

Expression (1) with parameter 𝑝𝑝 > 1 is inspired by Minkowski’s 𝑝𝑝-metric. For 
𝑝𝑝 = 2 divergence corresponds to the square of the Euclidean metric, a common and 
widely applied measure for comparing distances (when square root is not needed). 

Raising rank loss to the 𝑝𝑝-th power in (1) assigns more-than-linear weight to 
greater distances – the idea here is that strongly disliked options are penalized by 
design when we are trying to find a a compromise solution. Note that by setting 𝑝𝑝 =
1 (linear penalty) we obtain, in essence, the usual Borda count method, but recall that 
we assume 𝑝𝑝 > 1. We will discuss the choice of 𝑝𝑝 in a later section of the paper. 

Note that 𝑑𝑑𝑑𝑑𝑑𝑑 is not a distance metric. We do not measure the distance between 
preferences like for example Cook and Seiford in [1]. Rather, we introduce divergence 
as a penalty measure of candidate’s rank loss across the voting profile. Nevertheless, 
our goal is similar: we look for optimization of this measure in the interest of the 
democratic society (electorate) to obtain the best outcome. 

1.2. Notation and definitions 

A finite collection of votes is called a profile. Number of occurrences of each 
vote/preference (number of occurrences) in an election matter. Order of votes in a 
democratic election does not.  

Therefore, we consider any profile α to be a multiset of votes – an unordered 
collection equipped with the multiplicity function µα which counts the occurrences of 
each element in α. For a tuple of candidates 𝑀𝑀 = (𝑀𝑀1,𝑀𝑀2,… ,𝑀𝑀𝑛𝑛) with ℒ𝑀𝑀 we denote 
a set of profiles over 𝑀𝑀. 

Compatible profiles α, β ∈ ℒM can be joined as a multiset sum (denoted as 𝛼𝛼 + 𝛽𝛽, 
not to be confused with multiset union not used in this paper). Modeling voting 
profiles as multisets is not found in the literature but we opt for it here because it 
provides us with adequate formal elegance and economical notation. 

A sum of 𝑘𝑘 ∈ ℕ copies of 𝛼𝛼 is also a profile and we denote it as 𝑘𝑘 ⋅ 𝛼𝛼. We denote 
the size of α (number of votes) with |𝛼𝛼|. Any profile 𝛼𝛼 can be factored as 
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𝛼𝛼 = ∑ 𝑘𝑘𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖
𝜎𝜎𝑖𝑖∈𝛼𝛼

 (2) 

where 𝜎𝜎𝑖𝑖 are single-vote profiles occurring in 𝛼𝛼 and 𝑘𝑘𝑖𝑖 = 𝜇𝜇𝛼𝛼(𝜎𝜎) ∈ ℕ are their 
corresponding multiplicities. 

Let 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛). Each preference 

𝑀𝑀𝑖𝑖1 ≻ ⋯ ≻ 𝑀𝑀𝑖𝑖𝑛𝑛 

rearranges 𝑀𝑀’s candidates and determines a unique permutation 

(𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑛𝑛) 

(and vice-versa). For example, for 𝑀𝑀 = (𝐴𝐴, 𝐵𝐵, 𝐶𝐶), preference 

𝐵𝐵 ≻ 𝐶𝐶 ≻ 𝐴𝐴 

corresponds to permutation (2 3 1). We abuse this correspondence and consider 
preferences as permutations when convenient. 

A profile 𝛼𝛼 over 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛) of size |𝛼𝛼| = 𝑛𝑛 can be naturally represented 
by a matrix. Suppose votes of α are arbitrarily ordered as singleton profiles 𝛼𝛼1, … , 𝛼𝛼𝑚𝑚. 
We say that an 𝑚𝑚 × 𝑛𝑛 matrix 𝐴𝐴 = [𝑎𝑎𝑖𝑖𝑖𝑖] represents 𝛼𝛼 if 𝑎𝑎𝑖𝑖𝑖𝑖 is the rank of the 𝑀𝑀𝑖𝑖  in 𝛼𝛼𝑖𝑖. 
Each vote is recorded as a row of 𝐴𝐴 written in the permutation form. Matrix 
representation of a profile is unique up to a permutation of rows. 

Now we can formally define the notion of divergence introduced in (1). However, 
we immediately generalize and include divergence from other positions (non-leading 
ranks). 

Definition 1.1 (𝑝𝑝-divergence from the 𝑗𝑗-th position). Let 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛) be a 
tuple of candidates and let 𝛼𝛼 ∈ ℒ𝑀𝑀 be a profile of over 𝑀𝑀 represented by matrix 𝐴𝐴 =
[𝑎𝑎𝑖𝑖𝑖𝑖]. For (𝑖𝑖-th) candidate 𝑀𝑀𝑖𝑖 we define divergence from the 𝑗𝑗-th position in 𝛼𝛼 as 

𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝑖𝑖, 𝑗𝑗) = ∑|𝛼𝛼𝑘𝑘,𝑖𝑖 − 𝑗𝑗|𝑝𝑝
|𝛼𝛼|

𝑘𝑘=1
(3) 

where ak,i is 𝑀𝑀𝑖𝑖’s rank in k-th preference of α, with 𝑝𝑝 > 1.  
We abbreviate 𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝑖𝑖, 1) with 𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝑖𝑖). In a single-profile context we abbreviate 

even further with 𝑑𝑑𝑑𝑑𝑔𝑔(𝑖𝑖). 
Divergence values for all pairs 𝑖𝑖, 𝑗𝑗 are naturally gathered in the matrix form. 
Definition 1.2 (Divergence matrix). Let 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛) be a tuple of 

candidates and let 𝛼𝛼 ∈ ℒ𝑀𝑀 be a profile over 𝑀𝑀. We define the divergence matrix as 
𝐷𝐷𝛼𝛼 = [𝑑𝑑𝑖𝑖,𝑖𝑖]     𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒     𝑑𝑑𝑖𝑖,𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝑖𝑖, 𝑗𝑗). 
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 1 2 3 

𝐴𝐴 196 100 204 

𝐵𝐵 100 0 100 

𝐶𝐶 204 100 196 

Figure 1. Divergence matrix 𝐷𝐷𝛼𝛼 

Example 1.3 For a profile 𝛼𝛼 over 𝑀𝑀 = (𝐴𝐴, 𝐵𝐵, 𝐶𝐶) summarized in Table 1 (our 
motivating example) we compute 

𝐷𝐷𝛼𝛼 = [
196 100 204
100 0 100
204 100 196

]. 

Recall that rows of 𝐷𝐷𝛼𝛼 correspond to candidates. Values in columns correspond 
to rank penalties/distances: 𝑖𝑖-th row of 𝐷𝐷𝛼𝛼 holds divergence values for 𝑖𝑖-th candidate; 
𝑗𝑗-th column of 𝐷𝐷𝛼𝛼 holds 𝑗𝑗-th rank divergence of all candidates. We emphasize this 
even further with the Figure 1 representing 𝐷𝐷𝛼𝛼. Divergence of 0 reflects unanimous 
ranking across all votes in 𝛼𝛼 (B was unanimously ranked 2nd in 𝛼𝛼). Note that 
𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵) = 100 (circled) is the lowest value in the first column of 𝐷𝐷𝛼𝛼 which suggests 
candidate 𝐵𝐵 as a compromise winner. 

Lemma 1.4. Let 𝑀𝑀 be a tuple of candidates and let 𝑝𝑝 > 1. For 𝛼𝛼, 𝛽𝛽 ∈ ℒ𝑀𝑀 the 
following properties hold: 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼(𝑖𝑖, 𝑗𝑗) + 𝑑𝑑𝑑𝑑𝑑𝑑𝛽𝛽(𝑖𝑖, 𝑗𝑗) = 𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼+𝛽𝛽(𝑖𝑖, 𝑗𝑗), (4) 

and consequently 
𝐷𝐷𝛼𝛼+𝛽𝛽 = 𝐷𝐷𝛼𝛼 + 𝐷𝐷𝛽𝛽 (5) 

𝐷𝐷𝑛𝑛⋅𝛼𝛼 = 𝑛𝑛 ⋅ 𝐷𝐷𝛼𝛼      𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ∈ ℕ. (6) 

Proof: Follows from rearranging the sum in the right-hand side of (3).                    

2. Compromise through divergence  
Accepting divergence from the top position as an inverse measure of compromise lets 
us investigate the ability to compromise of classical social choice functions – Borda 
and Plurality method. This is interesting because Borda count is usually considered as 
a social choice function capable of electing a compromise winner. This highly 
contrasts the plurality method, usually considered unable to compromise. 
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𝛼𝛼 = ∑ 𝑘𝑘𝑖𝑖 ⋅ 𝜎𝜎𝑖𝑖
𝜎𝜎𝑖𝑖∈𝛼𝛼

 (2) 

where 𝜎𝜎𝑖𝑖 are single-vote profiles occurring in 𝛼𝛼 and 𝑘𝑘𝑖𝑖 = 𝜇𝜇𝛼𝛼(𝜎𝜎) ∈ ℕ are their 
corresponding multiplicities. 

Let 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛). Each preference 

𝑀𝑀𝑖𝑖1 ≻ ⋯ ≻ 𝑀𝑀𝑖𝑖𝑛𝑛 

rearranges 𝑀𝑀’s candidates and determines a unique permutation 

(𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑛𝑛) 

(and vice-versa). For example, for 𝑀𝑀 = (𝐴𝐴, 𝐵𝐵, 𝐶𝐶), preference 

𝐵𝐵 ≻ 𝐶𝐶 ≻ 𝐴𝐴 

corresponds to permutation (2 3 1). We abuse this correspondence and consider 
preferences as permutations when convenient. 

A profile 𝛼𝛼 over 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛) of size |𝛼𝛼| = 𝑛𝑛 can be naturally represented 
by a matrix. Suppose votes of α are arbitrarily ordered as singleton profiles 𝛼𝛼1, … , 𝛼𝛼𝑚𝑚. 
We say that an 𝑚𝑚 × 𝑛𝑛 matrix 𝐴𝐴 = [𝑎𝑎𝑖𝑖𝑖𝑖] represents 𝛼𝛼 if 𝑎𝑎𝑖𝑖𝑖𝑖 is the rank of the 𝑀𝑀𝑖𝑖  in 𝛼𝛼𝑖𝑖. 
Each vote is recorded as a row of 𝐴𝐴 written in the permutation form. Matrix 
representation of a profile is unique up to a permutation of rows. 

Now we can formally define the notion of divergence introduced in (1). However, 
we immediately generalize and include divergence from other positions (non-leading 
ranks). 

Definition 1.1 (𝑝𝑝-divergence from the 𝑗𝑗-th position). Let 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛) be a 
tuple of candidates and let 𝛼𝛼 ∈ ℒ𝑀𝑀 be a profile of over 𝑀𝑀 represented by matrix 𝐴𝐴 =
[𝑎𝑎𝑖𝑖𝑖𝑖]. For (𝑖𝑖-th) candidate 𝑀𝑀𝑖𝑖 we define divergence from the 𝑗𝑗-th position in 𝛼𝛼 as 

𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝑖𝑖, 𝑗𝑗) = ∑|𝛼𝛼𝑘𝑘,𝑖𝑖 − 𝑗𝑗|𝑝𝑝
|𝛼𝛼|

𝑘𝑘=1
(3) 

where ak,i is 𝑀𝑀𝑖𝑖’s rank in k-th preference of α, with 𝑝𝑝 > 1.  
We abbreviate 𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝑖𝑖, 1) with 𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝑖𝑖). In a single-profile context we abbreviate 

even further with 𝑑𝑑𝑑𝑑𝑔𝑔(𝑖𝑖). 
Divergence values for all pairs 𝑖𝑖, 𝑗𝑗 are naturally gathered in the matrix form. 
Definition 1.2 (Divergence matrix). Let 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛) be a tuple of 

candidates and let 𝛼𝛼 ∈ ℒ𝑀𝑀 be a profile over 𝑀𝑀. We define the divergence matrix as 
𝐷𝐷𝛼𝛼 = [𝑑𝑑𝑖𝑖,𝑖𝑖]     𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒     𝑑𝑑𝑖𝑖,𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝑖𝑖, 𝑗𝑗). 
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 1 2 3 

𝐴𝐴 196 100 204 

𝐵𝐵 100 0 100 

𝐶𝐶 204 100 196 

Figure 1. Divergence matrix 𝐷𝐷𝛼𝛼 

Example 1.3 For a profile 𝛼𝛼 over 𝑀𝑀 = (𝐴𝐴, 𝐵𝐵, 𝐶𝐶) summarized in Table 1 (our 
motivating example) we compute 

𝐷𝐷𝛼𝛼 = [
196 100 204
100 0 100
204 100 196

]. 

Recall that rows of 𝐷𝐷𝛼𝛼 correspond to candidates. Values in columns correspond 
to rank penalties/distances: 𝑖𝑖-th row of 𝐷𝐷𝛼𝛼 holds divergence values for 𝑖𝑖-th candidate; 
𝑗𝑗-th column of 𝐷𝐷𝛼𝛼 holds 𝑗𝑗-th rank divergence of all candidates. We emphasize this 
even further with the Figure 1 representing 𝐷𝐷𝛼𝛼. Divergence of 0 reflects unanimous 
ranking across all votes in 𝛼𝛼 (B was unanimously ranked 2nd in 𝛼𝛼). Note that 
𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵) = 100 (circled) is the lowest value in the first column of 𝐷𝐷𝛼𝛼 which suggests 
candidate 𝐵𝐵 as a compromise winner. 

Lemma 1.4. Let 𝑀𝑀 be a tuple of candidates and let 𝑝𝑝 > 1. For 𝛼𝛼, 𝛽𝛽 ∈ ℒ𝑀𝑀 the 
following properties hold: 

 
𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼(𝑖𝑖, 𝑗𝑗) + 𝑑𝑑𝑑𝑑𝑑𝑑𝛽𝛽(𝑖𝑖, 𝑗𝑗) = 𝑑𝑑𝑑𝑑𝑑𝑑𝛼𝛼+𝛽𝛽(𝑖𝑖, 𝑗𝑗), (4) 

and consequently 
𝐷𝐷𝛼𝛼+𝛽𝛽 = 𝐷𝐷𝛼𝛼 + 𝐷𝐷𝛽𝛽 (5) 

𝐷𝐷𝑛𝑛⋅𝛼𝛼 = 𝑛𝑛 ⋅ 𝐷𝐷𝛼𝛼      𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 ∈ ℕ. (6) 

Proof: Follows from rearranging the sum in the right-hand side of (3).                    

2. Compromise through divergence  
Accepting divergence from the top position as an inverse measure of compromise lets 
us investigate the ability to compromise of classical social choice functions – Borda 
and Plurality method. This is interesting because Borda count is usually considered as 
a social choice function capable of electing a compromise winner. This highly 
contrasts the plurality method, usually considered unable to compromise. 
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For profiles with 𝑛𝑛 ≤ 3 candidates the expected result is obtained (cf. [2]): 
divergence for the Borda winner is always less than or equal to the divergence of the 
Plurality winner. 

But, as is shown in [2], an analogous claim for profiles with 𝑛𝑛 > 3 candidates 
does not hold. Specifically, profiles on 𝑛𝑛 > 3 candidates exist where Plurality Count 
and Borda method produce different winners, but Plurality winner has smaller 
divergence than Borda winner! 

3. Functions based on divergence  

3.1. Simple Divergence Minimizer 𝐒𝐒𝐒𝐒𝐒𝐒 

Divergence measure allows for a new approach to the construction of the social choice 
and social welfare functions. The simplest, and most natural way to use divergence, 
is to look for a minimal divergence from the first position. In most situations, we only 
care about the winner. Therefore, we can define a social welfare function based 
exclusively on the divergence from the top position – by considering (only) the first 
column of the divergence matrix 𝐷𝐷𝛼𝛼. 

Definition 3.1. Let 𝑝𝑝 > 1 and let 𝛼𝛼 ∈ ℒ𝑀𝑀 be a profile over 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛) such 
that all the values in the first column of its divergence matrix 𝐷𝐷𝛼𝛼 are unique. Then 
there exists a permutation 𝜎𝜎 ∈ 𝑆𝑆𝑛𝑛 such that 
 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑀𝑀𝜎𝜎(1)) < 𝑑𝑑𝑑𝑑𝑑𝑑(𝑀𝑀𝜎𝜎(2)) < ⋯ < 𝑑𝑑𝑑𝑑𝑑𝑑(𝑀𝑀𝜎𝜎(𝑛𝑛)).  
 
We define a social welfare function SDM(α) as a function returning the strict linear 
order implied by σ: 
 

𝑀𝑀𝜎𝜎(1) ≻ 𝑀𝑀𝜎𝜎(2) ≻ ⋯ ≻ 𝑀𝑀𝜎𝜎(𝑛𝑛). 
 
Otherwise (for profiles with ties), SDM is undefined. 

Intuitive explanation is that SDM returns the (strict) sorting permutation of the 
first column of divergence matrix 𝐷𝐷𝛼𝛼. 

As can be seen from previous definition, (partial) social welfare function SDM is 
defined for cases without ties. We note that ties occur rarely, especially for non-integer 
values of 𝑝𝑝. 

We define a social choice function SDM1 as a function which selects a unique 
candidate with minimal divergence as a winner (when such a candidate exists). 

Of course, when both SDM and SDM1 are defined, we can regard SDM1 as a 
restriction of SDM. 

 
Properties of 𝐒𝐒𝐒𝐒𝐒𝐒𝟏𝟏 and 𝐒𝐒𝐒𝐒𝐒𝐒 
Let us consider which properties or axioms of social choice theory SDM1 satisfies. 

In social choice theory, symmetric treatment of voters is called anonymity, and 
symmetric treatment of candidates, neutrality. Anonymity and neutrality are natural 
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equity conditions expected from democratic social choice and social welfare 
functions. 

It is clear from Definition 3.1 that social choice (welfare) function SDM produces 
the same result if preferences in a profile are permuted, which makes it anonymous. 
It is also clear that SDM treats all candidates equally: that is, if we permute positions 
of candidates in all preferences, then candidates will be permuted in the same way in 
result ordering of a SDM, making it neutral. 

Therefore, the following proposition holds. 
Proposition 3.2. For all p > 1 functions SDM and SDM1 are anonymous and 

neutral. 
We consider additional properties of SDM: consistency and continuity. Young has 

shown that these properties are crucial for characterization of position scoring social 
choice functions (see [9]). 

Definition 3.3 (Consistency) Social choice function 𝐹𝐹 satisfies consistency if for 
all compatible profiles 𝛼𝛼1, 𝛼𝛼2 for which 𝐹𝐹(𝛼𝛼1) = 𝐹𝐹(𝛼𝛼2) also 

 
𝐹𝐹(𝛼𝛼1 + 𝛼𝛼2) = 𝐹𝐹(𝛼𝛼𝑖𝑖)       𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2. 

Definition 3.4 (Continuity) Social choice function 𝐹𝐹 satisfies continuity if for 
compatible profiles 𝛼𝛼1 and 𝛼𝛼2 there exists 𝑛𝑛 ∈ ℕ such that 

 
𝐹𝐹(𝑛𝑛 ⋅ 𝛼𝛼1 + 𝛼𝛼2) = 𝐹𝐹(𝛼𝛼1). 

(The idea here is that a sufficiently large 𝑛𝑛 ∈ ℕ will sway the 𝐹𝐹-outcome of the (𝑛𝑛 ⋅
𝛼𝛼1 + 𝛼𝛼2) profile to match the outcome of  𝛼𝛼1.) 

Proposition 3.5. Social choice function SDM1 satisfies consistency and continuity 
for all 𝑝𝑝 > 1. 
Proof of consistency. Let α1, α2 ∈ ℒM be such that 

SDM1(α1) = SDM1(α2). 
Therefore, minimal values 𝑚𝑚1 and 𝑚𝑚2 of the first columns of 𝐷𝐷𝛼𝛼1 and 𝐷𝐷𝛼𝛼2  occur 

at the same position (in the 𝑖𝑖-th row). Since 
 

𝐷𝐷𝛼𝛼1+𝛼𝛼2 = 𝐷𝐷𝛼𝛼1 + 𝐷𝐷𝛼𝛼2 

by Lemma 1.4, it follows that the minimal value in the first column of 𝐷𝐷𝛼𝛼1+𝛼𝛼2 is 𝑚𝑚1 +
𝑚𝑚2, also in the 𝑖𝑖-th row. Therefore 

SDM1(α1 + α2) = SDM1(𝛼𝛼𝑖𝑖)    𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 1,2. 

Proof of continuity. Let us denote 𝛼𝛼 = 𝑘𝑘 ⋅ 𝛼𝛼1 + 𝛼𝛼2. Let 𝑚𝑚𝑖𝑖 be the minimal value 
in the first column of 𝐷𝐷𝛼𝛼𝑖𝑖, for 𝑖𝑖 = 1, 2.  
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For profiles with 𝑛𝑛 ≤ 3 candidates the expected result is obtained (cf. [2]): 
divergence for the Borda winner is always less than or equal to the divergence of the 
Plurality winner. 

But, as is shown in [2], an analogous claim for profiles with 𝑛𝑛 > 3 candidates 
does not hold. Specifically, profiles on 𝑛𝑛 > 3 candidates exist where Plurality Count 
and Borda method produce different winners, but Plurality winner has smaller 
divergence than Borda winner! 

3. Functions based on divergence  

3.1. Simple Divergence Minimizer 𝐒𝐒𝐒𝐒𝐒𝐒 

Divergence measure allows for a new approach to the construction of the social choice 
and social welfare functions. The simplest, and most natural way to use divergence, 
is to look for a minimal divergence from the first position. In most situations, we only 
care about the winner. Therefore, we can define a social welfare function based 
exclusively on the divergence from the top position – by considering (only) the first 
column of the divergence matrix 𝐷𝐷𝛼𝛼. 

Definition 3.1. Let 𝑝𝑝 > 1 and let 𝛼𝛼 ∈ ℒ𝑀𝑀 be a profile over 𝑀𝑀 = (𝑀𝑀1, … , 𝑀𝑀𝑛𝑛) such 
that all the values in the first column of its divergence matrix 𝐷𝐷𝛼𝛼 are unique. Then 
there exists a permutation 𝜎𝜎 ∈ 𝑆𝑆𝑛𝑛 such that 
 

𝑑𝑑𝑑𝑑𝑑𝑑(𝑀𝑀𝜎𝜎(1)) < 𝑑𝑑𝑑𝑑𝑑𝑑(𝑀𝑀𝜎𝜎(2)) < ⋯ < 𝑑𝑑𝑑𝑑𝑑𝑑(𝑀𝑀𝜎𝜎(𝑛𝑛)).  
 
We define a social welfare function SDM(α) as a function returning the strict linear 
order implied by σ: 
 

𝑀𝑀𝜎𝜎(1) ≻ 𝑀𝑀𝜎𝜎(2) ≻ ⋯ ≻ 𝑀𝑀𝜎𝜎(𝑛𝑛). 
 
Otherwise (for profiles with ties), SDM is undefined. 

Intuitive explanation is that SDM returns the (strict) sorting permutation of the 
first column of divergence matrix 𝐷𝐷𝛼𝛼. 

As can be seen from previous definition, (partial) social welfare function SDM is 
defined for cases without ties. We note that ties occur rarely, especially for non-integer 
values of 𝑝𝑝. 

We define a social choice function SDM1 as a function which selects a unique 
candidate with minimal divergence as a winner (when such a candidate exists). 

Of course, when both SDM and SDM1 are defined, we can regard SDM1 as a 
restriction of SDM. 

 
Properties of 𝐒𝐒𝐒𝐒𝐒𝐒𝟏𝟏 and 𝐒𝐒𝐒𝐒𝐒𝐒 
Let us consider which properties or axioms of social choice theory SDM1 satisfies. 

In social choice theory, symmetric treatment of voters is called anonymity, and 
symmetric treatment of candidates, neutrality. Anonymity and neutrality are natural 
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equity conditions expected from democratic social choice and social welfare 
functions. 

It is clear from Definition 3.1 that social choice (welfare) function SDM produces 
the same result if preferences in a profile are permuted, which makes it anonymous. 
It is also clear that SDM treats all candidates equally: that is, if we permute positions 
of candidates in all preferences, then candidates will be permuted in the same way in 
result ordering of a SDM, making it neutral. 

Therefore, the following proposition holds. 
Proposition 3.2. For all p > 1 functions SDM and SDM1 are anonymous and 

neutral. 
We consider additional properties of SDM: consistency and continuity. Young has 

shown that these properties are crucial for characterization of position scoring social 
choice functions (see [9]). 

Definition 3.3 (Consistency) Social choice function 𝐹𝐹 satisfies consistency if for 
all compatible profiles 𝛼𝛼1, 𝛼𝛼2 for which 𝐹𝐹(𝛼𝛼1) = 𝐹𝐹(𝛼𝛼2) also 

 
𝐹𝐹(𝛼𝛼1 + 𝛼𝛼2) = 𝐹𝐹(𝛼𝛼𝑖𝑖)       𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2. 

Definition 3.4 (Continuity) Social choice function 𝐹𝐹 satisfies continuity if for 
compatible profiles 𝛼𝛼1 and 𝛼𝛼2 there exists 𝑛𝑛 ∈ ℕ such that 

 
𝐹𝐹(𝑛𝑛 ⋅ 𝛼𝛼1 + 𝛼𝛼2) = 𝐹𝐹(𝛼𝛼1). 

(The idea here is that a sufficiently large 𝑛𝑛 ∈ ℕ will sway the 𝐹𝐹-outcome of the (𝑛𝑛 ⋅
𝛼𝛼1 + 𝛼𝛼2) profile to match the outcome of  𝛼𝛼1.) 

Proposition 3.5. Social choice function SDM1 satisfies consistency and continuity 
for all 𝑝𝑝 > 1. 
Proof of consistency. Let α1, α2 ∈ ℒM be such that 

SDM1(α1) = SDM1(α2). 
Therefore, minimal values 𝑚𝑚1 and 𝑚𝑚2 of the first columns of 𝐷𝐷𝛼𝛼1 and 𝐷𝐷𝛼𝛼2  occur 

at the same position (in the 𝑖𝑖-th row). Since 
 

𝐷𝐷𝛼𝛼1+𝛼𝛼2 = 𝐷𝐷𝛼𝛼1 + 𝐷𝐷𝛼𝛼2 

by Lemma 1.4, it follows that the minimal value in the first column of 𝐷𝐷𝛼𝛼1+𝛼𝛼2 is 𝑚𝑚1 +
𝑚𝑚2, also in the 𝑖𝑖-th row. Therefore 

SDM1(α1 + α2) = SDM1(𝛼𝛼𝑖𝑖)    𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 1,2. 

Proof of continuity. Let us denote 𝛼𝛼 = 𝑘𝑘 ⋅ 𝛼𝛼1 + 𝛼𝛼2. Let 𝑚𝑚𝑖𝑖 be the minimal value 
in the first column of 𝐷𝐷𝛼𝛼𝑖𝑖, for 𝑖𝑖 = 1, 2.  
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We may assume (without the loss of generality) that 𝑚𝑚1 is in the first row of 𝐷𝐷𝛼𝛼1  
and 𝑚𝑚2 occurs in some other row of 𝐷𝐷𝛼𝛼2 (otherwise consistency yields the result). So 
we have first candidate as the winner for 𝛼𝛼1 and some other for 𝛼𝛼2. 

From Lemma 1.4 we recall that 
𝐷𝐷𝛼𝛼 = 𝑘𝑘 ⋅ 𝐷𝐷𝛼𝛼1 + 𝐷𝐷𝛼𝛼2. 

Therefore the first column of divergence matrix 𝐷𝐷𝛼𝛼 can be written down as 

𝑘𝑘 ⋅ [
𝑚𝑚1

𝑚𝑚1 + 𝑎𝑎2
⋮

𝑚𝑚1 + 𝑎𝑎𝑛𝑛

] + [
𝑚𝑚2 + 𝑏𝑏1
𝑚𝑚2 + 𝑏𝑏2

⋮
𝑚𝑚2 + 𝑏𝑏𝑛𝑛

]          𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑎𝑎𝑖𝑖 > 0, 𝑏𝑏𝑖𝑖 ≥ 0. 

To prove continuity we must show that SDM1(𝛼𝛼) = SDM1(α1), e.g. that first 
columns of 𝐷𝐷𝛼𝛼 and 𝐷𝐷𝛼𝛼1  have minimal values in the same row (first) for some 𝑘𝑘. Then, 
it should hold 

(𝑘𝑘 ⋅ 𝑚𝑚1) + (𝑚𝑚2 + 𝑏𝑏1) ≤ 𝑘𝑘 ⋅ (𝑚𝑚1 + 𝑎𝑎𝑗𝑗) + (𝑚𝑚2 + 𝑏𝑏𝑗𝑗),     𝑓𝑓𝑓𝑓𝑓𝑓  𝑗𝑗 ≥ 2, 

for some natural number 𝑘𝑘. This simplifies into 

𝑘𝑘 ≥
𝑏𝑏1 − 𝑏𝑏𝑗𝑗

𝑎𝑎𝑗𝑗
       𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎  𝑗𝑗 ≥ 2. 

As 𝑎𝑎𝑗𝑗 > 0 and a unique 𝑏𝑏𝑗𝑗 = 0 it follows that 𝑘𝑘 > 0. It is sufficient to take 

𝑘𝑘 ≥ max
𝑗𝑗>1

⌈
𝑏𝑏1 − 𝑏𝑏𝑗𝑗

𝑎𝑎𝑗𝑗
⌉ 

to obtain SDM1(α) = SDM1(α1).       
From Proposition 3.5, and Young’s characterization, it follows that SDM1 is a 

position-scoring social choice function. One can easily check that scoring vector for 
SDM1 is (0, −1, −2𝑝𝑝, … , −(𝑛𝑛 − 1)𝑝𝑝). Normalized2 version of the SDM1 scoring 
vector is 

𝑠𝑠 = (1, 1 − ( 1
𝑛𝑛 − 1)

𝑝𝑝
, 1 − ( 2

𝑛𝑛 − 1)
𝑝𝑝

, … , 0). 

Since SDM1 is a position-scoring social choice function, with normalized scoring 
vector 𝑠𝑠, according to Llamazares and Pena (see [6]), it satisfies a number of desirable 
properties. One of them is that SDM1 is not susceptible to the Pareto paradox, or the 
dominated-winner paradox. 

Social choice functions which are susceptible to the Pareto paradox can elect a 
candidate who is strictly dominated by some other candidate, that is, there is a 
candidate which is preferred to a winner in all of the voter’ preferences. Llamazares 
and Pena showed that a position scoring SCF with strict scoring vector cannot elect 
such candidate as a winner. 

 
2 Normalized form of the scoring vector has 1 on the first, and 0 on the last position. 
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Social choice function SDM1 is also immune to the absolute loser paradox. 
Absolute loser paradox is considered as an especially intolerable paradox. SCF 
function that is susceptible to this paradox can elect as a winner a candidate who is 
ranked last by the absolute majority of voters! 

According to Llamazares and Pena, position scoring SCF is immune to the 
absolute loser paradox if its scoring vector satisfies the condition 

∑𝑠𝑠𝑖𝑖
𝑛𝑛−1

𝑖𝑖=1
≥ 𝑛𝑛
2 . (7) 

For 𝑝𝑝 = 1 the scoring vector is a finite arithmetic 𝑛𝑛-sequence with the sum of 
exactly 𝑛𝑛2. For 𝑝𝑝 > 1 the scoring vector (as an 𝑛𝑛-sequence) strictly dominates this 
arithmetic sequence, therefore satisfying the condition (7). Thus, SDM1 is immune to 
the absolute loser paradox. 

3.2. Utilization of the whole divergence matrix 

In this section we review a few attempts to construct new social welfare functions 
which utilize all of the divergence matrix – divergence from all positions. Probably 
the simplest way to follow a very naive approach: after selection of the winner (first 
column), we repeat the selection of the minimal divergence in the remaining rows of 
the next column, and so on column-by-column. This simple iterative approach, 
however, produces strange results. 

Example 3.6. Let 𝑝𝑝 = 2 and let 𝛼𝛼 ∈ ℒ𝑀𝑀 be a profile over 𝑀𝑀 = (𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷, 𝐸𝐸) 
summarized in Table 2. 

 
 38 𝐴𝐴 ≻ 𝐵𝐵 ≻ 𝐶𝐶 ≻ 𝐷𝐷 ≻ 𝐸𝐸  
 10 𝐵𝐵 ≻ 𝐶𝐶 ≻ 𝐴𝐴 ≻ 𝐷𝐷 ≻ 𝐸𝐸  
3 𝐸𝐸 ≻ 𝐵𝐵 ≻ 𝐴𝐴 ≻ 𝐶𝐶 ≻ 𝐷𝐷 

 
Table 2. A summary of the profile 𝛼𝛼 from Example 3.6. 

 
For profile 𝛼𝛼 candidate 𝐴𝐴 is the clear winner by Borda, Condorcet and Plurality 

method. But we have 𝑑𝑑𝑑𝑑𝑑𝑑(𝐴𝐴) = 52 and 𝑑𝑑𝑑𝑑𝑑𝑑(𝐵𝐵) = 41. Therefore SDM1 does not 
declare 𝐴𝐴 a winner. But what about the order of other candidates? 

Method run is visualized in Figure 2. In 𝑖𝑖-th column, the lowest remaining value 
of divergence (from the 𝑖𝑖-th place) is circled. Therefore, the result of this greedy 
approach is: 

𝐵𝐵 ≻ 𝐶𝐶 ≻ 𝐷𝐷 ≻ 𝐸𝐸 ≻ 𝐴𝐴 
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⋮
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𝑚𝑚2 + 𝑏𝑏1
𝑚𝑚2 + 𝑏𝑏2

⋮
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Intuitively, this is awful. Note that candidate 𝐴𝐴 is placed before 𝐷𝐷 in all 
preferences. Yet, candidate A ranks last in the final outcome – two places below 𝐷𝐷! 
This example clearly demonstrates the lack of Pareto efficiency for this method.3  

In a similar fashion we could try the naive row-by-row optimization. But this 
quickly runs into problems (cf. Motivating example, where all the candidates best fit 
in the middle position).4 

 1 2 3 4 5 

𝐴𝐴 52 51 152 355 660 

𝐵𝐵 41 10 81 254 529 

𝐶𝐶 189 50 13 78 245 

𝐷𝐷 480 219 60 3 48 

𝐸𝐸 768 435 204 75 48 

Figure 2. Greedy column-by-column minimization with 𝐷𝐷𝛼𝛼 

Our final suggestion is to apply this method cumulatively. After selecting a candidate 
with the lowest divergence in the first column 𝐷𝐷𝛼𝛼, we could search for the candidate 
(row) which minimizes a sum of divergences from the first and second position. And 
so on. 

Cumulative greedy approach applied to the profile from Example 3.6 obtains 
(reasonable) 

𝐵𝐵 ≻ 𝐴𝐴 ≻ 𝐶𝐶 ≻ 𝐷𝐷 ≻ 𝐸𝐸. 
We won’t pursue this further in this paper. 

 
3 Social welfare function is satisfying a Pareto principle, or is Pareto efficient, if on a profile candidate 𝐴𝐴 
is dominated by candidate 𝐵𝐵, then candidate 𝐴𝐴 is placed after candidate 𝐵𝐵 in a resulting preference of the 
SWF. 
4 Another problem with row-by-row optimization is that if it assumes an optimization done through some 
order of the rows, it could violate neutrality of the SWF. Such procedure could potentially not equally 
treat all candidates. 
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3.3. On the choice of 𝒑𝒑 

The notion of a compromise winner is somewhat vague and fuzzy. Naturally, we have 
to ask – where do we draw the line? Which profiles justify the selection of non-
majority candidate as a compromise winner? 

We have introduced the parameter 𝑝𝑝 as an instrument to control the intended level 
of compromise. The value of 𝑝𝑝 must be decided in the planning phase, according to 
the demands and specifics of the situation. The decision on the choice of 𝑝𝑝 should be 
a social decision, dependent on the setting and in line with the ambitions of the 
particular election or voting-based decision. For example, taking a high value of 𝑝𝑝 
(e.g. 𝑝𝑝 = 4) makes sense in a situation where a small number of voters has a 
significant need for compromise. Larger values of 𝑝𝑝 have the effect of greater rank 
distances contributing considerably more (than linear) to divergence. On the other end 
of the spectrum, we can imagine a situation with a large electorate where the need for 
compromise is not among the primary objectives. However, if there is an intent to 
avoid polarization in the electoral process, a lower value of 𝑝𝑝 (e.g. 𝑝𝑝 = 1.5) would be 
appropriate to account for the appropriate level of compromise. 

Ongoing research of the subject (cf. [3]) suggests that choice of 𝑝𝑝 = 2 yields some 
desirable properties. Still, we reiterate that the choice of the value of 𝑝𝑝 remains a social 
(rather than mathematical/technical) decision. 

4. Conclusion 
 
We analyzed and modelled the notion of compromise in social choice theory for the 
case of strict preferential voting. We introduced the measure of divergence which 
captures all the positional information from the voting profile and gives above-linear 
weight to poor rankings of candidates. This is by design – a compromise winner is not 
supposed to be disliked in any significant part of the electorate. 

After establishing divergence as an inverse measure of compromise, we review 
the classical functions of social choice theory. Common folklore is that Borda count 
is the classical function able to produce a compromise winner, in stark contrast to 
plurality count. This is indeed the case for voting profiles with 𝑛𝑛 = 3 candidates but 
does not hold in general for 𝑛𝑛 ≥ 4 with respect to divergence [2]. 

In this paper, unlike what is common in the literature of social choice theory, 
voting profiles are defined as multisets. This formal tweak provides some technical 
elegance evident in Lemma 1.4 about linearity of divergence. A few proofs on 
properties of SDM also benefit from this. Some previous results needed rephrasing 
with respect to revised notation. 

Next, from minimization of divergence measure we define a new social welfare 
function SDM (simple divergence minimizer) and its SCF counterpart SDM1. We 
prove that both can, according to Young’s theorem, be characterized as a scoring point 
SCF. Further, we explicitly provide its scoring point vector. 
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A few approaches to optimization utilizing the whole divergence matrix have been 
reviewed. Naiv  approaches fail to meet common SCF requirements. However, a 
cumulative approach to optimization shows promise, but this is the subject of further 
research. 
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Appendix A: Notation and abbreviations 
𝛼𝛼 − profile, multiset of preferential votes 

 |𝛼𝛼| − size (length) of profile 𝛼𝛼 
 𝑀𝑀 − a tuple of candidates, alternatives 

 ℒ𝑀𝑀 − a set of finite profiles over 𝑀𝑀 
 𝑆𝑆𝑛𝑛 − set of 𝑛𝑛-permutations 

 𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝐴𝐴),   
 𝑑𝑑𝑑𝑑𝑔𝑔(𝐴𝐴) − divergence (from the leading position) 

 𝑑𝑑𝑑𝑑𝑔𝑔(𝐴𝐴, 𝑖𝑖) − divergence from 𝑖𝑖-th rank 
 𝑊𝑊𝐵𝐵𝐵𝐵  − winner by Borda count 
 𝑊𝑊𝑃𝑃𝐵𝐵 − winner by Plurality count 

 𝑊𝑊𝐵𝐵𝐶𝐶𝐶𝐶 − Condorcet winner 
SCF − social choice function 

SWF − social welfare function 
 𝑆𝑆𝑆𝑆𝑀𝑀 − Simple divergence minimizer SWF 

 𝑆𝑆𝑆𝑆𝑀𝑀1 − Simple divergence minimizer SCF 
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A few approaches to optimization utilizing the whole divergence matrix have been 
reviewed. Naiv  approaches fail to meet common SCF requirements. However, a 
cumulative approach to optimization shows promise, but this is the subject of further 
research. 
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Appendix A: Notation and abbreviations 
𝛼𝛼 − profile, multiset of preferential votes 

 |𝛼𝛼| − size (length) of profile 𝛼𝛼 
 𝑀𝑀 − a tuple of candidates, alternatives 

 ℒ𝑀𝑀 − a set of finite profiles over 𝑀𝑀 
 𝑆𝑆𝑛𝑛 − set of 𝑛𝑛-permutations 

 𝑑𝑑𝑑𝑑𝑔𝑔𝛼𝛼(𝐴𝐴),   
 𝑑𝑑𝑑𝑑𝑔𝑔(𝐴𝐴) − divergence (from the leading position) 

 𝑑𝑑𝑑𝑑𝑔𝑔(𝐴𝐴, 𝑖𝑖) − divergence from 𝑖𝑖-th rank 
 𝑊𝑊𝐵𝐵𝐵𝐵  − winner by Borda count 
 𝑊𝑊𝑃𝑃𝐵𝐵 − winner by Plurality count 

 𝑊𝑊𝐵𝐵𝐶𝐶𝐶𝐶 − Condorcet winner 
SCF − social choice function 

SWF − social welfare function 
 𝑆𝑆𝑆𝑆𝑀𝑀 − Simple divergence minimizer SWF 

 𝑆𝑆𝑆𝑆𝑀𝑀1 − Simple divergence minimizer SCF 
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