
49

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

OLIVEIRA, PEREIRA, RODRIGUES AND RODRIGUES ENTREPRENEUR’S STRATEGY LEVERAGED...

Factors of the Bsc Implementation in Portugal,” Rev. Universo Contábil,
no. 54, pp. 94–115, 2009, doi: 10.4270/ruc.2009433.

[107] M. Doshmanli, Y. Salamzadeh, and A. Salamzadeh, “Development of
SMEs in an emerging economy: does corporate social responsibility
matter?,” Int. J. Manag. Enterp. Dev., vol. 17, no. 2, pp. 168–191, 2018.

[108] S. T. Raharjo and M. S. Perdhana, “SME’s Enterprise Resource Planning
Implementation, Competitive Advantage, and Marketing Performance,”
J. Entrep. Bus. Econ., vol. 4, no. 1, pp. 22–44, 2016.

[109] A. Salamzadeh, Z. Arasti, and G. M. Elyasi, “Creation of ICT-based
social start-ups in Iran: A multiple case study,” J. enterprising Cult., vol.
25, no. 01, pp. 97–122, 2017.

[110] G. Richins, A. Stapleton, T. C. Stratopoulos, and C. Wong, “Big data
analytics: Opportunity or threat for the accounting profession?,” J. Inf.
Syst., vol. 31, no. 3, pp. 63–79, 2017, doi: 10.2308/isys-51805.

[111] C. D. Ittner and D. F. Larcker, “Innovations in Performance
Measurement: Trends and Research Implications,” J. Manag. Account.
Res., vol. 10, no. 2, pp. 205–238, 1998, doi: 10.2139/ssrn.137278.

[112] C. D. Ittner, D. F. Larcker, and T. Randall, “Performance implications of
strategic performance measurement in financial services firms,”
Accounting, Organ. Soc., vol. 28, no. 7–8, pp. 715–741, 2003, doi:
10.1016/S0361-3682(03)00033-3.

JIOS, VOL. 48, NO. 1 (2024) SUBMITTED 03/23; ACCEPTED 07/23

Exploring the Access to the Static Array Elements via Indices
and via Pointers — the Introductory C++ Case Expanded

Robert Logožar robert.logozar@unin.hr
Dpt. of Electrical Engineering
University North, Varaždin, Croatia

Matija Mikac matija.mikac@unin.hr
Dpt. of Electrical Engineering
University North, Varaždin, Croatia

Danijel Radošević darados@foi.unizg.hr
Faculty of Organization and Informatics
University of Zagreb, Varaždin, Croatia

Abstract
We revisit the old but formally still unresolved debate on the time efficiency of
accessing the elements of 1D arrays via indices versus accessing them via pointers. To
analyze that, we have programmed benchmarks of minimal complexity in the C++
language and inspected the machine code of their compilation in the x86 assembly
language. Before exploring the performance, we briefly compared a few methods used
for the execution time measurements. The results on the Wintel platform show no
significant advantage in using pointers over indices except for some benchmarks and
array (data) types. In other cases, the exact opposite may be true. The cause of this
inconsistency lies in the compilation of the source code into the rather nonorthogonal
x86 instruction set. Furthermore, the execution speed does not clearly relate to the
instruction length. The parallel aim of this work is to provide a ground for further
analysis and measurements of this kind using different compilers, languages, and
computer platforms.
Keywords: static arrays, pointers, C/C++, accessing the array elements, benchmarks,
execution time measurements.

1. Introduction
Algorithms and data structures are the very foundation of software. The simplest and
most ubiquitous data structure, which resembles the organization of the computer’s
main memory itself, is the array. It is unavoidable in computer programming, and all
general-purpose, high-level languages implement it one way or the other. The
simplest way to access the array elements — which follows the mathematical notation
of vectors and matrices — is by “subscripting” the arrays with their indices. In Pascal
and the C language, this became possible also via pointers, which are the addresses of

10.31341/jios.48.1.3
 Open Access

UDC 311.13: 004.912=93C++
Original Scientific Paper

50

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

the defined data types. The pointers allowed programmers to directly manipulate the
memory addresses and their contents in a similar way possible in assembly languages
but having left the organizational details to the compiler.

The fathers of the C language, B. Kernighan and D. Ritchie, in their C language
“bible,” known as K&R, devoted the whole of chapter 5 to the pointers and arrays and
their relation [1]. In §5.3, they say: “Any operation that can be achieved by array
subscripting can also be done with pointers. The pointer version will in general be
faster but, at least to the uninitiated, somewhat harder to understand.”

This claim must be echoing in the minds of many computer scientists and practical
programmers who have read valuable classical literature and cared to write the most
efficient code. Namely, if we follow its implicit suggestion, should we insist on
accessing the array elements by using pointers? If so, what are the time efficiency
improvements? Kernighan and Ritchie did not support their statement with any
explanation or proof. They have even relativized it in the further elaboration on the
array element access in the rest of that chapter and the textbook. Besides that, when
trying to find out if someone else attempted to corroborate or dispute this thesis, we
could not find any other systematic work or firm results covering this topic.

Having said that, this rather elementary dilemma may still intrigue the minds of
many pedantic programmers who want to ensure that they write programming code
that is as fast as possible. This may also intrigue the minds of the teachers who want
to motivate their students to grasp the concept of pointers. In either case, to answer
that properly, one should get a deeper insight into the topic and reach the final verdict
only after the concrete time measurements. That is, for the appropriately tailored
benchmarks of the two approaches, we must measure their benchmark execution
times, which we will abbreviate as BETs.

We did some simple, preliminary time measurements roughly a decade ago. They
showed that the access to the elements of one-dimensional arrays of some integer
types (short int, int) via pointers was approximately 15% to 20% faster than the
access via indices. We did not pursue the measurements more systematically nor did
we investigate the causes of this behavior at that time. We left that — seemingly
trivial research — for some “future work,” which finally continues with this paper.
Thus, our first aim is to provide an introduction for a detailed analysis of the provided
benchmarks and their execution time measurements. At the same time, we will expose
the first results obtained by using a modern integrated developing environment (IDE)
on a relatively contemporary computer and today’s common operating system (OS).

In this text, we expand our preliminary and abbreviated description of the topic
given in the conference paper [2] and provide the full version of this exploration.
Besides correcting several (minor) errata and noticed omissions, it includes a more
detailed description of the results of compilation and the analysis of the obtained
machine instructions, as well as a comprehensive insight into the measurement results.

Concerning the outline of this text, in section 2, we shortly expose the basics of
the array data structure and the pointer data type and their implementation in the
C/C++ languages. Section 3 presents and explains our benchmarks and exposes their
assembly language code, often paying attention to several minute details to better
understand the following performance measurements. Section 4 discusses the

51

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

the defined data types. The pointers allowed programmers to directly manipulate the
memory addresses and their contents in a similar way possible in assembly languages
but having left the organizational details to the compiler.

The fathers of the C language, B. Kernighan and D. Ritchie, in their C language
“bible,” known as K&R, devoted the whole of chapter 5 to the pointers and arrays and
their relation [1]. In §5.3, they say: “Any operation that can be achieved by array
subscripting can also be done with pointers. The pointer version will in general be
faster but, at least to the uninitiated, somewhat harder to understand.”

This claim must be echoing in the minds of many computer scientists and practical
programmers who have read valuable classical literature and cared to write the most
efficient code. Namely, if we follow its implicit suggestion, should we insist on
accessing the array elements by using pointers? If so, what are the time efficiency
improvements? Kernighan and Ritchie did not support their statement with any
explanation or proof. They have even relativized it in the further elaboration on the
array element access in the rest of that chapter and the textbook. Besides that, when
trying to find out if someone else attempted to corroborate or dispute this thesis, we
could not find any other systematic work or firm results covering this topic.

Having said that, this rather elementary dilemma may still intrigue the minds of
many pedantic programmers who want to ensure that they write programming code
that is as fast as possible. This may also intrigue the minds of the teachers who want
to motivate their students to grasp the concept of pointers. In either case, to answer
that properly, one should get a deeper insight into the topic and reach the final verdict
only after the concrete time measurements. That is, for the appropriately tailored
benchmarks of the two approaches, we must measure their benchmark execution
times, which we will abbreviate as BETs.

We did some simple, preliminary time measurements roughly a decade ago. They
showed that the access to the elements of one-dimensional arrays of some integer
types (short int, int) via pointers was approximately 15% to 20% faster than the
access via indices. We did not pursue the measurements more systematically nor did
we investigate the causes of this behavior at that time. We left that — seemingly
trivial research — for some “future work,” which finally continues with this paper.
Thus, our first aim is to provide an introduction for a detailed analysis of the provided
benchmarks and their execution time measurements. At the same time, we will expose
the first results obtained by using a modern integrated developing environment (IDE)
on a relatively contemporary computer and today’s common operating system (OS).

In this text, we expand our preliminary and abbreviated description of the topic
given in the conference paper [2] and provide the full version of this exploration.
Besides correcting several (minor) errata and noticed omissions, it includes a more
detailed description of the results of compilation and the analysis of the obtained
machine instructions, as well as a comprehensive insight into the measurement results.

Concerning the outline of this text, in section 2, we shortly expose the basics of
the array data structure and the pointer data type and their implementation in the
C/C++ languages. Section 3 presents and explains our benchmarks and exposes their
assembly language code, often paying attention to several minute details to better
understand the following performance measurements. Section 4 discusses the

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

methods, program setup, and prerequisites for the time measurements. There, we
present and discuss the results of our BET measurements for assigning and retrieving
array elements of several data types. Section 5 concludes this paper and opens several
new directions and topics for future work.

2. Arrays and Pointers
Before elaborating on our benchmark details, we will briefly outline the basics of the
arrays and pointers, emphasizing their implementation in C/C++.

2.1. Arrays

One-dimensional (1D) arrays serve for storing the series of 𝑛𝑛 equal 𝑎𝑎𝑖𝑖 elements,
where the nonnegative integer index 𝑖𝑖 spans through 𝑛𝑛 consecutive values. For
example, with 𝑖𝑖 = 1, 2, … , 𝑛𝑛, the elements 𝑎𝑎𝑖𝑖 could be interpreted as the components
of vector 𝒂𝒂 in an 𝑛𝑛-dimensional space. Following this mathematical notation, the
standard syntax for accessing the array elements in high-level programming languages
requires stating the array name and the element index. Based on that, the compilers
ensure the run-time calculation of 𝑖𝑖-th array element memory address as:

𝐴𝐴(𝑖𝑖) = 𝐴𝐴0 + 𝑙𝑙𝑇𝑇 × (𝑖𝑖 − 𝑖𝑖0), (1)
 𝑖𝑖 = 𝑖𝑖0, 𝑖𝑖0 + 1, … , 𝑖𝑖0 + 𝑛𝑛 − 1 .

Here, 𝐴𝐴0 is the address of the starting element, the one with index 𝑖𝑖0, and 𝑙𝑙𝑇𝑇 is the
size of the element data type (𝑇𝑇) in the number of bytes (B) — here, of course, in their
original meaning of (the size of) a basic memory location.

The value 𝑥𝑥(𝑖𝑖) of the 𝑖𝑖-th element is the memory 𝑀𝑀𝑇𝑇(𝐴𝐴(𝑖𝑖)) content of the
address 𝐴𝐴(𝑖𝑖) interpreted as the data type 𝑇𝑇,

𝑥𝑥(𝑖𝑖) = 𝑀𝑀𝑇𝑇(𝐴𝐴(𝑖𝑖)) . (2)

2.2. C/C++ Arrays and Pointers

The C and C++ languages fix the starting index to 𝑖𝑖0 = 0, so its value need not be
subtracted from 𝑖𝑖. This leads to the simplest possible formula and the fastest possible
address calculation:

𝐴𝐴(𝑖𝑖) = 𝐴𝐴0 + 𝑙𝑙𝑇𝑇 × i, 𝑖𝑖 = 0, 1, … , 𝑛𝑛 − 1. (3)
As hinted in the introduction (§1), the elements’ addresses and contents can also

be operated by the variable of the special, pointer data type, usually simply called
pointers. They hold the addresses with assigned data types and can also be described
as typed addresses.

Altogether, this leads to the three possible ways of accessing the array elements.
We immediately write them in the syntax of the C/C++ languages [1] (1988), [3], [4],
in the same way as they appear in the benchmarks’ source code in Listing 1:

52

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

1) by using the element index: iX[i];
2) by using the pointer arithmetic and then by dereferencing the obtained pointer:

*(pI0 + i);
3) by incrementing the pointer and dereferencing it: *(++pI).

The first two ways are of the random access kind because they can access array
elements directly via their indices, regardless of the previously accessed element. The
third access applies only to the passage through successive array elements. To enable
the comparison of the time efficiency between all three access types, here we restrict
the consideration to only the successive passages through the array elements for all
the access types. Of course, this kind of passage is also the most common in practice.

The above general deliberation is applicable to both static and dynamic arrays,
but in the further text, we restrict our consideration to the former.

3. Our Benchmarks
In this section, we describe and analyze our benchmark routines. They are the core
of our three C++ test programs created in MS Visual Studio, Community Version
2019 (further on, VS-CV 2019). The slight variations between the programs served
to investigate the many peculiarities on which the execution times depend (§4.3).
Because of the repetitive code for each data type, the programs built up to a bit more
than 1000 lines each.

3.1. Benchmark Source Code

Listing 1 shows our standard benchmarks for the int type of 1D arrays. To avoid the
user stack overflow, very large arrays — like ours — must be declared static or global.
In each version of our test program, there are benchmark loops similar to those in
Listing 1, but for the arrays of all the six standard data types — four integer and two
floating-point types:

• char (1B), short int = short (2B), int (4B) (presented in Listing 1), and
long long int = abbr. llint (8B);

• float (4B), and double (8B).
For each of the three described and implemented access methods, there are two

benchmarks:
A. for storing a value into the uI-th array element, and
B. for retrieving (fetching) a value from the uI-th array element into a variable.

To investigate primarily the influence of different element-accessing mechan-
isms, we have kept the A and B types of operations as simple as possible. In A, instead
of storing the quasi-random numbers into the array elements that serve as l-values, we
assigned them the value of the unchanging iRVal variable. In action B, one and only
one l-value, the variable iLVal, is assigned the values of the array elements.

53

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

1) by using the element index: iX[i];
2) by using the pointer arithmetic and then by dereferencing the obtained pointer:

*(pI0 + i);
3) by incrementing the pointer and dereferencing it: *(++pI).

The first two ways are of the random access kind because they can access array
elements directly via their indices, regardless of the previously accessed element. The
third access applies only to the passage through successive array elements. To enable
the comparison of the time efficiency between all three access types, here we restrict
the consideration to only the successive passages through the array elements for all
the access types. Of course, this kind of passage is also the most common in practice.

The above general deliberation is applicable to both static and dynamic arrays,
but in the further text, we restrict our consideration to the former.

3. Our Benchmarks
In this section, we describe and analyze our benchmark routines. They are the core
of our three C++ test programs created in MS Visual Studio, Community Version
2019 (further on, VS-CV 2019). The slight variations between the programs served
to investigate the many peculiarities on which the execution times depend (§4.3).
Because of the repetitive code for each data type, the programs built up to a bit more
than 1000 lines each.

3.1. Benchmark Source Code

Listing 1 shows our standard benchmarks for the int type of 1D arrays. To avoid the
user stack overflow, very large arrays — like ours — must be declared static or global.
In each version of our test program, there are benchmark loops similar to those in
Listing 1, but for the arrays of all the six standard data types — four integer and two
floating-point types:

• char (1B), short int = short (2B), int (4B) (presented in Listing 1), and
long long int = abbr. llint (8B);

• float (4B), and double (8B).
For each of the three described and implemented access methods, there are two

benchmarks:
A. for storing a value into the uI-th array element, and
B. for retrieving (fetching) a value from the uI-th array element into a variable.

To investigate primarily the influence of different element-accessing mechan-
isms, we have kept the A and B types of operations as simple as possible. In A, instead
of storing the quasi-random numbers into the array elements that serve as l-values, we
assigned them the value of the unchanging iRVal variable. In action B, one and only
one l-value, the variable iLVal, is assigned the values of the array elements.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

 // Compiler Optimizations OFF!
// Definitions:
#define intMid 1111
#define intLrg 22222222
typedef unsigned int uint;
// Declaring the static int array:
const uint cuiN = 20000000; // cuiN = 20 × 106.
uint uiN1 = cuiN;
static int iX[cuiN] = {0, }; // Array with 20 × 106 int elements.
iLVal = intMid, iRVal = intLrg;
// Pointers to the 0-th and last element:
int *pI0 = iX, *pI1 = iX + uiN1;

// A. Storing into array elements
// 1) Via index, iX[uI]:
for (uint uI = 0; uI < uiN1; ++uI)

iX[uI] = iRVal;
// 2) Via pointer arithmetic:
for (uint uI = 0; uI < uiN1; ++uI)

*(pI0 + uI) = iRVal;
// 3) Via incrementing the pointer:
for (int* pI = iX; pI < pI1; ++pI)

*pI = iRVal;

// B. Retrieving from array el.
// 1) Via index, iX[uI]:
for (uint uI = 0; uI < uiN1; ++uI)

iLVal = iX[uI];
// 2) Via pointer arithmetic:
for (uint uI = 0; uI < uiN1; ++uI)

iLVal = *(pI0 + uI);
// 3) Via incrementing the pointer:
for (int* pI = iX; pI < pI1; ++pI)

iLVal = *pI;

Listing 1. Our standard benchmarks for accessing the elements of a (large) C/C++ int array
by: 1) indices, 2) pointer arithmetic, 3) incrementing the pointer.

In the release version of the program, the compiler would optimize both actions
if set so, especially B, because its outcome is the single assignment: iLVal = iX[uiN1

- 1]. That is why these benchmarks must run without any optimization.
The objection holds that such circumstances can be considered artificial and that

the arrays could have been filled up in other ways. However, if our r- or l-values were
more complex — to prevent the extreme optimization efficiency — the net effect of
compilation without the optimization would have been the same. On the other hand,
if the optimization were on, the investigation of the assembly language code (see the
next subsection) would not be possible directly in VS-CV 2019, as it is now, for the
non-optimized, debug version. Of course, some other versions of the benchmarks
may be proposed, but not without complicating them at least a bit. For instance, in
the assignment of the values to the array elements (action A), the r-value could be an
element of another array filled with randomly generated numbers. However, in that
case, both the l- and r-value would require accessing the array elements. Such a
benchmark would perform double access to the array elements and thus equalize the
actions A and B. While this is worth investigating, we leave it for future work and
stick here to the proposed benchmarks with the described elementary actions.

Finally, a word about the use of the increment operator (++) that acts on an isolated
l-value. We have been systematically using it in the prefix form, mostly for the sake

54

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

of uniformity and pedantry.1 We will discuss other details of the concrete program
implementation as needed.

3.2. Benchmark Machine Code Disassembled

When running the programs in the debug mode, the VS IDE enables the in-place
presentation of the Intel assembly language instructions in symbolic form after
disassembling the machine code of the debug version of the program [5]. The x86
(32-bit) and x64 (64-bit) versions of assembly languages are available, but in this
paper, we focus on the still-standard 32-bit version. A concise review of the x86
assembly language can be found in [6], whereas the exhaustive reference is in [7]. For
our six benchmark routines (A/B.1, 2, 3) with the array of int data type, this is shown
in Listing 2.

3.2.1. Compilation of the for-loops (int arrays)

Of the six for-loops from our benchmarks in Listing 1, the first two of the A and B
types (A/B.1 and A/B.2) have the standard for-loop heads, with (rising) indices.
Because of the same source form, their compilation results in a series of the same
eight (8) machine instructions, as presented for the A.1 for-loop head. There are only
the expected slight differences in the instruction operands. The general-purpose
registers used in A.1 are cyclically permuted in B.1 as follows: EAX → ECX, ECX →
EDX, and EDX → EAX. Additionally, the loop compilations differ in the relative
displacements of the jump addresses in their unconditional (jmp) and conditional
(jae) jumps to the: i) loop conditions (cmp instruction), ii) exits (behind the last, jmp
instruction in the loop body), and iii) loop-expressions, i.e., the index increments,
starting at the second mov instruction.

To summarize, all these for-loops consist of eight (8) machine instructions in the
loop head and one (1) additional at the end of the loop body, totaling nine (9)
instructions, which are stored in the total o 43B (cf. type int benchmark A.1, the for-
loop control part).

Concretely, in the A.1 for-loop head, the first mov places the initial, 0 value,
stored in the instruction itself (immediate addressing mode) to the memory location
of the loop index. The index address is expressed relative to the address contained in
the base (frame) pointer register, EBP, which is constant during the execution of the
main function. In the case shown here, EBP = 212FFA38h, so the address of the local
uI index is: A(uI) = EBP – 7E8h = 212FF250h.

The next, jmp instruction, performs the jump to the condition-checking part of the
loop head, which starts with the mov instruction at the address main + 20E3h =

1 The discussion about the performance difference between the pre- and post-increment operators on the
isolated l-values can be found e.g., in [8]. With the prefix ++, our benchmarks mostly run from 0% to
2.5% faster. However, on rare occasions (for the longer data types!), they are sometimes slower, but
within the standard deviation of the measurements (see sec. 4).

55

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

of uniformity and pedantry.1 We will discuss other details of the concrete program
implementation as needed.

3.2. Benchmark Machine Code Disassembled

When running the programs in the debug mode, the VS IDE enables the in-place
presentation of the Intel assembly language instructions in symbolic form after
disassembling the machine code of the debug version of the program [5]. The x86
(32-bit) and x64 (64-bit) versions of assembly languages are available, but in this
paper, we focus on the still-standard 32-bit version. A concise review of the x86
assembly language can be found in [6], whereas the exhaustive reference is in [7]. For
our six benchmark routines (A/B.1, 2, 3) with the array of int data type, this is shown
in Listing 2.

3.2.1. Compilation of the for-loops (int arrays)

Of the six for-loops from our benchmarks in Listing 1, the first two of the A and B
types (A/B.1 and A/B.2) have the standard for-loop heads, with (rising) indices.
Because of the same source form, their compilation results in a series of the same
eight (8) machine instructions, as presented for the A.1 for-loop head. There are only
the expected slight differences in the instruction operands. The general-purpose
registers used in A.1 are cyclically permuted in B.1 as follows: EAX → ECX, ECX →
EDX, and EDX → EAX. Additionally, the loop compilations differ in the relative
displacements of the jump addresses in their unconditional (jmp) and conditional
(jae) jumps to the: i) loop conditions (cmp instruction), ii) exits (behind the last, jmp
instruction in the loop body), and iii) loop-expressions, i.e., the index increments,
starting at the second mov instruction.

To summarize, all these for-loops consist of eight (8) machine instructions in the
loop head and one (1) additional at the end of the loop body, totaling nine (9)
instructions, which are stored in the total o 43B (cf. type int benchmark A.1, the for-
loop control part).

Concretely, in the A.1 for-loop head, the first mov places the initial, 0 value,
stored in the instruction itself (immediate addressing mode) to the memory location
of the loop index. The index address is expressed relative to the address contained in
the base (frame) pointer register, EBP, which is constant during the execution of the
main function. In the case shown here, EBP = 212FFA38h, so the address of the local
uI index is: A(uI) = EBP – 7E8h = 212FF250h.

The next, jmp instruction, performs the jump to the condition-checking part of the
loop head, which starts with the mov instruction at the address main + 20E3h =

1 The discussion about the performance difference between the pre- and post-increment operators on the
isolated l-values can be found e.g., in [8]. With the prefix ++, our benchmarks mostly run from 0% to
2.5% faster. However, on rare occasions (for the longer data types!), they are sometimes slower, but
within the standard deviation of the measurements (see sec. 4).

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

 // Listing 2
 // A. Storing into array elements
// A.1 Via index: iX[uI]
for (uint uI = 0; uI < uiN1; ++uI)
00C738B8 mov dword ptr [ebp-7E8h],0 ; uI = ML(EBP - 7E8h) ← 0.
00C738C2 jmp main+20E3h (0C738D3h) ; GOTO 0C738D3h (loop condition).
00C738C4 mov eax,dword ptr [ebp-7E8h] ; EAX ← ML(EBP – 7E8h) = uI.
00C738CA add eax,1 ; EAX ← EAX + 1.
00C738CD mov dword ptr [ebp-7E8h],eax ; uI ← EAX (uI ← uI + 1).
00C738D3 mov ecx,dword ptr [ebp-7E8h] ; ECX ← uI.
00C738D9 cmp ecx,dword ptr [ebp-77Ch] ; tmp ← ECX – ML(EBP – 77Ch) = uI – uiN1.
00C738DF jae main+2106h (0C738F6h); If tmp ≥ 0 then GOTO 0C738F6h (exit loop).
 iX[uI] = iRVal;
00C738E1 mov edx,dword ptr [ebp-7E8h] ; EDX ← ML(EBP - 7E8h) = uI.
00C738E7 mov eax,dword ptr [ebp-738h] ; EAX ← ML(EBP - 738h) = iRVal (= intLrg).
00C738ED mov dword ptr iX (0C826A8h)[edx*4],eax; iX[uI] = ML(iX + 4*uI) ← EAX
00C738F4 jmp main+20D4h (0C738C4h) ; GOTO 0C738C4h (loop expression).
// A.2 Via pointer arithmetic: *(pI0 + uI)
for (uint uI = 0; uI < uiN1; ++uI) // As in A.1.
 *(pI0 + uI) = iRVal;
00C73B5B mov eax,dword ptr [ebp-7F8h] ; EAX ← ML(EBP – 7F8h) = uI.
00C73B61 mov ecx,dword ptr [ebp-76Ch] ; ECX ← ML(EBP – 76Ch) = pI0 [= A(iX)].
00C73B67 mov edx,dword ptr [ebp-738h] ; EDX ← ML(EBP - 738h) = iRVal (= intLrg).
00C73B6D mov dword ptr [ecx+eax*4],edx; *(pI0 + uI) = ML(ECX + 4*EAX) ← EDX
00C73B70 jmp main+234Eh (0C73B3Eh) ; GOTO 0C73B3Eh (loop expression).
// A.3 Via incrementing the pointer: *(++pI)
for (int* pI = iX; pI < pI1; ++pI)
00C73DD1 mov dword ptr [ebp-808h], offset iX (0C826A8h); pI = ML(EBP - 808h) ← A(iX).
00C73DDB jmp main+25FCh (0C73DECh) ; GOTO 0C73DECh (loop condition).
00C73DDD mov edx,dword ptr [ebp-808h] ; EDX ← ML(EBP – 808h) = pI.
00C73DE3 add edx,4 ; EDX ← EDX + 4.
00C73DE6 mov dword ptr [ebp-808h],edx ; pI ← EDX (pI ← pI + 4).
00C73DEC mov eax,dword ptr [ebp-808h] ; EAX ← pI.
00C73DF2 cmp eax,dword ptr [ebp-770h] ; tmp ← EAX – ML(EBP – 770h) = pI – pI1.
00C73DF8 jae main+261Ah (0C73E0Ah); If tmp ≥ 0 then GOTO 0C73E0Ah (exit loop).
 *pI = iRVal;
00C73DFA mov ecx,dword ptr [ebp-808h] ; ECX ← ML(EBP - 808h) = pI
00C73E00 mov edx,dword ptr [ebp-738h] ; EDX ← ML(EBP - 738h) = iRVal (= intLrg).
00C73E06 mov dword ptr [ecx],edx ; *pI = ML(ECX) ← EDX.
00C73E08 jmp main+25EDh (0C73DDDh) ; GOTO 0C73DDDh (loop expression).
 // B. Retrieving from array elements
// B.1 Via index: iX[uI]
for (uint uI = 0; uI < uiN1; ++uI) // As in A.1.
 iLVal = iX[uI];
00C73A09 mov eax,dword ptr [ebp-7F0h] ; EAX ← ML(EBP – 7F0h) = uI.
00C73A0F mov ecx,dword ptr iX (0C826A8h)[eax*4]; ECX ← ML(iX + 4*uI) = iX[uI].
00C73A16 mov dword ptr [ebp-784h],ecx ; iLVal = ML(EBP – 784h) ← ECX.
00C73A1C jmp main+21FCh (0C739ECh) ; GOTO 0C739ECh (loop expression).
// B.2 Via pointer arithmetic: *(pI0 + uI)
for (uint uI = 0; uI < uiN1; ++uI) // As in A.1.
 iLval = *(pI0 + uI);
00C73C9B mov edx,dword ptr [ebp-800h] ; EDX ← ML(EBP – 800h) = uI.
00C73CA1 mov eax,dword ptr [ebp-76Ch] ; EAX ← ML(EBP – 76Ch) = pI0 [= A(iX)].
00C73CA7 mov ecx,dword ptr [eax+edx*4]; ECX ← ML(EAX + 4*EDX) = *(pI0 + uI).
00C73CAA mov dword ptr [ebp-784h],ecx ; iLVal = ML(EBP – 784h) ← ECX.
00C73CB0 jmp main+248Eh (0C73C7Eh) ; GOTO 0C73B3Eh (loop expression).

56

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

 // Listing 2 continued.
// B.3 Via incrementing the pointer: *(++pI)
for (int* pI = iX; pI < pI1; ++pI) // As in A.3.
 iLval = *pI;
00C73F3D mov ecx,dword ptr [ebp-810h] ; ECX ← ML(EBP – 7F0h) = pI.
00C73F43 mov edx,dword ptr [ecx] ; EDX ← ML(ECX) = *pI.
00C73F45 mov dword ptr [ebp-784h],edx ; iLVal = ML(EBP – 784h) ← EDX.
00C73F4B jmp main+2730h (0C73F20h) ; GOTO 0C739ECh (loop expression).

Listing 2. Intel x86 assembly language code of the crucial parts of our benchmarks from
Listing 1. The order of the code snippets is rearranged for the sake of comparison (see

§4.2.1). In the code comments, 𝐴𝐴(𝑥𝑥) denotes the address of (variable) 𝑥𝑥 and 𝑀𝑀𝑇𝑇(𝐴𝐴) denotes
the contents on the address 𝐴𝐴 interpreted in the data type 𝑇𝑇.

00C738D3h, where main = 00C717F0h represents the starting address of the C++
program main function.2

This mov prepares the operands for the cmp instruction behind it by moving the
current uI index value to the ECX register.

Now cmp compares uI with uiN1 variable value (placed at the address EBP –

77Ch,
3 by executing the operation tmp ← uI – uiN1, and setting the flags accordingly

(cf. the x86 instruction reference in [6]). The next instruction, jae, performs the jump
to the loop exit if the previous result is above or equal to zero. In other words, for
uI < uiN1, there is no jump, and the loop enters its body. The body contains the
statement iX[uI] = iRVal; , compiled into three instructions to be discussed soon.

The last instruction in A.1 for-loop is the jmp to the address 00C738F4h, which
is the unconditional jump to the loop-expression part of the loop head at the address
0C738C4h. Here, the index uI will be incremented. Because in the x86 instruction
set there are no explicit arithmetic operations with the operands in memory, the index
value is first moved to the EAX register, and after that, it is incremented by the instruct-
ion add eax, 1.

The next (mov) instruction places the obtained result as the new value of index uI.
After that, the execution of the for-loop comes again to its condition-checking part,
starting with the preparatory mov instruction described at the top of this paragraph.

After observing this control part of the for-loop more closely, a reader might
wonder why the second mov in the pair of the move instructions (the one at the address
00C738D3h) is not omitted, i.e., why the cmp instructions were not of the form:

cmp dword ptr [ebp-7E8h], dword ptr [ebp-77Ch] .

2 From that address on, in our case at the addresses 00C717F0h – 00C71806h, there are the first seven
instructions of the main function, which implement the standard calling convention (see e.g., [6]). As
the result of some compilations, the symbolic address of the next (push) instruction,
__$EncStackInitStart = main + 00C71807h, can also appear in this place.
3 In the VS 2019, the address of a local variable can be found by entering the C/C++ expression for
getting its address into the address field of one of the four available disassembly memory windows. Here,
uiN1 = cuiN, A(uiN1) = &uiN1 = 212FF2BCh.

57

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

 // Listing 2 continued.
// B.3 Via incrementing the pointer: *(++pI)
for (int* pI = iX; pI < pI1; ++pI) // As in A.3.
 iLval = *pI;
00C73F3D mov ecx,dword ptr [ebp-810h] ; ECX ← ML(EBP – 7F0h) = pI.
00C73F43 mov edx,dword ptr [ecx] ; EDX ← ML(ECX) = *pI.
00C73F45 mov dword ptr [ebp-784h],edx ; iLVal = ML(EBP – 784h) ← EDX.
00C73F4B jmp main+2730h (0C73F20h) ; GOTO 0C739ECh (loop expression).

Listing 2. Intel x86 assembly language code of the crucial parts of our benchmarks from
Listing 1. The order of the code snippets is rearranged for the sake of comparison (see

§4.2.1). In the code comments, 𝐴𝐴(𝑥𝑥) denotes the address of (variable) 𝑥𝑥 and 𝑀𝑀𝑇𝑇(𝐴𝐴) denotes
the contents on the address 𝐴𝐴 interpreted in the data type 𝑇𝑇.

00C738D3h, where main = 00C717F0h represents the starting address of the C++
program main function.2

This mov prepares the operands for the cmp instruction behind it by moving the
current uI index value to the ECX register.

Now cmp compares uI with uiN1 variable value (placed at the address EBP –

77Ch,
3 by executing the operation tmp ← uI – uiN1, and setting the flags accordingly

(cf. the x86 instruction reference in [6]). The next instruction, jae, performs the jump
to the loop exit if the previous result is above or equal to zero. In other words, for
uI < uiN1, there is no jump, and the loop enters its body. The body contains the
statement iX[uI] = iRVal; , compiled into three instructions to be discussed soon.

The last instruction in A.1 for-loop is the jmp to the address 00C738F4h, which
is the unconditional jump to the loop-expression part of the loop head at the address
0C738C4h. Here, the index uI will be incremented. Because in the x86 instruction
set there are no explicit arithmetic operations with the operands in memory, the index
value is first moved to the EAX register, and after that, it is incremented by the instruct-
ion add eax, 1.

The next (mov) instruction places the obtained result as the new value of index uI.
After that, the execution of the for-loop comes again to its condition-checking part,
starting with the preparatory mov instruction described at the top of this paragraph.

After observing this control part of the for-loop more closely, a reader might
wonder why the second mov in the pair of the move instructions (the one at the address
00C738D3h) is not omitted, i.e., why the cmp instructions were not of the form:

cmp dword ptr [ebp-7E8h], dword ptr [ebp-77Ch] .

2 From that address on, in our case at the addresses 00C717F0h – 00C71806h, there are the first seven
instructions of the main function, which implement the standard calling convention (see e.g., [6]). As
the result of some compilations, the symbolic address of the next (push) instruction,
__$EncStackInitStart = main + 00C71807h, can also appear in this place.
3 In the VS 2019, the address of a local variable can be found by entering the C/C++ expression for
getting its address into the address field of one of the four available disassembly memory windows. Here,
uiN1 = cuiN, A(uiN1) = &uiN1 = 212FF2BCh.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

However, that is invalid because the cmp does not allow the second operand to be
accessed via a memory address! On the other hand, if it were a constant, which would
happen if the cuiN (declared as const) were the upper limit of the index, as in the
following condition,

for (uint uI = 0; uI < cuiN; ++uI),
then the compiler would indeed omit the “extra” mov instruction and prepare the cmp
instruction as:

cmp dword ptr [ebp-7E8h], 1312D00h .

Here, the constant value of cuiN = 1312D00h = 20 000 000d is stored in the instruction
itself. This case exemplifies how the x86 set of instructions is not orthogonal, i.e.,
how many operations are not allowed with an arbitrary addressing mode.

In our old benchmarks, we wrote the for-loops in just the above way, and their
loop heads were translated into the following seven (7) instructions, with their lengths
in bytes in parenthesis:

• mov(10), jmp(2), mov(6), add(3), mov(6), cmp(10), jae(2), plus
• jmp(2) at the end of the loop body,

adding up to eight (8) instructions in 41B.
This total is one (1) instruction and 2B less than in our standard benchmarks (cf.

Table 1). However, whether such loops will run faster or not remains to be determined
(§4.3.3). Nevertheless, they do not resemble the general case in which the upper limit
can and often will be a non-constant value, so we have abandoned them.

A reader can also detect that the index value was incremented in EAX, moved back
to the uI variable, to be moved into another (ECX) register. Why? Would it not be
better to operate cmp with EAX as its first operand if the index value is already there?
Furthermore, if we upgrade this by changing the first instruction to mov EAX, 0, then
the “second” mov (second after add) is not needed at all. This simplification leads to
code optimization, which is beyond the scope of this paper.

 To get back to the present state of our benchmark loops, in Listing 2 we observe
that the for-loop in A.3 benchmark is very similar to the previous ones and that the
one in B.3 is equivalent. They both have the same number of instructions (8 + 1),
with the same lengths as the loops in the first two benchmarks (cf. Table 1).
Furthermore, all instructions in the A.3 for-loop are of the same type as those in A.1,
with just a few minor differences. In the first instruction, the second operand must be
addressed differently because it assigns the address of the iX array to be the initial
value of the pI pointer: pI ← A(iX) = iX = 00C826A8h. The second instruction
executes the jump to the condition-checking part of the loop head (at the address
00C73DECh), which — as in A.1 — starts with the preparatory mov instruction. It
moves the value of pI into EAX. Then cmp executes the subtraction tmp ← pI − pI1.
jae checks the flags and if tmp ≥ 0, it exits the loop, else (CF = 1), the execution
proceeds to the loop body. jmp at the end of the body directs the execution to the
loop-expression, which first moves the value of pI to EDX, then increases EDX for 4,
because sizeof(int) = 4, and finally stores the enlarged value into pI.

58

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

Overall, the differences between manipulating the pointer and the indices are only
subtle. The compilation of all for-loops in our standard benchmarks gives the same
number of instructions, with the same operations and the same or very similar addres-
sing modes, resulting in the instructions of the same lengths. From this, one could
expect them to execute within the nearly same time, but whether this is so — we still
have to see.

3.2.2. Compilation of the array-element-accessing statements (int arrays)

In the for-loop bodies of all the presented benchmarks, there is just one C/C++
statement. First, we focus on the compilation of this statement in the three
benchmarks of type A, in which an r-value provided by a variable iRVal is stored
into the uI-th array element of the integer array iX.

In the benchmarks A.1 and A.3 for the int array, this is accomplished by three
(3) and in the benchmark A.2 by four (4) mov instructions (cf. Listing 2 and Table 1).
Therefore, we compare A.1 and A.3 cases first. In A.1, the three mov instructions
together are 19B long, and in A.3 (only) 14B. The first two instructions in both bench-
marks are not only of the same length but also of the exact same type. In A.1 (A.3)
benchmark:

• the first mov instruction places the value of the index uI (pointer pI) into EDX
(ECX);

• the second mov instruction, in both A.1 and A.3, places the value of the local
variable iRVal = intLrg = 22 222 222d = 0153158Eh, stored at the address
A(iRval) = EBP – 738h, into EAX (EDX).

The difference is only in the third mov instruction. In A.1, it moves the value of
EAX (= iRVal) to the address of the uI-th array element, which is formed by the index
addressing (eq. 3). In this case:

A(iX[uI]) = iX + 4*uI = 00C826A8h + 4*EDX . (4)

It requires a 7B-mov instruction, which is 1B longer than the previous two. Namely,
besides the information of the source operand (here EAX), it must store the information
of the index register (EDX), the length of the (integer) array element (4), and — as the
longest data — the 32-bit address of the iX array.

In A.3, the third mov instruction in the loop body is much simpler, and because of
that, it is 5B shorter. Namely, the address of the uI-th array element is already
prepared in the pI pointer (which was moved into ECX in the first mov instruction).
So, the content of EDX moves to the address shown by pI.

To summarize this briefly, in the third mov instruction, we note an apparent sim-
plification in benchmark A.3, comparing it to benchmark A.1. However, keeping in
mind that this 32-bit code will be executed on the 64-bit platform (and particularly on
the 64-bit processor!), it remains to see if the shorter and simpler last mov instruction
will bring some speed benefits.

As for the loop body of the benchmark A.2, the four instructions are 6B, 6B, 6B,
and 3B long, in total 21B, i.e., one instruction and 2B (7B) more than in A1 (A3). The
first mov instruction places the value of uI into EAX. A careful reader will note that

59

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

Overall, the differences between manipulating the pointer and the indices are only
subtle. The compilation of all for-loops in our standard benchmarks gives the same
number of instructions, with the same operations and the same or very similar addres-
sing modes, resulting in the instructions of the same lengths. From this, one could
expect them to execute within the nearly same time, but whether this is so — we still
have to see.

3.2.2. Compilation of the array-element-accessing statements (int arrays)

In the for-loop bodies of all the presented benchmarks, there is just one C/C++
statement. First, we focus on the compilation of this statement in the three
benchmarks of type A, in which an r-value provided by a variable iRVal is stored
into the uI-th array element of the integer array iX.

In the benchmarks A.1 and A.3 for the int array, this is accomplished by three
(3) and in the benchmark A.2 by four (4) mov instructions (cf. Listing 2 and Table 1).
Therefore, we compare A.1 and A.3 cases first. In A.1, the three mov instructions
together are 19B long, and in A.3 (only) 14B. The first two instructions in both bench-
marks are not only of the same length but also of the exact same type. In A.1 (A.3)
benchmark:

• the first mov instruction places the value of the index uI (pointer pI) into EDX
(ECX);

• the second mov instruction, in both A.1 and A.3, places the value of the local
variable iRVal = intLrg = 22 222 222d = 0153158Eh, stored at the address
A(iRval) = EBP – 738h, into EAX (EDX).

The difference is only in the third mov instruction. In A.1, it moves the value of
EAX (= iRVal) to the address of the uI-th array element, which is formed by the index
addressing (eq. 3). In this case:

A(iX[uI]) = iX + 4*uI = 00C826A8h + 4*EDX . (4)

It requires a 7B-mov instruction, which is 1B longer than the previous two. Namely,
besides the information of the source operand (here EAX), it must store the information
of the index register (EDX), the length of the (integer) array element (4), and — as the
longest data — the 32-bit address of the iX array.

In A.3, the third mov instruction in the loop body is much simpler, and because of
that, it is 5B shorter. Namely, the address of the uI-th array element is already
prepared in the pI pointer (which was moved into ECX in the first mov instruction).
So, the content of EDX moves to the address shown by pI.

To summarize this briefly, in the third mov instruction, we note an apparent sim-
plification in benchmark A.3, comparing it to benchmark A.1. However, keeping in
mind that this 32-bit code will be executed on the 64-bit platform (and particularly on
the 64-bit processor!), it remains to see if the shorter and simpler last mov instruction
will bring some speed benefits.

As for the loop body of the benchmark A.2, the four instructions are 6B, 6B, 6B,
and 3B long, in total 21B, i.e., one instruction and 2B (7B) more than in A1 (A3). The
first mov instruction places the value of uI into EAX. A careful reader will note that

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Instruc. – op.
mnem. (bytes) A: Arr. el. = const r-value B: l-value = Afrr. el.

Array
type

for-
loop Arr[i] *(p0 + i) *(++p) Arr[i] *(p0 + i) *(++p)

char

ctrl: Equiv. to
int A.2.

Equiv. to
int A.2.

Analog. to
int A.3.

Equiv. to
int B.1.

Equiv. to
int B.2.

Sim./Analg.
to

int A.2.

body:
mov(6), mov(6),
mov(6): 18B.
(Use of CL reg.)

mov(6), add(6),
mov(6), mov(2):
 20B.

mov(6), mov(6),
mov(2): 14B.
(Use of CL reg.)

mov(6), mov(6),
mov(6): 18B.
(Use of CL reg.)

mov(6), add(6),
mov(2), mov(6):
 20B.

mov(6), mov(2),
mov(6): 14B.
(Use of AL reg.)

sho-
 rt

ctrl: Equiv. to
int A.1.

Equiv. to
int A.1.

Analog. to
int A.3.

Equiv. to
int B.1.

Equiv. to
int B.2.

Analog. to
int B.3.

body:
mov(6), mov(7),
mov(8): 21B.
(Use of AX reg.)

mov(6), mov(6),
mov(7), mov(4):
23B. (Use of CX.)

mov(6), mov(7),
mov(3): 16B.
(Use of DX reg.)

mov(6), mov(8),
mov(7): 21B.
(Use of CX reg.)

mov(6), mov(6),
mov(4), mov(7):
23B. (Use of CX.)

mov(6), mov(3),
mov(7): 16B.
(Use of DX reg.)

int

ctrl:

mov(10), jmp(2),
mov(6), add(3),
mov(6), mov(6),
cmp(6), jae(2);
 +jmp(2): 43B.

Equiv. to A.1,
but with

permuted reg.:
EAX → ECX → EDX
(↑ ← ← ↓)

Simil. to A.1,
but with

permuted reg.:
ECX → EAX → EDX
(↑ ← ← ↓)

Equiv. to
A.2.

Equiv. to
A.1.

Equiv. to
A.3.

body:
mov(6), mov(6),
mov(7): 19B.

mov(6), mov(6),
mov(6), mov(3):
 21B.

mov(6), mov(6),
mov(2): 14B.

mov(6), mov(7),
mov(6): 19B.

mov(6), add(6),
mov(3), mov(6):
 21B.

mov(6), mov(2),
mov(6); 14B.

ll-
 int

ctrl: Equiv. to
int A.1.

Equiv. to
int A.2.

Analog. to
int A.3.

Equiv. to
int A.1.

Equiv. to
int A.2.

Equiv. to
int B.3.

body:

mov(6), mov(6),
mov(6), mov(7),
mov(7): 32B.

mov(6), mov(6),
mov(6), mov(6),
mov(3), mov(4):
 31B.

mov(6), mov(6),
mov(6), mov(2),
mov(3): 23B.

mov(6), mov(7),
mov(7), mov(6),
mov(6): 32B.

mov(6), mov(6),
mov(3), mov(4),
mov(6), mov(6):
 31B.

mov(6), mov(2),
mov(3), mov(6),
mov(6): 23B.

flo-
 at

ctrl: Equiv. to
int A.1.

Equiv. to
int A.1.

Equiv. to
int A.3.

Equiv. to
int A.1.

Equiv. to
int A.1.

Equiv. to
int B.3.

body:
mov(6),
movss(8),
movss(9): 23B.

mov(6), mov(6),
movss(8),
movss(5): 25B.

mov(6),
movss(8),
movss(4): 18B.

mov(6),
movss(9),
movss(8): 23B.

mov(6), mov(6),
movss(5),
movss(8): 25B.

mov(6),
movss(4),
movss(8): 18B.

dou-
 ble

ctrl: Equiv. to
int A.1.

Equiv. to
int A.2.

Sim./Analg. to
int A.1.

Equiv. to
int A.1.

Equiv. to
int B.1.

Analog. to
int A.3.

body:
mov(6),
movsd(8),
movsd(9): 23B.

mov(6), mov(6),
movsd(8),
movsd(5): 25B.

mov(6),
movsd(8),
movsd(4): 18B.

mov(6),
movsd(9),
movsd(8): 23B.

mov(6), mov(6),
movsd(5),
movsd(8): 25B.

mov(6),
movsd(4),
movsd(8): 18B.

Table 1. The x86 machine instructions of our six standard benchmarks and their lengths for
the six standard array types. The benchmarks’ for-loops are divided into the control part
(the loop head and the unconditional jump at the end of the loop body) and the loop body

contents. For the two parts, the instructions are represented as: opMnem(l), where opMnem =
the operation mnemonic, l = the instruction length in bytes. Equiv. = equivalent up to the

address specs., Analog./Sim. = as equiv. but adapted to the data type/with a different
addressing mode.

60

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

this uI index is different from the one in A.1, because all indices are declared locally
to their for-loops. Here, A(uI) = EBP – 7F8h [as stated in §3.2.1, we omitted the A.2
for-loop head compilation because it is equivalent to that in A.1, except for the
circular replacement of the registers (cf. Table 1)].

The next mov places the starting pI0 = A(iX) pointer value into ECX [A(pI0) =

EBP – 76Ch]. The third mov stores iRVal into EDX. Now everything is prepared for
the action of the fourth mov, which will form the address of the uI-th element by
using the index addressing in a very similar way as in eq. 4, but with all the operands
in registers:

A(iX[uI]) = pI0 + 4*uI = 00C826A8h + 4*EAX . (5)

To recapitulate this shortly: despite one more instruction in this case, the last
instruction — which performs the final assignment of the value to the uI-th array
element — is relatively short (3B) and probably very effective.

The three benchmarks of type B remain, in which the uI-th array element value
is assigned to the l-value provided by the variable iLVal. Again, the assignment
statements in B.1 and B.3 bodies consist of three (3), and in B.2 of four (4) mov
instructions. Thus, we start with the former two benchmarks.

In the B.1 loop body, the three mov instructions are the same type as those in A.1
and have the same lengths, but the last two are in the reversed order and have different
source and destination operands. The first mov places the value of uI (now with
A(uI) = EBP – 7F0h) into EAX; the second stores the value of iX[uI] into ECX; the last
one moves the value from ECX into the iLVAl variable; A(iLVal) = EBP – 784h.

The analogous situation is in B.3. Again, the instructions there are of the same
type as those in A.3 but permuted. First, the pointer pI value is moved to ECX
[A(pI) = EBP – 810h]. The second mov retrieves the contents from the address in ECX,
i.e., the value of *pI, and stores it into EDX, making this crucial fetch of the array
element very effective. Finally, the third mov places the EDX value into iLVal.

Similarly, in the B.2 loop body, the first two instructions do the same thing as
those in A.2 but with EDX and EAX as destinations. The third, the shortest one (3B),
stores the *(pI0 + uI) value into ECX. The fourth instruction moves this value from
ECX to iLVal. Judging solely by the number of instructions and their lengths, this
solution is longer, but — as suggested previously — its time efficiency may also
depend on other factors.

3.2.3. Compilation of the benchmarks with arrays of other types

A detailed inspection of the machine instructions for all other array (data) types would
be very voluminous. For them, we will only briefly comment on the data summarized
in Table 1, in which the above-elaborated int-type array benchmarks serve as the
referent ones.

Regarding the implementation of the control part of the for-loops, the reader can
note that it is the same for all 36 benchmark variations. Because they have indices
(counters) and incrementing pointers within the range of the int type, they are all
compiled to the same instructions, with the same lengths, possibly differing from each
other only as follows:

61

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

this uI index is different from the one in A.1, because all indices are declared locally
to their for-loops. Here, A(uI) = EBP – 7F8h [as stated in §3.2.1, we omitted the A.2
for-loop head compilation because it is equivalent to that in A.1, except for the
circular replacement of the registers (cf. Table 1)].

The next mov places the starting pI0 = A(iX) pointer value into ECX [A(pI0) =

EBP – 76Ch]. The third mov stores iRVal into EDX. Now everything is prepared for
the action of the fourth mov, which will form the address of the uI-th element by
using the index addressing in a very similar way as in eq. 4, but with all the operands
in registers:

A(iX[uI]) = pI0 + 4*uI = 00C826A8h + 4*EAX . (5)

To recapitulate this shortly: despite one more instruction in this case, the last
instruction — which performs the final assignment of the value to the uI-th array
element — is relatively short (3B) and probably very effective.

The three benchmarks of type B remain, in which the uI-th array element value
is assigned to the l-value provided by the variable iLVal. Again, the assignment
statements in B.1 and B.3 bodies consist of three (3), and in B.2 of four (4) mov
instructions. Thus, we start with the former two benchmarks.

In the B.1 loop body, the three mov instructions are the same type as those in A.1
and have the same lengths, but the last two are in the reversed order and have different
source and destination operands. The first mov places the value of uI (now with
A(uI) = EBP – 7F0h) into EAX; the second stores the value of iX[uI] into ECX; the last
one moves the value from ECX into the iLVAl variable; A(iLVal) = EBP – 784h.

The analogous situation is in B.3. Again, the instructions there are of the same
type as those in A.3 but permuted. First, the pointer pI value is moved to ECX
[A(pI) = EBP – 810h]. The second mov retrieves the contents from the address in ECX,
i.e., the value of *pI, and stores it into EDX, making this crucial fetch of the array
element very effective. Finally, the third mov places the EDX value into iLVal.

Similarly, in the B.2 loop body, the first two instructions do the same thing as
those in A.2 but with EDX and EAX as destinations. The third, the shortest one (3B),
stores the *(pI0 + uI) value into ECX. The fourth instruction moves this value from
ECX to iLVal. Judging solely by the number of instructions and their lengths, this
solution is longer, but — as suggested previously — its time efficiency may also
depend on other factors.

3.2.3. Compilation of the benchmarks with arrays of other types

A detailed inspection of the machine instructions for all other array (data) types would
be very voluminous. For them, we will only briefly comment on the data summarized
in Table 1, in which the above-elaborated int-type array benchmarks serve as the
referent ones.

Regarding the implementation of the control part of the for-loops, the reader can
note that it is the same for all 36 benchmark variations. Because they have indices
(counters) and incrementing pointers within the range of the int type, they are all
compiled to the same instructions, with the same lengths, possibly differing from each
other only as follows:

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Equiv. — stands for the cases where the implementation is equivalent in every way
except in the concrete choice of the general-purpose registers (GPRS)
and the address offsets.

Analog. — stands for the analogous cases, which differ from the equivalent only
in that some instruction operands are adapted to the concrete data type,
e.g., by changing the address increment according to the data type length:
incr = sizeof(type).

Sim. (similar) — stands for the case with the same types of instructions but with
different addressing modes.

The inspection of Table 1 confirms that all for-loop implementations are — if not
equivalent — either analogous or similar in the above sense. The biggest difference,
attributed as “similar,” concretely means that only the first instruction in the for-loop
head is different (see the comparison of the loop heads for A.1 and A.3 benchmarks
in §3.2.1).

In the implementation of the single C/C++ statement within the loop body, there
is much greater diversity, as we have already shown for the int arrays. Similarly, the
observation that the type-2 benchmarks (A.2 and B.2) have one instruction more and
the type-3 benchmarks (A.3 and B.3) have the shortest total length of their instructions
also holds for the other array data types. Besides that general remark, we note that
with the same number of instructions for the short- and int-type arrays, the former
has a net length that is systematically 2B longer. These instructions use the 16-bit X-
type registers (AX, CX, DX). The situation levels up for the char type. These bench-
marks have instructions of the same or faintly shorter length than those for the int
type, and they use the lower byte of the X registers (AL, CL).

The benchmarks with the llint arrays systematically have two (2) instructions
more than the corresponding ones of int type and are, because of that, considerably
longer. In the x86 mode, the VS-CV 2019 compiler produces the x86, 32-bit machine
code without using the available 64-bit (R) registers, so moving this type of data
requires the engagement of two 32-bit registers instead of one, and the use of the
standard dword mov instructions (double word = 32-bit word). In our concrete
example, the value of the llint variable llRVal is stored into the two registers:
ECX:EDX, of which the left (right) holds the more (less) significant half of the 64-bit
value.

The remaining two types of arrays are of the floating-point type. For accessing
the array elements of the float (double) type, the compiler uses movss (movsd)
instructions to move the 32(64)-bit contents to the lowest (lower) portion of the 128-
bit xxm registers (in our case, it was the xmm0 register (Intel 2022-2). From their short
description in Table 1, we can see that the numbers of these instructions are equal to
the numbers of instructions in the corresponding benchmarks for the int arrays and
that their length is equal for both the 32-bit float and 64-bit double float type.

62

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

3.2.4. A Glimpse to the x64 Compilation

In VS-CV 2019, the default compilation option is for the x86 set of machine
instructions, as a still de-facto standard for many sorts of applications. In addition,
there is also the x64 compilation, which translates the C++ source code into the Intel’s
x64 set of 64-bit instructions. To explore this option thoroughly, we would have to
inspect the additional instructions in the i64 set, which have access to the quadword
(64-bit), R-registers. It would also require the analysis of the compiled machine code
similar to the above one. We will leave this out of this work, and here just briefly
describe the crucial differences between the 64-bit version and the 32-bit version of
the assembly code.

The structure of the for-loops in our benchmarks remained the same: there are
eight (8) instructions in the loop heads and one (1) unconditional jump at the end of
the loop bodies. For our referent, int type, and the A.1 benchmark, the 3B-instruction
add eax, 1 is now replaced with the 2B-instruction inc eax, 1 (making us wonder
why it was not used in the x86 code, too). Furthermore, the loop indices are stored
locally with the displacement counted now from the RSP register (the 64-bit stack
pointer), instead of from the EBP register. Overall, the x64 version of our for-loops
is realized similarly to before. They have the same number of instructions (9), and
their total length is 42B, 1B less than in our standard, x86 version loop. This structure
holds for all for-loops with indices. The for-loops with the incrementing pointers
are organized somewhat differently. They have, in total, ten (10) instructions and a
much longer length of 55B.

As for the assignment statement in the loop body, it is compiled into four (4)
instructions: mov(7), lea(7), mov(4), mov(3), totaling 23B, and having one (1) instruct-
ion and 4B more than the x86 version. Here, all instructions but the first one work
with the R-type of registers for preparing the operand addresses. For the benchmarks
with the int-type arrays, their r-values and array elements are manipulated according
to their type, i.e., as the 32-bit memory and register values. The same instructions,
but ordered differently, are in the loop bodies of the B-type benchmarks.

The situation is very similar for the shorter (integer) types, for which the loop
bodies have one instruction more than in the x86 version. Likewise, for the float
type, the loop body of A.1 benchmark is realized by four (4) instructions: mov(7),
lea(7), movss(6), movss(5), totaling 25B, and having one (1) instruction and 2B more
than the x86 version. Generally, it is clear that for the types equal to or shorter than
32-bits, the use of x64 architecture does not improve the structure of the compiled
machine code.

The benefits of the 64-bit architecture should — if anywhere — become obvious
for the 64-bit data types. Indeed, the loop body of the llint A.1 benchmark is
realized by (only) four (4) instructions: mov(7), lea(7), mov(8), mov(4), totaling 28B,
which is one (1) instruction and 4B less than in the x86 machine code. However, for
the type double of A.1 benchmark, the instructions in the loop body are: mov(7),
lea(7), movsd(9), movsd(5), totaling 28B, which is one (1) instruction and 5B more
than in the x86 version. The rest of this analysis might be presented elsewhere.

63

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

3.2.4. A Glimpse to the x64 Compilation

In VS-CV 2019, the default compilation option is for the x86 set of machine
instructions, as a still de-facto standard for many sorts of applications. In addition,
there is also the x64 compilation, which translates the C++ source code into the Intel’s
x64 set of 64-bit instructions. To explore this option thoroughly, we would have to
inspect the additional instructions in the i64 set, which have access to the quadword
(64-bit), R-registers. It would also require the analysis of the compiled machine code
similar to the above one. We will leave this out of this work, and here just briefly
describe the crucial differences between the 64-bit version and the 32-bit version of
the assembly code.

The structure of the for-loops in our benchmarks remained the same: there are
eight (8) instructions in the loop heads and one (1) unconditional jump at the end of
the loop bodies. For our referent, int type, and the A.1 benchmark, the 3B-instruction
add eax, 1 is now replaced with the 2B-instruction inc eax, 1 (making us wonder
why it was not used in the x86 code, too). Furthermore, the loop indices are stored
locally with the displacement counted now from the RSP register (the 64-bit stack
pointer), instead of from the EBP register. Overall, the x64 version of our for-loops
is realized similarly to before. They have the same number of instructions (9), and
their total length is 42B, 1B less than in our standard, x86 version loop. This structure
holds for all for-loops with indices. The for-loops with the incrementing pointers
are organized somewhat differently. They have, in total, ten (10) instructions and a
much longer length of 55B.

As for the assignment statement in the loop body, it is compiled into four (4)
instructions: mov(7), lea(7), mov(4), mov(3), totaling 23B, and having one (1) instruct-
ion and 4B more than the x86 version. Here, all instructions but the first one work
with the R-type of registers for preparing the operand addresses. For the benchmarks
with the int-type arrays, their r-values and array elements are manipulated according
to their type, i.e., as the 32-bit memory and register values. The same instructions,
but ordered differently, are in the loop bodies of the B-type benchmarks.

The situation is very similar for the shorter (integer) types, for which the loop
bodies have one instruction more than in the x86 version. Likewise, for the float
type, the loop body of A.1 benchmark is realized by four (4) instructions: mov(7),
lea(7), movss(6), movss(5), totaling 25B, and having one (1) instruction and 2B more
than the x86 version. Generally, it is clear that for the types equal to or shorter than
32-bits, the use of x64 architecture does not improve the structure of the compiled
machine code.

The benefits of the 64-bit architecture should — if anywhere — become obvious
for the 64-bit data types. Indeed, the loop body of the llint A.1 benchmark is
realized by (only) four (4) instructions: mov(7), lea(7), mov(8), mov(4), totaling 28B,
which is one (1) instruction and 4B less than in the x86 machine code. However, for
the type double of A.1 benchmark, the instructions in the loop body are: mov(7),
lea(7), movsd(9), movsd(5), totaling 28B, which is one (1) instruction and 5B more
than in the x86 version. The rest of this analysis might be presented elsewhere.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

3.2.5. Possible Benchmark Pitfalls

The benchmarks written for this research were not intended to perform some standard
operations4 but to be as simple as possible and thus eliminate all unnecessary
consumption of the processor time unrelated to the purpose of this testing. In such a
reduction, one must pay attention to the generality of the written program code.
Otherwise, it may easily happen that the obtained benchmarks favor some of the
testing options before others. We will illustrate this in the following example.

In the early versions of our A-type benchmarks, instead of the iRVal variable, we
have used a numerical constant as a source of the value to be stored in the array
element. In a slightly simplified version, shown here in Listing 3, the constant is an
integer defined by intLrg, as can be seen in the C/C++ assignment statement above
the corresponding assembly language code.5 Unlike the code in Listing 2, the jmp
instruction on the bottom of the for-loop body is not shown because the for-loop
context is omitted here. In all three cases, there is one mov instruction less than in our
standard benchmarks (in Listing 2). The numbers and the lengths of the instructions
(in parenthesis) are as follows:

A.1 – 2 instructions: mov(6), mov(11), in total 17B;
A.2 – 3 instructions: mov(6), mov(6), mov(7), in total 19B;
A.3 – 2 instructions: mov(6), mov(6), in total 12B.

 // WARNING! Not a general case because of assigning intLrg, which is de-
// fined as a numerical constant (see Listing 1) and is addressed literally.
// A.1 Storing into:
iX[uI] = intLrg;
00426078 mov eax,dword ptr [ebp-0A20h] ; EAX ← ML(EBP – 0A20h) = uI.
0042607E mov word ptr iX (03D6E850h)[eax*4], 153158Eh

; iX[uI] = ML(iX + 4*uI) ← 153158Eh = 22 222 222d.
 //
// A.2 Storing into:
*(pI0 + uI) = intLrg;
004262E2 mov eax,dword ptr [ebp-0A7Ch]
004262E8 mov ecx,dword ptr [ebp-0A64h]
004262EE mov dword ptr [ecx+eax*4],153158Eh
 //
// A.3 Storing into:
*pI = intLrg;
00426571 mov eax,dword ptr [ebp-0AD8h] ; EAX ← ML(EBP – 0AD8h) = pI.
00426577 mov dword ptr [eax],153158Eh ; *pI = ML(EAX) ← 153158Eh = 22 222 222d.
//

Listing 3. Intel x86 assembly language code of the B-type array element assignments with

the less general r-value, in the form of numerical constant.

4 Though the A-type benchmarks do perform the initialization of the array elements to the same value.
5 In the test programs, we use two such constants: one for the for-loops pre-runs (§4.2.2), and another
for their time-measuring runs.

64

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

The first mov instruction in A.1 and A.2 places the value of index uI into EAX.
In A.3, the first mov places the value of the pointer pI into that register. The second
mov in A.1 (A.3) finishes the job, by storing the value of the numerical constant
(immediately addressed) intLrg = 153158Eh = 22 222 222d into the place of the uI-
th (next) array element. In A.1, it is done by a more complex, 11B-mov instruction
because of the longer form of the index addressing (4B are needed for the address of

iX, and 4B for the stored literal). In A.3, the same action is achieved by a 6B-mov
instruction, thanks to the fact that the fully formed array-element address was already
in EAX. In A.2, the second of the three mov instructions must store the value of pI0
into ECX, and after that, the third mov instruction stores the literal at the array element
address formed by the index addressing. One might expect that, in this case, the A-
type benchmarks would perform faster. We will comment on this in the next section
(§4.3).

Another example of a pitfall in the benchmark code was already commented in
the last part of §3.2.1. In it, a variable declared as const (cuiN) has enabled imme-
diate addressing mode and thus — comparing it to the use of a general
variable — decreased the number of instructions for one. Besides that, the variables
should always be (re)declared in local blocks to assure similar addressing modes in
all benchmarks.

In conclusion of this section, when writing benchmarks, one should pay great
attention to their generality and follow all the rules of good programming practices.
Additionally, before applying the newly created benchmarks, it is important to check
their assembly language form.

4. Execution Time Measurements
This section will first explain the methods used for our BET (benchmark execution
time) measurements and the prerequisites needed for consistent and precise results.
Then, it presents those results and comments on them.

4.1. Time-Measurement Methods

There are several ways to measure the elapsed time of certain program parts in C++.
In our preliminary and motivational measurements (mentioned in sec. 1), we have
used the MS Windows SYSTEMTIME struct, available in VS IDE after including the
windows.h header file (details in [9]). The way to apply it for the measurements of
the benchmark execution times is shown in Listing 4. Because its smallest time
division is a millisecond (ms), this method is useful when the measured times
approach the order of one second (s). In that ad-hoc measurement, we explored the
short and int arrays with 700 0000h = 117 440 512d elements, i.e., five times larger
than now. Thus, the execution times on the older and slower computers did approach
1s, so such accuracy was acceptable. Recently, we repeated similar measurements on
the arrays with roughly five times fewer elements because, in the same program, we
were investigating six different types of arrays, most of them with much larger
element types. The execution times of those measurements became too short for this

65

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

The first mov instruction in A.1 and A.2 places the value of index uI into EAX.
In A.3, the first mov places the value of the pointer pI into that register. The second
mov in A.1 (A.3) finishes the job, by storing the value of the numerical constant
(immediately addressed) intLrg = 153158Eh = 22 222 222d into the place of the uI-
th (next) array element. In A.1, it is done by a more complex, 11B-mov instruction
because of the longer form of the index addressing (4B are needed for the address of

iX, and 4B for the stored literal). In A.3, the same action is achieved by a 6B-mov
instruction, thanks to the fact that the fully formed array-element address was already
in EAX. In A.2, the second of the three mov instructions must store the value of pI0
into ECX, and after that, the third mov instruction stores the literal at the array element
address formed by the index addressing. One might expect that, in this case, the A-
type benchmarks would perform faster. We will comment on this in the next section
(§4.3).

Another example of a pitfall in the benchmark code was already commented in
the last part of §3.2.1. In it, a variable declared as const (cuiN) has enabled imme-
diate addressing mode and thus — comparing it to the use of a general
variable — decreased the number of instructions for one. Besides that, the variables
should always be (re)declared in local blocks to assure similar addressing modes in
all benchmarks.

In conclusion of this section, when writing benchmarks, one should pay great
attention to their generality and follow all the rules of good programming practices.
Additionally, before applying the newly created benchmarks, it is important to check
their assembly language form.

4. Execution Time Measurements
This section will first explain the methods used for our BET (benchmark execution
time) measurements and the prerequisites needed for consistent and precise results.
Then, it presents those results and comments on them.

4.1. Time-Measurement Methods

There are several ways to measure the elapsed time of certain program parts in C++.
In our preliminary and motivational measurements (mentioned in sec. 1), we have
used the MS Windows SYSTEMTIME struct, available in VS IDE after including the
windows.h header file (details in [9]). The way to apply it for the measurements of
the benchmark execution times is shown in Listing 4. Because its smallest time
division is a millisecond (ms), this method is useful when the measured times
approach the order of one second (s). In that ad-hoc measurement, we explored the
short and int arrays with 700 0000h = 117 440 512d elements, i.e., five times larger
than now. Thus, the execution times on the older and slower computers did approach
1s, so such accuracy was acceptable. Recently, we repeated similar measurements on
the arrays with roughly five times fewer elements because, in the same program, we
were investigating six different types of arrays, most of them with much larger
element types. The execution times of those measurements became too short for this

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

method. Sometimes, especially when the operation system (OS) was loaded more
heavily, the function GetSystemTime failed to return a proper value and the calculated
difference became negative.

More precise time measurements should get more accurate “time stamps” from
the hardware timers, which rely directly on the processor’s time cycles [10]. Such are
the methods (ii) and (iii) in Listing 4. In (ii), the HRTimer class uses the member
function QueryPerformanceCounter to do the job. We used this method for the time
measurements in [11], [12]. By assuming that its accuracy should approach the
execution time of the order of (several) instruction cycle(s), we appraised its precision
to be around 10ns. However, the comparisons with the other methods used here put
a question mark on this optimistic “guesstimate” (see below).

// Declarations and definitions as in Listing 1.
//
// Variables for the elapsed times in ms.
float fDltTmSYS, fDltTmHRT, fDltTmHRC;
// i) Time measurement by SYSTEMTIME (SYS)
#include "windows.h"
// _SYSTEMTIME structures and ptrs. to struc.:
_SYSTEMTIME sT1, sT2, *pST1 = &sT1, *pST2 = &sT2;
GetSystemTime(pST1); // Stopwatch on.
for (uint uI = 0; uI < cN; uI++)

iX[uI] = intLrg;
GetSystemTime(pST2); // Stopwatch off.
fDltTmSYS = (float)(pST2->wSecond - pST1->wSecond)*1000 +

 (float)(pST2->wMilliseconds - pST1>wMilliseconds);
// ii) Time measurement by CHRTimer class (HRT)
#include "HRTimer.h" //High-Resolution Time.
CHRTimer hrTimer; // CHRTimer object.
hrTimer.StartTimer(); // Stopwatch on.
for (uint uI = 0; uI < cN; uI++)

iX[uI] = intLrg;
fDltTmHRT = (float)hrTimer.StopTimer()*1.e3f; // Stopwatch off.
// iii) Time measurement by high_resolution_clock class (HRC)
#include <chrono> // XYZ
using namespace std;
using namespace chrono;
duration<float, milli> durTDlt;
auto t1 = high_resolution_clock::now();
auto t2 = high_resolution_clock::now();
t1 = high_resolution_clock::now();// Stopwatch on.
for (uint uI = 0; uI < cN; uI++)

iX[uI] = intLrg;
t2 = high_resolution_clock::now();// Stopwatch off.
fDltTmHRC = (durTDlt = t2 - t1).count();

Listing 4. Examples of the three time-measurement methods in C++, applied to the A.1

benchmark for int array: i) _SYSTEMTIME structures, ii) CHRTimer class, and iii) the
high_resolution_clock class.

66

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

The third time-measurement method tested in this work used the high_
resolution_clock class from the C++ std::chrono library [13]. To get the elapsed
time, the programmer uses the template class member duration, with which she de-
fines a variable to accept the time difference (t2 – t1) of the recorded time points in
desired time units. Since our results are of the order of tens of milliseconds, we have
chosen that unit. There is a warning about the possibly inconsistent and inferior
implementation of this class in different libraries and compilers, as mentioned in [13].
However, we have kept it anyway without investigating how it is realized in our case.

In a separate, short test C++ program, we have compared the results of the three
time-measuring methods on the A-type benchmarks 1, 2, and 3 for the short and int
types. On the “outmost side” of the benchmarks, we placed the “measuring points”
for the SYSTEMTIME, in the middle, the points for the HRTimer class, and closest to the
benchmarks, we put the high_resolution_clock class.

The first method, using SYSTEMTIME, gives only roughly correct individual results
and nearly correct averages, which is not bad regarding its above-stated deficiencies.
The second and third methods give very consistent results of satisfying accuracy for
our measurements. However, it is quite surprising that they produce results with
differences of the order of 10μs, which is 103 times more than our estimate above
and probably much more than it should be. The possible culprit is the dubious
implementation of the method (iii). Furthermore, the absolute time values can
especially have much greater errors than the above estimate (10ns) because of the
overall imprecision of the clock crystal’s frequency [10]. In these measurements, the
relative time accuracy is the important one. It requires only the steadiness of the pro-
cessor clock frequency and not its absolute precision. Anyhow, because the relative
accuracy of method (iii) is more than satisfactory for our needs, we were using it as
the method of choice for the time measurements in this investigation.

4.2. Time-Measurement Setup

To achieve consistent and accurate time measurements, a programmer should comply
with some program- and system-wise conditions. Our approach tends to measure the
“average best results,” i.e., the optimal benchmark execution times for the given
computer.

4.2.1. Benchmark Execution Order

In the test programs, we have placed the benchmarks for each of the six array types in
an order different from the one shown in Listing 1. In that order, there are also the
pre-runs (explained in the next section), as follows:

Repeat for the array element access type 𝑘𝑘 = 1, 2, 3 :
A. Pre-run A. 𝑘𝑘, then 𝐀𝐀. 𝒌𝒌 with BET measurements;
B. Pre-run B. 𝑘𝑘, then 𝐁𝐁.𝒌𝒌 with BET measurements;

Repeat end.

67

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

The third time-measurement method tested in this work used the high_
resolution_clock class from the C++ std::chrono library [13]. To get the elapsed
time, the programmer uses the template class member duration, with which she de-
fines a variable to accept the time difference (t2 – t1) of the recorded time points in
desired time units. Since our results are of the order of tens of milliseconds, we have
chosen that unit. There is a warning about the possibly inconsistent and inferior
implementation of this class in different libraries and compilers, as mentioned in [13].
However, we have kept it anyway without investigating how it is realized in our case.

In a separate, short test C++ program, we have compared the results of the three
time-measuring methods on the A-type benchmarks 1, 2, and 3 for the short and int
types. On the “outmost side” of the benchmarks, we placed the “measuring points”
for the SYSTEMTIME, in the middle, the points for the HRTimer class, and closest to the
benchmarks, we put the high_resolution_clock class.

The first method, using SYSTEMTIME, gives only roughly correct individual results
and nearly correct averages, which is not bad regarding its above-stated deficiencies.
The second and third methods give very consistent results of satisfying accuracy for
our measurements. However, it is quite surprising that they produce results with
differences of the order of 10μs, which is 103 times more than our estimate above
and probably much more than it should be. The possible culprit is the dubious
implementation of the method (iii). Furthermore, the absolute time values can
especially have much greater errors than the above estimate (10ns) because of the
overall imprecision of the clock crystal’s frequency [10]. In these measurements, the
relative time accuracy is the important one. It requires only the steadiness of the pro-
cessor clock frequency and not its absolute precision. Anyhow, because the relative
accuracy of method (iii) is more than satisfactory for our needs, we were using it as
the method of choice for the time measurements in this investigation.

4.2. Time-Measurement Setup

To achieve consistent and accurate time measurements, a programmer should comply
with some program- and system-wise conditions. Our approach tends to measure the
“average best results,” i.e., the optimal benchmark execution times for the given
computer.

4.2.1. Benchmark Execution Order

In the test programs, we have placed the benchmarks for each of the six array types in
an order different from the one shown in Listing 1. In that order, there are also the
pre-runs (explained in the next section), as follows:

Repeat for the array element access type 𝑘𝑘 = 1, 2, 3 :
A. Pre-run A. 𝑘𝑘, then 𝐀𝐀. 𝒌𝒌 with BET measurements;
B. Pre-run B. 𝑘𝑘, then 𝐁𝐁.𝒌𝒌 with BET measurements;

Repeat end.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

In this way, we have simulated a somewhat more realistic situation in which the
A- and B-type benchmarks exchange first, and then, there is a change in the type of
array element access, according to the enumeration given in §2.2.

4.2.2. Pre-runs

The measured BETs can significantly depend on the momentary state of the memory
system of today’s computers with multitasking OSs. If the multilevel caches are
already optimally filled with the data used in the benchmarks, the execution times will
also be optimal, i.e., close to the shortest possible. If this condition is not fulfilled,
the measured times can increase severely, making the results prone to erratic changes.
The first way to deal with this problem is to exclude the “statistical outliers” from the
measurements. In practice, it usually boils down to excluding one or a few highest
and lowest values from the measurement set. Obviously, in our case, only the worst
results are to be excluded.

Here, we have used another method — the benchmark pre-runs. They execute the
benchmark fully or partly before measuring its execution time in the same or very
similar way (cf. [11], [12]). Here, the pre-runs executed the benchmarks by assigning
the array elements different number values. Obviously, because the longest BETs will
mostly happen at the execution of the first benchmarks, these two approaches produce
similar results.

In our C++ programs, the user can control the pre-runs by switching them on and
off for the A- and B-types of benchmarks separately, which come one after the other
for each array (data) type. The user can also change the number of iterations, i.e., she
can specify the number of elements the pre-runs will access.

Without the pre-runs, we have observed that the A.1 benchmark — being the first
of the six benchmarks in the row (§4.2.1) — in the first of the (10) measurements for
each array type executes much longer, compared to the standard deviation of the rest
of the measurements in the set. We have investigated this influence by running the
release version of our Program 1 (directly from VS-CV 2019), first with both pre-runs
on and then with both or just one of the pre-runs off. With both pre-runs off (F, F)
and when only the B pre-run was on (F, T), the BETs of the first A.1 measurement in
a series prolonged for approx.:

(F, F): char: 27%, short: 39%, int: 56%, llint: 179%, float: 62%,
double: 116%;

(F, T): char: 13%, short: 29%, int: 50%, llint: 168%, float: 58%,
double: 120%.

When A pre-run was on and B off, there were no delays. On the contrary, all the first
measurements in the series were shortened by about 1.5% !?

If the pre-run executes only a part of the iterations, which the user can control by
decreasing the number of iterations in them — and thus access only a part of our huge
arrays — the slow-down effect is still present, more so the lesser the chosen number
of iterations.

This brief analysis shows that the BETs without the pre-runs delay more for the
arrays with the longer data types because they occupy larger memory space.

68

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

Moreover, the B-only pre-run (F, T) cannot cover for the delays of the upcoming A
benchmarks of longer types. In addition, it turns out that only the pre-run before the
first A.1 benchmark is necessary, while the rest of them are superfluous. However, in
the present versions of our test programs, we have simply left all of them in the order
specified in §4.2.1.

As a final remark on the pre-runs, although introducing them might seem like an
artificial intervention into the programming code, without them, we would obtain
unstable and less accurate results.

4.2.3. Computer and OS specifications

To complete the BET measurements, one must record the computer hardware and OS
specifications. In this paper, we mainly present the measurements that are made on
one computer with the following specifications:

Processor: Intel® Core™ i7-8700K CPU @ 3.70 GHz, with 6 cores.
Installed RAM: 32.0GB
System type: 64-bit OS, x64-based processor.
Op. System: Windows 10 Pro Education (build 19044.1766).

4.2.4. Measurement Preconditions

Our aim is to measure the execution times of our benchmarks only, as “pure” as
possible. To achieve that, we want to eliminate all side effects that could interfere
with the computer hardware and OS performance. For that matter, there are a few
things to consider. The first is which program version to use — debug or release, and
how to run it — from the IDE or by starting the executable code file.

The measurements showed that the influence of both of these options in our VS-
CV 2019 is rather minor. By directly running the exe-files of the release and debug
versions (reminding the reader that the compiling optimization was turned off) we
have noticed no significant changes in the measured BETs. Typically, the time
differences for most of the measurements were less than the standard deviation of the
measurements. The debug versions for some of the six benchmarks for the six array
data types were sometimes slower and sometimes even faster, resulting in the average
delta-percentages of the measured corresponding mean values around 0.5% to 1.0%.
However, the debug version is prone to delays for the arrays of certain data types,
noticeably for the arrays of char, short, and not so often of the double types. These
outbursts of delays have ranged chiefly from 10% to 13%, but sometimes escalating
to even 20%, then raising the average delay (of all 36 mean values) for up to 1.5%.

The comparison of running the programs directly from the exe-files vs. starting
them from the VS-VC19 IDE and leaving the IDE on during the test program
executions gives similar results. The former approach does provide a bit shorter BETs

69

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

Moreover, the B-only pre-run (F, T) cannot cover for the delays of the upcoming A
benchmarks of longer types. In addition, it turns out that only the pre-run before the
first A.1 benchmark is necessary, while the rest of them are superfluous. However, in
the present versions of our test programs, we have simply left all of them in the order
specified in §4.2.1.

As a final remark on the pre-runs, although introducing them might seem like an
artificial intervention into the programming code, without them, we would obtain
unstable and less accurate results.

4.2.3. Computer and OS specifications

To complete the BET measurements, one must record the computer hardware and OS
specifications. In this paper, we mainly present the measurements that are made on
one computer with the following specifications:

Processor: Intel® Core™ i7-8700K CPU @ 3.70 GHz, with 6 cores.
Installed RAM: 32.0GB
System type: 64-bit OS, x64-based processor.
Op. System: Windows 10 Pro Education (build 19044.1766).

4.2.4. Measurement Preconditions

Our aim is to measure the execution times of our benchmarks only, as “pure” as
possible. To achieve that, we want to eliminate all side effects that could interfere
with the computer hardware and OS performance. For that matter, there are a few
things to consider. The first is which program version to use — debug or release, and
how to run it — from the IDE or by starting the executable code file.

The measurements showed that the influence of both of these options in our VS-
CV 2019 is rather minor. By directly running the exe-files of the release and debug
versions (reminding the reader that the compiling optimization was turned off) we
have noticed no significant changes in the measured BETs. Typically, the time
differences for most of the measurements were less than the standard deviation of the
measurements. The debug versions for some of the six benchmarks for the six array
data types were sometimes slower and sometimes even faster, resulting in the average
delta-percentages of the measured corresponding mean values around 0.5% to 1.0%.
However, the debug version is prone to delays for the arrays of certain data types,
noticeably for the arrays of char, short, and not so often of the double types. These
outbursts of delays have ranged chiefly from 10% to 13%, but sometimes escalating
to even 20%, then raising the average delay (of all 36 mean values) for up to 1.5%.

The comparison of running the programs directly from the exe-files vs. starting
them from the VS-VC19 IDE and leaving the IDE on during the test program
executions gives similar results. The former approach does provide a bit shorter BETs

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

(0.3% to 1.0%), but its true advantage is better stability. Namely, the latter is prone
to sporadic upsurges of BETs up to 10%.6

The conclusion is that these differences would be irrelevant were it not for rare
but possible erratic delays in the inferior options, that is, in running the debug version
and running either version from the VSCV-2019 IDE. Thus, as a precaution to
achieve better precision, our choice for the final measurements was as follows:

• to run the release versions (without compiler optimizations);
• to start the exe-files with all other applications turned off.

Furthermore, for today’s standard multitasking OSs, with the otherwise “standard”
execution environment, we take the following precautionary procedure:

• turn off all user applications;
• disable Ethernet and WLAN;
• check the task manager for the possibly demanding background processes and

try to turn them off;
• run the test program with benchmarks.

4.3. Results of the BET Measurements

With all the preconditions being fulfilled, we run our benchmark test programs.
Once the user enters the required input parameters, the remaining free run of one
program on our computer lasts approximately 25s. It performs a benchmark pre-run
and a BET measurement, normally both through the arrays with 20 × 106 elements,
it does that for six (6) different benchmarks, repeats the whole action ten (10) times
to get the averages, and repeats the same thing for six (6) different data types of array.
This totals to the 6 × 10 × 6 = 360 pre-runs and the same number of measured
iterations, resulting in 14.4 × 109 assignment operations on the array elements. This
number is halved if both the A- and B-type benchmark pre-runs are turned off. Each
program lists 6 × 10 BETs for the six array (data) types, with their averages and
standard deviations.

4.3.1. BETs of Our Standard Benchmarks

The typical results of the BET measurements for our six standard benchmarks (from
Listing 1), extracted from a single run of (test) Program 1, are presented in Table 2.

For the A- and B-type assignments and the three different methods of accessing
the array elements, six average ∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 times and (corrected) standard deviations are
calculated for the set of 10 non-successive BET measurements for each array type.7
In the extra columns for the A/B.2 and A/B.3 benchmarks, which access the array

6 Although we did not practice it, the VS-VC19 IDE can be turned off after launching the desired (debug
or release) version of the test program, and before proceeding with the program, i.e., before entering the
few required input values.
7 With 20 × 106 iterations performed in ≈ 30ms, one loop iteration takes 1.5ns, or 5.55 clock cycles
(CC) of our processor, executing – machine instructions. This means that the working-core’s
pipeline has an average throughput of 2.25 instructions per CC.

70

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

elements by using pointers, we can track the relative difference of their BETs compa-
ring to the A/B.1 BETs.

The measured times and relations between them are similar for the A- and B-type
benchmarks marked with the same numbers. A/B.1 is only slightly slower than A/B.3,
meaning that the successive access to the array elements by incrementing the pointers
did not considerably shorten the execution, although the lengths of their loop bodies
are shorter by roughly a quarter (cf. Table 1). The BETs of A/B.3 benchmarks are
shorter than those of A/B.1, but only for the amounts comparable to the measurement
standard deviations.

Quite a surprise is that the execution is fastest for the A/B.2 benchmarks (except
for the llint), although the number of the instructions in their loop body is greater
by one-third than those in A/B.1 and 3. In addition, their total length is roughly 10%
(30%) longer than in A.3 (B.3). This example clearly shows how the number and the
lengths of instructions do not directly dictate their execution times. The decrease is
quite significant for the short and int integers and for both floating-point types,
ranging from roughly 30% to more than 40%. The big exception for the llint type
(+57%) is caused by the simultaneous lack of comparable improvement for its A/B.2
benchmarks and the sudden 38% (34%) decrease of its BETs of A.1 & 3 (B.1 &3),
resulting in the significant raise of the relative values for A/B.2.

For the char type, the BETs of A/B.2 benchmarks are just a little faster than for
A/B.1 & 3. Furthermore, they are ≈ 45% longer than for all other, longer types,
except the llint, which is quite surprising. Namely, one would expect the BETs for
this data type to be similar to the (other) integers but not slower.

From the above deliberation and by looking at the absolute values of those times,
we come to the following conclusion.

For our standard benchmarks (Listing 1), the fastest way to access the array
elements of type:

• char, short, int, float, and double is by using pointer arithmetic
[*(p0 + i)], as in A/B.2, though for char it is only slightly better;

• llint type is by using
– pointer incrementing [*(pI)], as in A/B.3, or just a little bit slower by

using
– indices (Arr[i]), as in A/B.1.

4.3.2. BETs of the Modified Benchmarks

In our Program 2, we have modified the benchmarks from Listing 1 by replacing the
assignment (=) operator with the compound addition-assignment (+=) operator. For
those benchmarks, Table 3 contains the average values of their typical BET
measurement set.

The times of the A- and B-type benchmarks are still close to each other, but not
as much and as consistently as for the set of our standard benchmarks. In addition,
there are a few greater discrepancies, as in the following cases: for int — cf. A.1 vs.
B.1 and A.3 vs. B.3; for char — cf. A.2 vs. B.2. A big difference is also that now A.2

71

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

elements by using pointers, we can track the relative difference of their BETs compa-
ring to the A/B.1 BETs.

The measured times and relations between them are similar for the A- and B-type
benchmarks marked with the same numbers. A/B.1 is only slightly slower than A/B.3,
meaning that the successive access to the array elements by incrementing the pointers
did not considerably shorten the execution, although the lengths of their loop bodies
are shorter by roughly a quarter (cf. Table 1). The BETs of A/B.3 benchmarks are
shorter than those of A/B.1, but only for the amounts comparable to the measurement
standard deviations.

Quite a surprise is that the execution is fastest for the A/B.2 benchmarks (except
for the llint), although the number of the instructions in their loop body is greater
by one-third than those in A/B.1 and 3. In addition, their total length is roughly 10%
(30%) longer than in A.3 (B.3). This example clearly shows how the number and the
lengths of instructions do not directly dictate their execution times. The decrease is
quite significant for the short and int integers and for both floating-point types,
ranging from roughly 30% to more than 40%. The big exception for the llint type
(+57%) is caused by the simultaneous lack of comparable improvement for its A/B.2
benchmarks and the sudden 38% (34%) decrease of its BETs of A.1 & 3 (B.1 &3),
resulting in the significant raise of the relative values for A/B.2.

For the char type, the BETs of A/B.2 benchmarks are just a little faster than for
A/B.1 & 3. Furthermore, they are ≈ 45% longer than for all other, longer types,
except the llint, which is quite surprising. Namely, one would expect the BETs for
this data type to be similar to the (other) integers but not slower.

From the above deliberation and by looking at the absolute values of those times,
we come to the following conclusion.

For our standard benchmarks (Listing 1), the fastest way to access the array
elements of type:

• char, short, int, float, and double is by using pointer arithmetic
[*(p0 + i)], as in A/B.2, though for char it is only slightly better;

• llint type is by using
– pointer incrementing [*(pI)], as in A/B.3, or just a little bit slower by

using
– indices (Arr[i]), as in A/B.1.

4.3.2. BETs of the Modified Benchmarks

In our Program 2, we have modified the benchmarks from Listing 1 by replacing the
assignment (=) operator with the compound addition-assignment (+=) operator. For
those benchmarks, Table 3 contains the average values of their typical BET
measurement set.

The times of the A- and B-type benchmarks are still close to each other, but not
as much and as consistently as for the set of our standard benchmarks. In addition,
there are a few greater discrepancies, as in the following cases: for int — cf. A.1 vs.
B.1 and A.3 vs. B.3; for char — cf. A.2 vs. B.2. A big difference is also that now A.2

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

 20 × 106

 Arr. el. = r-Value
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

 l-Value = Arr. el.
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

char −5.1% −1.7% −4.3% −2.7%

short −32.6% −1.1% −38.5% −2.4%

int −41.1% −1.7% −36.7% −2.2%

llint −0.6% −1.4%

float −42.5% −3.0% −36.5% −2.1%

double −40.8% −1.7% −31.8% −3.1%

Table 2. Average ∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 (Benchmark Execution Times), for the benchmarks from Listing 1
(Program 1). The benchmarks run in the order stated in §4.2.1, in the release version of the

program, on the computer specified in 4.2.3. ∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 and the corresponding standard
deviations are calculated for 10 (nonconsecutive) measurements and expressed in ms

(milliseconds). For the benchmarks A/B.2 and A/B.3, the second column gives the relative
∆𝑟𝑟𝑟𝑟𝑟𝑟 difference of their averages from the ∆𝑡𝑡𝐵𝐵𝐵𝐵𝐵𝐵 of the benchmark A/B.1. In the color print,

those are marked in green (red) if ≤ −10% (≥ +10%).

20 × 106

 Arr. el. = r-Value
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

 l-Value = Arr. el.
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

char −1.4% −2.1%

short −3.1% −2.5%

int −2.5%

llint −0.5% −2.8%

float −1.5% −2.4% −2.9%

double −1.2% −1.7% −3.0%

Table 3. A set of the BET measurements for slightly altered benchmarks (Program 2): in the
benchmarks from Listing 1, the assignment operator (=) is replaced by the compound

addition-assignment operator (+=).

72

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

20 × 106

 Arr. el. = r-Value
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

 l-Value = Arr. el.
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

char −1.5% −3.6% −2.0%

short −2.2% −38.9% −1.2%

int −1.9% −35.9% −1.7%

llint −1.2%

float −41.4% −1.2% −35.6% −1.5%

double −37.3% −1.4% −32.9% −1.3%

Table 4. A set of BETs for the benchmarks from our Program 3. These benchmarks differ
from those in Listing 1 in that the A-type benchmarks store the numeric constants into the

array elements (§3.2.4, Listing 3).

20 × 106

 Arr. el. = r-Value
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

 l-Value = Arr. el.
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

char −29.6% −35.0%

short − −35.4%

int − −29.3%

llint − −29.5% −22.7%

float

double

Table 5. A set of BETs for our old benchmarks, now in Program 3-old. They differ from our
standard benchmarks as those in Program 3, plus there is a numerical constant in the

conditions of the for-loops with indices (A/B.1 & 2).

and B.2 are not the best access methods as they were for the standard benchmarks
(except for llint). On the contrary, those are now either the worst or close to that,
with float-B.2 being the only exception. As above, we summarize this as follows:

For our modified benchmarks (‘=’ → ‘+=’), the fastest way to access the array
elements of

73

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

20 × 106

 Arr. el. = r-Value
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

 l-Value = Arr. el.
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

char −1.5% −3.6% −2.0%

short −2.2% −38.9% −1.2%

int −1.9% −35.9% −1.7%

llint −1.2%

float −41.4% −1.2% −35.6% −1.5%

double −37.3% −1.4% −32.9% −1.3%

Table 4. A set of BETs for the benchmarks from our Program 3. These benchmarks differ
from those in Listing 1 in that the A-type benchmarks store the numeric constants into the

array elements (§3.2.4, Listing 3).

20 × 106

 Arr. el. = r-Value
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

 l-Value = Arr. el.
(∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵 ± 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑) ms⁄

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

Arr[i] *(p0 + i)
∆𝑟𝑟𝑟𝑟𝑟𝑟

*(++p)
∆𝑟𝑟𝑟𝑟𝑟𝑟

char −29.6% −35.0%

short − −35.4%

int − −29.3%

llint − −29.5% −22.7%

float

double

Table 5. A set of BETs for our old benchmarks, now in Program 3-old. They differ from our
standard benchmarks as those in Program 3, plus there is a numerical constant in the

conditions of the for-loops with indices (A/B.1 & 2).

and B.2 are not the best access methods as they were for the standard benchmarks
(except for llint). On the contrary, those are now either the worst or close to that,
with float-B.2 being the only exception. As above, we summarize this as follows:

For our modified benchmarks (‘=’ → ‘+=’), the fastest way to access the array
elements of

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

• all types except int is by pointer incrementing [*(pI)], as in A/B.3 (int-
A.3 losing over int-A.1 for a mere 0.1%), or just a little bit worse by using

– indices (Arr[i]), as in A/B.1.

An interesting observation is that these benchmarks — which not only assign the
r-values but also add them to the l-values — execute faster than the assignment-only
benchmarks in the following cases:

A/B.1 for char, short, and B.1 alone also for int, where the speed-up is in the
range from roughly 20% to more than 30% (the best for int-B1);

A/B.3 for char and short, and B.3 alone also for int, with the speed-up from
20% to 25%.

On the other hand, we see that the execution times for the A.2 benchmarks lag
from those of our standard benchmarks (in Table 2) for the first three integer array
types, especially for the char and short, and then also for the floating-point types.
B.2 is better for char but greatly lags for the same types as A.2.

In our third test program, the benchmarks are the same as in Listing 1, except
that in the A-types, the elements are assigned numerical constants, as was discussed
in §3.2.5. The aim was to investigate the influence of this less-than-general case. The
BETs for these benchmarks are shown in Table 4. Since the B-type benchmarks are
the same as in Program 1, one can check that their BETs follow those from Table 2
within the standard deviation values. As for the A-type benchmarks, the BETs of A.1
and A.3 are very close to each other and rather short for all integer types. In contrast,
the times of the integer versions of A.2 are approx. 55% to 72% longer(!) than those
of A.1 and A.3. For the floating-point types, the situation is reversed, with A.2 BETs
being very short.

In comparison to the execution times of our standard benchmarks, these A.1 and
A.3 BETs are shorter for more than 1 3⁄ for the first three integers: for char and
short 37%, for int 42%, while for llint and the floating-point types, these times
are only slightly better (the most for llint, 4.5%). For the A.2 benchmark, the
situation is reversed for the short and int arrays, which now have much longer
BETs: short 65% and int 69%. For the other data types, the execution times are
close to those of our standard benchmarks.

Summarily, the shorter loop body significantly improved the performance of the
A.1 and A.3 benchmarks with the arrays of the first three integer types. For the A.2
benchmark, the opposite happens for the arrays of the first two integer types.

4.3.3. BETs of Our Older Benchmarks

To connect this analysis with our earlier investigation (cf. sec.), in Table 5, we present
the results obtained by running the older version of our benchmarks, now marked as
Program 3-old. In this program, there is another use of a constant: in the upper limit
of the conditions in the for-loops with running indices (benchmarks A/B.1 & 2). We
have discussed that in §3.2.1, showing that this kind of for-loop compiled into one
instruction and 2B less than the for-loop of our standard benchmarks, hinting at the
possible speed-ups. To recapitulate, in these A-type benchmarks, there are constants
both in the array-element assignment statements and in the for-loop conditions, while

74

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵,𝑟𝑟𝑟𝑟𝑟𝑟 b) ∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵,𝑟𝑟𝑟𝑟𝑟𝑟

char −4.7% −29.3% − −13.6% −2.1% −5.3% − −14.2% −1.8%

short −5.0% −38.0% −13.3% −5.6% −1.5% −13.5%

int −12.2% −36.9% −12.6% −14.1% −0.1% −13.6% −0.2%

llint −14.2% −0.3% −10.3% −0.6% −28.1% −0.5% −10.4% −1.7%

float −14.6% −0.2% −13.7% −15.8% −0.3% −14.1% −0.3%
dbl. −16.4% −0.5% −13.1% −16.6% −1.1% −13.8%

Table 6. Relative BETs differences to the BETs of our standard benchmarks, from Table 2,
for: a) our old benchmarks, now in Program 3-old; b) of the A/B.1 & 2 benchmarks as in

Prog. 1, but with the constant in the for-loop conditions (uI < cuiN).

in B.1 & 2, only the latter applies. In fact, in the early version of the program, there
were only A.1 and A.3 benchmarks for only the short and int types, but we have
upgraded it to also include all the other benchmarks and array types as in the present
test programs.

In the a) part of Table 6, we compare the BETs of these benchmarks to the
corresponding execution times for our standard benchmarks. Despite the expectations
to see only improvements — because of the diminution in the number and length of
the instructions — we can see all three cases: decreases, invariabilities, and increases
in the execution times. For instance, besides the usual unexpected behavior of the
llint array elements in A(B).1 benchmarks, with the delay of 41% (27%), we also
see large increases of the A/B.2 benchmark BETs for the first two integers and both
floating-point types. On the other hand, there are quite significant improvements in
A.3 for the first three integer types, etc.

Now, if we compare the “old” A.1 benchmark BETs for the integers (Table 5) to
the corresponding ones from our Program 3 (Table 4), we may wonder why they are
longer. Indeed, they have not only the assignments of constants in their for-loop
bodies, as the benchmarks in Program 3, but they also have the constants in their for-
loop heads. So why does their execution last longer for the integer types?

To solve this enigma, we have first modified the for-loop heads in our standard
benchmarks (Program 1) of the A/B.1 and A/B.2 types to be the same as in this
program. After checking the compilation in assembly language, we confirmed that
all the modified for-loops now contain only seven (7) plus one (1) instructions, as
explained in §3.2.1. Then, we measured the BETs of these modified benchmarks.
Their relative differences from the BETs of our standard benchmarks are in the b) part
of Table 6.

First, let us observe the A/B.3 benchmarks, whose for-loop heads were not
changed in this modified program. We also detect that the corresponding BETs do
not change. The changes do occur for the A/B.1 & 2 benchmarks, but again, not as
we would expect, i.e., to be either close to zero or with negative values, because the
only thing that happened in the machine code is its slight reduction. On the contrary,

75

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵,𝑟𝑟𝑟𝑟𝑟𝑟 b) ∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵,𝑟𝑟𝑟𝑟𝑟𝑟

char −4.7% −29.3% − −13.6% −2.1% −5.3% − −14.2% −1.8%

short −5.0% −38.0% −13.3% −5.6% −1.5% −13.5%

int −12.2% −36.9% −12.6% −14.1% −0.1% −13.6% −0.2%

llint −14.2% −0.3% −10.3% −0.6% −28.1% −0.5% −10.4% −1.7%

float −14.6% −0.2% −13.7% −15.8% −0.3% −14.1% −0.3%
dbl. −16.4% −0.5% −13.1% −16.6% −1.1% −13.8%

Table 6. Relative BETs differences to the BETs of our standard benchmarks, from Table 2,
for: a) our old benchmarks, now in Program 3-old; b) of the A/B.1 & 2 benchmarks as in

Prog. 1, but with the constant in the for-loop conditions (uI < cuiN).

in B.1 & 2, only the latter applies. In fact, in the early version of the program, there
were only A.1 and A.3 benchmarks for only the short and int types, but we have
upgraded it to also include all the other benchmarks and array types as in the present
test programs.

In the a) part of Table 6, we compare the BETs of these benchmarks to the
corresponding execution times for our standard benchmarks. Despite the expectations
to see only improvements — because of the diminution in the number and length of
the instructions — we can see all three cases: decreases, invariabilities, and increases
in the execution times. For instance, besides the usual unexpected behavior of the
llint array elements in A(B).1 benchmarks, with the delay of 41% (27%), we also
see large increases of the A/B.2 benchmark BETs for the first two integers and both
floating-point types. On the other hand, there are quite significant improvements in
A.3 for the first three integer types, etc.

Now, if we compare the “old” A.1 benchmark BETs for the integers (Table 5) to
the corresponding ones from our Program 3 (Table 4), we may wonder why they are
longer. Indeed, they have not only the assignments of constants in their for-loop
bodies, as the benchmarks in Program 3, but they also have the constants in their for-
loop heads. So why does their execution last longer for the integer types?

To solve this enigma, we have first modified the for-loop heads in our standard
benchmarks (Program 1) of the A/B.1 and A/B.2 types to be the same as in this
program. After checking the compilation in assembly language, we confirmed that
all the modified for-loops now contain only seven (7) plus one (1) instructions, as
explained in §3.2.1. Then, we measured the BETs of these modified benchmarks.
Their relative differences from the BETs of our standard benchmarks are in the b) part
of Table 6.

First, let us observe the A/B.3 benchmarks, whose for-loop heads were not
changed in this modified program. We also detect that the corresponding BETs do
not change. The changes do occur for the A/B.1 & 2 benchmarks, but again, not as
we would expect, i.e., to be either close to zero or with negative values, because the
only thing that happened in the machine code is its slight reduction. On the contrary,

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

besides the improvements, we also see much worse performance, e.g., for A/B.2 lower
integers and both floating-point types, as well as for the llint type in A/B.1.

By comparing Table 6.b and Table 6.a, we can see that they are similar for A/B.1
& 2 benchmarks, except for the char-A.2 case, where there is a huge difference.
However, we do not see that the slightly “simpler,” old benchmarks are also faster.
Quite the contrary, they are slower, though not for much. On the other hand, the tables
differ significantly in A.3 for the first three integers, giving huge advantage to the old-
style benchmarks, with ≈ 37% to 38% improvement vs. almost no improvement (≈
0% to 1.5%) for the case presented in Table 6.b.

Thus, in the results of the old benchmark BETs, we do not see any improvements
in all of them. Then, we see them in A/B.1 benchmarks (except for llint), but
smaller than in their modified version in Table 6.b. That is, instead of the expected
“synergy” of the shorter loop bodies and shorter for-loops, these times for integer
types are now worse than for the benchmarks in Program 3 (Table 4)! All this happens
although the compilation of the old benchmarks gives the for-loops with indices (in
A/B.1 & 2) of the same form and size as those which made the improvements shown
in Table 6.b and the loop bodies of the exact same form and size as the benchmarks
in Program 3.

The resolution of this perplex is that the execution time depends not only on the
machine instructions themselves but also considerably on the context they appear in.
Thus, when comparing the old version of benchmarks A.1 to those in Program 3 (cf.
Table 5 vs. Table 4), their execution times for the integer arrays do not decrease as
one would expect — at least slightly. Instead of that, they increase by almost 50%.
They are only somewhat better than the BETs of our standard benchmarks (Table 2).
On the other hand, the BETs of the B.1 benchmarks do decrease by about 12% to
13%, but not so for the llint, etc.

In short, knowing the machine instructions and their lengths still does not give us
the full information on how the machine code will be pushed through the processor’s
pipelines, how fast it will be decoded, and how efficiently it will be executed.

By focusing solely on the old benchmark’s execution times (Table 5), we note
that the A.3 benchmark BETs for all integer types — that is, now including the llint
type, which has otherwise been a notorious exception — are from around 30% up to
35% shorter than for A.1s! As a kind of relief from all the previous complications,
this result roughly confirms our earlier, much less systematic findings obtained on the
same (old) benchmarks, but only on the arrays of the short and int types, as
mentioned in sec. 1.

4.3.4. A Brief Overview of the BETs With x64 Compilation and on Other Computers

After the deliberation in §3.2.4, it may come as no surprise that the 64-bit, x64
machine code does not result in much faster executions. By inspecting Table 7, we
see noticeable improvements from our standard benchmarks (Prog. 1) only for the
A/B.1 and B.3 BETs, again, except for the llint array type. Here, this bad behavior
of the 64-bit integer type is particularly odd. One would expect that the x64
compilation would improve at least the execution times of the compatible, 64-bit data

76

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

 ∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵,𝑟𝑟𝑟𝑟𝑟𝑟

char −11.9% −14.8% −6.2% −11.0%

short −12.1% −14.4% −10.8%

int −17.7% −14.0% −10.8%

llint −2.3% −0.2%

float −18.2% −14.8% −11.4%
double −18.2% −5.4% −14.3% −9.2%

Table 7. Relative differences between the BETs of our standard benchmarks (Program 1)
compiled to the x64 machine code and those compiled to the x86 code (shown in Table 2).

types, but it didn’t happen. Additionally, the A.3 (B.3 for llint), and even more
A/B.2 benchmarks, show much worse behavior than the corresponding x86 code.

In Program 2, the 64-bit compilation produces faster execution than the 32-bit
compilation for all A-benchmarks but not for the first two integer types (not shown in
a comparison table). The improvements range from around 10% up to 25%. The B-
type benchmarks’ BETs are from 10% shorter up to 20% longer. In Program 3, A.1
(B.1) benchmarks’ BETs show slow-downs of about 40% (40% to 60%!) for all
integer types and diverse behavior for the other benchmarks and array types.

For our old benchmarks (Program 3-old), the x64 machine code shows quite
uniform BETs: for the A.1 benchmarks, they are in the approximate range from 31ms
to 34ms, for A.2 from 32ms to 37ms, and for all the B-type benchmarks from
32ms to 34ms. Comparing them to the BETs of the corresponding x86 versions
(Table 5), it turns out they are much faster (10% – 12%) only for the B.3 benchmarks
(again, except for the llint type!). Furthermore, since the BETs for the A.3
benchmarks are, in this case, similar to the other values, and in the x86 version, those
were much better, their relative lags are quite large: for char 55%, short 53%, int
40%, and llint 38%. Because of that, in the x64 version of the benchmarks, the
A.3-type of access is no longer significantly faster than A.1, as in their x86 version.

We have repeated the same measurements on a few other computers with the same
Wintel platform. One of them has Intel® Core™ i3-6100U CPU @ 2.30GHz, with
(only) two cores and relatively low energy consumption, and is running on the
Windows 10 OS. It executes our benchmarks for roughly twice the time of the much
more powerful computer described in §4.2.3. The BETs obtained on it follow the
trends described in the previous text for all our test programs, with a few small
discrepancies for certain benchmarks and array types. It also resembles the results of
our old benchmarks, i.e., show the decrease of the BETs when using the pointer
incrementing (A.3) over the use of the array indices (A.1), though slightly less than in
our case: 25% for char, 32% for short and int, and 15% for llint.

The 64-bit compilations on this computer behave similarly to those on our
primary computer, i.e., there are minor speed-ups in some cases but also slow-downs

77

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

 ∆𝑡𝑡̅̅ ̅𝐵𝐵𝐵𝐵𝐵𝐵,𝑟𝑟𝑟𝑟𝑟𝑟

char −11.9% −14.8% −6.2% −11.0%

short −12.1% −14.4% −10.8%

int −17.7% −14.0% −10.8%

llint −2.3% −0.2%

float −18.2% −14.8% −11.4%
double −18.2% −5.4% −14.3% −9.2%

Table 7. Relative differences between the BETs of our standard benchmarks (Program 1)
compiled to the x64 machine code and those compiled to the x86 code (shown in Table 2).

types, but it didn’t happen. Additionally, the A.3 (B.3 for llint), and even more
A/B.2 benchmarks, show much worse behavior than the corresponding x86 code.

In Program 2, the 64-bit compilation produces faster execution than the 32-bit
compilation for all A-benchmarks but not for the first two integer types (not shown in
a comparison table). The improvements range from around 10% up to 25%. The B-
type benchmarks’ BETs are from 10% shorter up to 20% longer. In Program 3, A.1
(B.1) benchmarks’ BETs show slow-downs of about 40% (40% to 60%!) for all
integer types and diverse behavior for the other benchmarks and array types.

For our old benchmarks (Program 3-old), the x64 machine code shows quite
uniform BETs: for the A.1 benchmarks, they are in the approximate range from 31ms
to 34ms, for A.2 from 32ms to 37ms, and for all the B-type benchmarks from
32ms to 34ms. Comparing them to the BETs of the corresponding x86 versions
(Table 5), it turns out they are much faster (10% – 12%) only for the B.3 benchmarks
(again, except for the llint type!). Furthermore, since the BETs for the A.3
benchmarks are, in this case, similar to the other values, and in the x86 version, those
were much better, their relative lags are quite large: for char 55%, short 53%, int
40%, and llint 38%. Because of that, in the x64 version of the benchmarks, the
A.3-type of access is no longer significantly faster than A.1, as in their x86 version.

We have repeated the same measurements on a few other computers with the same
Wintel platform. One of them has Intel® Core™ i3-6100U CPU @ 2.30GHz, with
(only) two cores and relatively low energy consumption, and is running on the
Windows 10 OS. It executes our benchmarks for roughly twice the time of the much
more powerful computer described in §4.2.3. The BETs obtained on it follow the
trends described in the previous text for all our test programs, with a few small
discrepancies for certain benchmarks and array types. It also resembles the results of
our old benchmarks, i.e., show the decrease of the BETs when using the pointer
incrementing (A.3) over the use of the array indices (A.1), though slightly less than in
our case: 25% for char, 32% for short and int, and 15% for llint.

The 64-bit compilations on this computer behave similarly to those on our
primary computer, i.e., there are minor speed-ups in some cases but also slow-downs

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

in others. In addition, regarding the Program 3-old, there are no improvements in A.3
over A.1 benchmarks, same as on the primary computer.

5. Conclusion
After having struggled against the myriad of different cases, peculiarities, and
surprises — most of which were without clear or, at least, simple rationale — we face
the dilemma of what to say as a conclusion of this computing adventure! That is why
it would not be a bad idea to recall why we started it in the first place. Namely, our
initial intention seemed to be quite simple: to investigate whether one can improve the
time efficiency of a program code by replacing the standard, index-based access to
1D-array elements with access via pointers. The mere volume of this paper shows
that the answer to this question turned out to be neither unique nor simple and even
less easy to explain.

Thus, we first recapitulate how we adopted our methods. We have built upon the
ideas from our ad-hoc measurements from a decade ago, in which the array-element
assignment statements were kept as simple as possible. In the initial benchmarks,
there were only two types of accesses: via indices (No. 1), and via the incremented
pointer (now No. 3). In their for-loop bodies, there was a single assignment
statement with the array elements as the l-values. From the arrays of the short and
int types only, these benchmarks were expanded to all six standard numerical array
(data) types). Then, we also included the benchmarks with the mirror-symmetrical
assignments, in which the array elements are the r-values. Thus, the two types of
benchmarks were formed and named A and B, as shown in Listing 1. Both of them
are simple, and because of that, their compilation with the optimization turned on can
produce very simplified machine code, particularly for the B type. We have discussed
this matter in detail in §3.1 and justified running and investigating the non-optimized
machine code, especially if analyzing its disassembled version. These benchmarks
can be regarded as the starting ones upon which the methodology will be built.

In the rest of section 3, we have explained the instructions of the compiled code
and discussed a few pitfalls that we had encountered and had to deal with in this
investigation. In doing that, we could notice the evident consequences of the non-
orthogonality of Intel’s x86 instruction set, in the sense that not all addressing modes
are allowed with all operations. This non-orthogonality results in inconsistencies in
how the source code can and will be compiled (§3.2.1, 3.2.2, 3.2.5).

However, after all the previous analysis, the attempt to understand and explain
many varieties and peculiarities of the benchmark execution times (BETs) in section
4 was everything but an easy task. While we could clarify some of the obtained results
by observing the number and length of instructions in the benchmarks’ assembly code,
some other results showed just the opposite from what would be predicted in that way
(see §4.3 and, specifically, §4.3.3). A blatant example of such inconsistency is that
shorter instructions do not necessarily perform faster. Knowing the complexity of the
instruction pipelines in modern processors, especially those of the CISC types, this is
far from a surprise, and it makes a plausible explanation for such deviant behavior
even more elusive. It is not only that Intel’s x86 instructions are of variable

78

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

length — which complicates the analysis of their execution times — but we have
shown that these times significantly depend on the broader context within which these
instructions appear, such as the data type of the array elements and the use of special
operations and the corresponding (special) registers.

As we are approaching the end of this paper, can we conclude at least something?
Is there some practical advice regarding the best method of accessing the array
elements on a Wintel platform? By looking at the results of this research, we see that
there is no simple conclusion and no unique best choice. The best method largely
depends on the type of assignment operation in the loop body and the array (data)
type. For example, we have managed to repeat the results of the early measurements
on our old benchmarks and showed an even greater advantage of the use of the
incrementing pointers over indices than before. However, the analysis showed that
these results were obtained on the rather non-general benchmarks: they had constants
in the crucial parts of their loops. Furthermore, the advantage occurs for only the first
three integer types (Table 5, Table 6.a).

For our standard benchmarks, with the assignment-only statements in the loop
bodies, we have given concrete advice in the bulleted list in §4.3.1 (based on the BETs
from Table 2). For the modified benchmarks, with addition and assignment, the
conclusion is summarized in the list in §4.3.2 (based on the BETs from Table 3).

Interpreting these results the other way around, we can say that using the indices
can be as good as anything else if we primarily do iterative summations and if the
improvement for a few percentages achieved by incrementing the pointer is irrelevant.
Alternatively, we could say that the access via indices is considerably outperformed
by the use of the pointer arithmetic in the case of the assignment-only operations, but
not forgetting that the llint type is a persistent exception, etc.

In difference to that, one conclusion is rather simple: the x64 code does not
improve the benchmark performance considerably, not even for the 64-bit types. Just
the opposite! Table 7 shows that the execution times for most cases are worse than for
the x86 code.

From all this, we can derive a conclusion of the presented subject on the standard
Wintel platform: the best approach — especially in critical applications — is to
measure the execution times of the intensively used piece of code as we did and to
choose the access method with the best performance.

This conclusion, especially the last piece of advice, gave us a few hints on possible
future work. First, the additional benchmarks should be written in a way that could
not be trivialized by the compiler optimizations, even though this would prevent easy
disassembly within the VS-CV 2019 IDE. Some of them could perform the standard
array and matrix operations. Second, it would be interesting to make these measure-
ments on some other platform(s), though — as things stand now — there are not many
general-purpose processor brands to pick from! Namely, in the long-solitary
“processor arena,” with only one genuine player, there are no serious competitors at
all. Some bright prospects that this could change are announced in [14]. Let us hope
that the new architectural solutions, if possible, with an appropriate and more
orthogonal instruction set, will contribute to the better performance consistency of our
future computations.

79

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

length — which complicates the analysis of their execution times — but we have
shown that these times significantly depend on the broader context within which these
instructions appear, such as the data type of the array elements and the use of special
operations and the corresponding (special) registers.

As we are approaching the end of this paper, can we conclude at least something?
Is there some practical advice regarding the best method of accessing the array
elements on a Wintel platform? By looking at the results of this research, we see that
there is no simple conclusion and no unique best choice. The best method largely
depends on the type of assignment operation in the loop body and the array (data)
type. For example, we have managed to repeat the results of the early measurements
on our old benchmarks and showed an even greater advantage of the use of the
incrementing pointers over indices than before. However, the analysis showed that
these results were obtained on the rather non-general benchmarks: they had constants
in the crucial parts of their loops. Furthermore, the advantage occurs for only the first
three integer types (Table 5, Table 6.a).

For our standard benchmarks, with the assignment-only statements in the loop
bodies, we have given concrete advice in the bulleted list in §4.3.1 (based on the BETs
from Table 2). For the modified benchmarks, with addition and assignment, the
conclusion is summarized in the list in §4.3.2 (based on the BETs from Table 3).

Interpreting these results the other way around, we can say that using the indices
can be as good as anything else if we primarily do iterative summations and if the
improvement for a few percentages achieved by incrementing the pointer is irrelevant.
Alternatively, we could say that the access via indices is considerably outperformed
by the use of the pointer arithmetic in the case of the assignment-only operations, but
not forgetting that the llint type is a persistent exception, etc.

In difference to that, one conclusion is rather simple: the x64 code does not
improve the benchmark performance considerably, not even for the 64-bit types. Just
the opposite! Table 7 shows that the execution times for most cases are worse than for
the x86 code.

From all this, we can derive a conclusion of the presented subject on the standard
Wintel platform: the best approach — especially in critical applications — is to
measure the execution times of the intensively used piece of code as we did and to
choose the access method with the best performance.

This conclusion, especially the last piece of advice, gave us a few hints on possible
future work. First, the additional benchmarks should be written in a way that could
not be trivialized by the compiler optimizations, even though this would prevent easy
disassembly within the VS-CV 2019 IDE. Some of them could perform the standard
array and matrix operations. Second, it would be interesting to make these measure-
ments on some other platform(s), though — as things stand now — there are not many
general-purpose processor brands to pick from! Namely, in the long-solitary
“processor arena,” with only one genuine player, there are no serious competitors at
all. Some bright prospects that this could change are announced in [14]. Let us hope
that the new architectural solutions, if possible, with an appropriate and more
orthogonal instruction set, will contribute to the better performance consistency of our
future computations.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

References
[1] B. W. Kernighan, and D. M. Ritchie D. M, The C Programming Language

1st and 2nd ed. Englewood Cliffs, NJ: Prentice Hall, 1978 and 1988.

[2] R. Logožar, M. Mikac, and D. Radošević, “Exploring the Access to the
Static Array Elements via Indices and via Pointers — the Introductory C++
Case,” Proceedings of the Central European Conference on Information
and Intelligent Systems, 33rd CECIIS, Dubrovnik, 2022, pp. 507–517.

[3] B. Stroustrup, The C++ Programming Language, 3rd ed. Murray Hill,
New Jersey: AT&T Labs. 1997.

[4] H. Schildt, C++: The Complete Reference, 4th ed. New York: McGraw-
Hill/Osborne, 2003.

[5] Microsoft; “View disassembly code in the Visual Studio debugger,”
Microsoft, Documentation, 2022. [Online]. Available at:
https://docs.microsoft.com/en-us/visualstudio/debugger/how-to-use-the-
disassembly-window?view=vs-2022 [Accessed: Dec. 1, 2023].

[6] D. Evans, “x86 Assembly Guide.” D. Evans, University of Virginia
Computer Science, Spring 2006. [Online]. Available at: https://www.cs.
virginia.edu/~evans/cs216/guides/x86.html [Accessed: Dec. 1, 2023].

[7] Intel, “Intel® 64 and IA-32 Architectures Software Developer Manuals,”
Intel, Developers, 2022. [Online]. Available at: https://www.intel.com/
content/www/us/en/developer/articles/technical/intel-sdm.html [Accessed:
Dec. 1, 2023].

[8] Stack Overflow, “Is there a performance difference between i++ and ++i
in C++,” Stack Overflow Questions, 2009–2019. [Online]. Available at:
https://stackoverflow.com/questions/24901/ [Accessed: Dec. 1, 2023].

[9] Microsoft, “SYSTEM-TIME structure (miniwinbase.h),” Microsoft,
Documentation, 2021. [Online]. Available at: https://learn.microsoft.com/
en-us/windows/win32/api/minwinbase/ns-minwinbase-systemtime
[Accessed: Dec. 1, 2023].

[10] Microsoft, “Acquiring high-resolution time stamps,” Microsoft,
Documentation, 2022. [Online]. Available at: https://learn.microsoft.com/
en-us/windows/win32/sysinfo/acquiring-high-resolution-time-stamps
[Accessed: Dec. 1, 2023].

[11] R. Logozar, “Recursive and Nonrecursive Traversal Algorithms for
Dynamically Created Binary Trees,” Computer Technology and
Application (David Publishing), vol. 3, no. 5, May., pp. 374–382, 2012.

[12] R. Logozar, “Algorithms and Data Structures for the Modeling of
Dynamical Systems by Means of Stochastic Finite Automata,” Technical
Gazette (Tehnički vjesnik), vol. 19, no. 2, Apr. –Jun., pp. 227–242, 2012.

80

JIOS, VOL. 48. NO. 1 (2024), PP. 49-80

LOGOŽAR, MIKAC AND RADOŠEVIĆ EXPLORING THE ACCESS TO THE STATIC ARRAY...

[13] C++ reference, “std::chrono library, high_ resolution_clock class,” C++
reference, Date and time utilities.” [Online]. Available at:
https://en.cppreference.com/w/cpp/chrono/high_resolution _clock
[Accessed: Dec. 1, 2023].

[14] Apple, “Apple unveils M2, taking the breakthrough performance and
capabilities of M1 even further,” Apple, Newsroom, Press release, Jun.,
2022. [Online]. Available at: https://www.apple.com/newsroom/2022/06/
apple-unveils-m2-with-breakthrough-performance-and-capabilities/
[Accessed: Dec. 1, 2023].

