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Abstract 
A finite zero-sum game defined on a subset of the unit square is considered. The game 
is a generalized progressive discrete silent duel, in which the kernel is skew-symmetric, 
and the players, referred to as duelists, have identical linear accuracy functions featured 
with an accuracy proportionality factor. As the duel starts, time moments of possible 
shooting become denser by a geometric progression. Apart from the duel beginning and 
end time moments, every following time moment is the partial sum of the respective 
geometric series. Due to the skew-symmetry, both the duelists have the same optimal 
strategies and the game optimal value is 0. If the accuracy factor is not less than 1, the 
duelist’s optimal strategy is the middle of the duel time span. If the factor is less than 
1, the duel solution is not always a pure strategy saddle point. In a boundary case, when 
the accuracy factor is equal to the inverse numerator of the ratio that is the time moment 
preceding the duel end moment, the duel has four pure strategy saddle points which are 
of the mentioned time moments. For a trivial game, where the duelist possesses just one 
moment of possible shooting between the duel beginning and end moments, and the 
accuracy factor is 1, any pure strategy situation, not containing the duel beginning 
moment, is optimal. 
Keywords: game of timing, silent duel, accuracy function, linear accuracy, matrix 
game, pure strategy saddle point 

1. Introduction
Games of timing represent a wide class of competitive interaction models. These 
models consider a time span during which the player must make a decision of acting 
[1], [2], [3], [4]. If a decision is made in a two-person game commonly referred to as 
a duel, the other player either learns it or does not learn it until the duel ends. The 
latter is the case of the silent duel [5], [6], [7], [8].  

Silent duels, unlike noisy duels, are more complicated to study [9], [10], [5]. In 
one of a few types of the silent duel, each of two players (duelists) has exactly one 
bullet [11], [12], [13]. The bullet is an abstraction implying an implementation of the 
decision of acting. This also includes issuing information about the state of a system 
or object modeled by the duel [3], [12], [14]. The duelist is featured with an accuracy 
function which, generally speaking, is a nondecreasing function of time [5], [15], [16]. 
It is unknown to the duelist whether a bullet was fired by the other duelist or not until 
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the end of the duel time span [6], [8]. The game builds on the fact that the duelist may 
obtain a greater payoff by firing as late as possible, but then the loss, when the other 
duelist shoots first, becomes more likely. If both the duelists shoot simultaneously, 
the payoff of each of them is 0 [9], [10], [5], [17]. 

In general, such a zero-sum game is 

 ( ), , ,X Y K x y  (1) 

whose kernel is defined on unit square 

    0;1 0;1 = X Y  (2) 

being the Cartesian product of the duel time spans (the product is the square of the 
span). When the accuracy functions are linear and identical, the kernel is 

 ( ) ( )2, sign= − + −K x y ax ay a xy y x  by 0a . (3) 

Game (1) by (2) and (3) is a silent duel with linear accuracy functions of the duelists, 
which are allowed to shoot at any moment during the duel time span, and the duelist’s 
accuracy is proportional to the time moment with factor a . Due to kernel (3) is skew-
symmetric, i. e.  

( ) ( ) ( )2, sign ,= − + − = −K y x ay ax a yx x y K x y , 

both the duelists have the same optimal strategies and the game optimal value is 0 [5], 
[8], [12]. However, even in this case of the identical linear accuracy functions, the 
duelist’s optimal strategy is a non-continuous probability distribution as a mixed 
strategy with an uncountably infinite support whose measure is less than the duel time 
span length [5], [18], [19]. Although the duel can be a repeated game, any sequence 
of real-world actions cannot be unlimited (or cannot last forever), and thus practical 
implementation of such a solution cannot be complete [20], [21], [13], [22], [23]. This 
urges to consider a discrete version of the silent duel.  

In a discrete silent duel, both the players can shoot only at specified time moments 
whose number is finite. Therefore, the kernel of the discrete silent duel is defined on 
a finite set of the pairs of pure strategies of the duelists. The moments (as pure 
strategies) of the duel beginning 0= =x y  and duel end 1= =x y  are included [24], 
[8], [12]: 

       1 1 1
0;1

N NN
i j qi j q

X x Y y T t
= = =

= = = = =    

 by 1+q qt t  1, 1 = −q N  and 1 0=t , 1=Nt  for . (4) 

Consequently, this finite symmetric game is a matrix game whose solution is of finite 
supports only [25], [26], [13], [18]. The solution is computed far easier than that in 
the case of infinite game (1). 
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In the general case, moments   1=

N
q q

t  of possible shooting are not specified but 

only obey (4). As a particular case, these moments can be defined by uniformly 
breaking the time span. In practice, nevertheless, as the duelist approaches to the end 
moment 1=Nt , the space between consecutive moments qt  and 1+qt , 1, 1= −q N , may 
shorten due to the growing tension and responsibility. This is equivalent to the weight 
(importance) of the duelist’s pure strategy with approaching to the end moment grows. 
One of the patterns of such growth is a geometrical progression. In this case, the 
density of pure strategies of the duelist grows in the geometrical progression as the 
duelist approaches to the duel end [8], [12], [27]. Thus, if 

 
1 1

1
1

2 12
2

− −
−

−
=

−
= =

q q
l

q q
l

t  for 2, 1= −q N  (5) 

then, apart from the duel beginning and end moments, every following moment is the 
partial sum of the respective geometric series. Subsequently, game (1) by (4), (5) with 
kernel (3), where x X , y Y , becomes a generalized progressive discrete silent 
duel with identical linear accuracy functions. It is obvious that this duel solution 
depends on N  and a . Besides, the kernel herein is a skew-symmetric payoff matrix 
[12], [5]. The goal is to study its saddle points that are pure strategy solutions of the 
progressive discrete silent duel with identical linear accuracy functions. 

To achieve the goal, additional preliminaries of the progressive discrete silent duel 
are first stated in Section 2. Then pure strategy solutions for various cases of N  and 
a  are presented in Section 3. Section 4 summarizes the solution results and 
recapitulates their peculiarities. The study is discussed and concluded in Section 5. 

2. Additional preliminaries 
In fact, the progressive discrete silent duel with identical linear accuracy functions is 
a matrix game  

    1 1
, ,

= =

NN
i j Ni j

x y K  (6) 

by (4), (5), and payoff matrix  


 =  N ij N N
kK   

 by ( ) ( )2, sign= = − + −ij i j i j i j j ik K x y ax ay a x y y x  by 0a . (7) 

If 1=a  then the accuracy is exactly equal to the time moment at which the bullet is 
fired [9], [10], [5], [8]. Although by 1a  the accuracy is just scaled by 0a , it 
influences the solution by depending on whether 1a  or 0 1 a . This is yet to be 
shown below.  
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Formally, the most trivial case of 2=N , where the duelist is allowed to shoot at 
either the very beginning or end, is not excluded. As the shooting is allowed only at 
moments 1 0=t  and 2 1=t , the respective payoff matrix is  

 2 2 2

0
0

−  = =     
ij

a
k

a
K  (8) 

whence situation 

    2 2, 1,1=x y  (9) 

is the single saddle point here. 
In general,  

 ( ) ( ) ( )1, 0,1 1, 0= = − = −NK x y K a K . (10) 

Therefore, whichever number N  is (the case of 1=N  is naturally excluded), the first 
row of matrix (7) contains a negative entry and so this row does not contain saddle 
points (because the minimum of the first row does not exceed 0− a  and thus the 
game optimal value opt 0=v  cannot be reached in this row). Due to the skew-symmetry 
of matrix (7), the stated inference is immediately followed by that the first column 
does not contain saddle points either. In the further consideration, only the inferences 
on saddle points in definite rows of matrix (7), which imply the same inferences on 
saddle points in respective columns, will be stated. It is clear that only a zero entry of 
matrix (7) can be a saddle point. If a row contains a negative entry, this row and 
respective column do not contain saddle points. If a nonnegative row contains a zero 
entry off the main diagonal, and this entry is a saddle point, both the zero entries are 
saddle points [2], [5], [18]. 

3. Existence of pure strategy saddle points 
It is needful to get started with the most trivial case, apart from (8). This is the case of 

3=N , where the shooting, apart from the very beginning and end moments 1 0=t , 

3 1=t , is also allowed at moment 2
1
2

=t . 

Theorem 1. In a progressive discrete silent duel (6) by (4), (5), (7) for 3=N , 
situation  

  2 2
1 1, ,
2 2

 =  
 

x y  (11) 

is optimal only by  but it is never optimal by 0 1 a . Besides, saddle point 
(11) is single by 1a . Any pure strategy situation in the 3 3  duel, not containing 
the duel beginning moment, is optimal by 1=a , whereas situation 
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    3 3, 1,1=x y  (12) 

is the single saddle point by 0 1 a . 
Proof. Due to (10), situation 

   1 1, 0, 0=x y  

is never optimal in the duel. The respective payoff matrix is 

 ( )

( )

3 3 3

0
2

0 1
2 2

1 0
2



 − − 
 
  = = −   
 
 − −
  

ij

a a

a ak a

aa a

K . (13) 

If 1a  then the second row of matrix (13) is nonnegative and the third row contains 
a negative entry. The only zero entry in the second row is 22k . So, situation (11) is 
optimal and it is the single saddle point for (13) by 1a . If 1=a  then the respective 
payoff matrix is 

 3 3 3

10 1
2

1 0 0
2
1 0 0



 − − 
 
  = =   
 
 
  

ijkK . (14) 

This matrix game has four saddle points: situation (11), situation (12), and non-
symmetric situations 

  2 3
1, ,1
2

 =  
 

x y , (15) 

  3 2
1, 1,
2

 =  
 

x y . (16) 

If 0 1 a  then the second row of matrix (13) contains a negative entry and the third 
row is nonnegative. The only zero entry in the third row is 33k . So, situation (12) is 
the single saddle point for (13) by 0 1 a .  

 
Now, the general case is to be considered. Let it be divided into the subcases of 

0 1 a  and . 
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Theorem 2. In a progressive discrete silent duel (6) by (4), (5), (7) for 
, there exists only one  3, 1 −n N  by 0 1 a  such that situation 

  
1 1

1 1
2 1 2 1, ,

2 2

− −

− −

 − −
=  
 

n n

n n n nx y  (17) 

is a single saddle point by 

 
( ) ( ) ( )

2

1 1 2

1 2; 0;1
2 1 2 1 2 1

−

− − −

 
  

− −  −  

n

n n n
a  (18) 

and situation 

    , 1,1=N Nx y  (19) 

is a saddle point by 

 ( )2
10; 0;1

2 1−
   − Na . (20) 

Besides, situation (11) is never optimal by 0 1 a . 
Proof. Due to 

 ( ) ( )2
1 1, ,1 1 1, 0
2 2 2

   = = − = −    
   

N
aK x y K a K  by 0 1 a , (21) 

situation (11) is never optimal for . Consider entry nnk  for 

 3, 1 −n N  and . This entry is the result of when both the duelists 

simultaneously shoot at moment 

 
1 1

1
1

2 12
2

− −
−

−
=

−
= =

n n
l

n n
l

t  (22) 

corresponding to situation (17). If situation (17) is a saddle point, then, in the n -th 
row of matrix (7), inequalities 

   j ny x  (23) 

and 

   j ny x  (24) 

must hold. From inequality (23) it follows that 



87

JIOS, VOL. 48. NO. 1 (2024), PP. 81-98

ROMANUKE PURE STRATEGY SADDLE POINTS IN THE GENERALIZED... 

  

Theorem 2. In a progressive discrete silent duel (6) by (4), (5), (7) for 
, there exists only one  3, 1 −n N  by 0 1 a  such that situation 

  
1 1

1 1
2 1 2 1, ,

2 2

− −

− −

 − −
=  
 

n n

n n n nx y  (17) 

is a single saddle point by 

 
( ) ( ) ( )

2

1 1 2

1 2; 0;1
2 1 2 1 2 1

−

− − −

 
  

− −  −  

n

n n n
a  (18) 

and situation 

    , 1,1=N Nx y  (19) 

is a saddle point by 

 ( )2
10; 0;1

2 1−
   − Na . (20) 

Besides, situation (11) is never optimal by 0 1 a . 
Proof. Due to 

 ( ) ( )2
1 1, ,1 1 1, 0
2 2 2

   = = − = −    
   

N
aK x y K a K  by 0 1 a , (21) 

situation (11) is never optimal for . Consider entry nnk  for 

 3, 1 −n N  and . This entry is the result of when both the duelists 

simultaneously shoot at moment 

 
1 1

1
1

2 12
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−

−
=
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   j ny x . (25) 

As  

  (26) 

then inequality (25) is transformed into 

, 

, 

, 

whence 

( ) ( )
( ) ( )

2 1 1 2

1 2

2 2 1 2 2 1

2 1 2 1

n n n n

n n

− − − −

− −

 − −  −
=

−  −
 

 . (27) 

From inequality (24) it follows that 

   j ny x . (28) 

As  

  (29) 

then inequality (28) is transformed into 

, 

 . (30) 

If 0 1 a  then  



88

JIOS, VOL. 48. NO. 1 (2024), PP. 81-98

ROMANUKE PURE STRATEGY SADDLE POINTS IN THE GENERALIZED... 

  

 
1

1
2 1

2 1

−

−  
−

n

n a , (31) 

whence  

( )1 12 2 1 0− −−  − n na  

and inequality (30) is written as 

 . (32) 

Thus, inequality (32) is followed by 

 . (33) 

Consequently, if the membership in (18) is true, then the n -th row of matrix (7) is 
nonnegative. The n -th column is nonpositive, whereas 0=nnk  is a maximin and 
minimax entry, and situation (17) is indeed a saddle point. 

Inasmuch as 

( ) ( )
2

11 2

2 1
2 12 1 2 1

−

−− −
− =

−−  −

n

nn n
 

( ) ( )
2 2

1 2

2 2 1
2 1 2 1

− −

− −

− +
= =

−  −

n n

n n
 

 
( ) ( )1 2

1 0
2 1 2 1− −

= 
−  −n n

 3, 1 = −n N  (34) 

and 

( ) ( )
( )
( ) ( )

2 1 2 2 12

1 2 1 2

2 2 2 2 2 12 1
2 1 2 1 2 1 2 1

− − − − −−

− − − −

−  − − +
− = =

−  − −  −

n n n n nn

n n n n
 

( ) ( )
2 3

1 2

2 2 1
2 1 2 1

−

− −

− −
= =

−  −

n n

n n
 

 
( )

( ) ( )
3

1 2

2 1 2 1
0

2 1 2 1

−

− −

 − −
= 

−  −

n n

n n
 3, 1 = −n N  (35) 

then there always  3, 1  −n N  such that the inclusion in (18) is true, and the 

interval in (18) is nonempty, and situation (17) is a saddle point. Suppose that another 
entry on the main diagonal exists, mmk  by  3, 1 −m N  and m n , which is a saddle 

point also. This can be possible if both the membership in (18) and membership 
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nonnegative. The n -th column is nonpositive, whereas 0=nnk  is a maximin and 
minimax entry, and situation (17) is indeed a saddle point. 

Inasmuch as 

( ) ( )
2

11 2

2 1
2 12 1 2 1

−

−− −
− =

−−  −

n

nn n
 

( ) ( )
2 2

1 2

2 2 1
2 1 2 1

− −

− −

− +
= =

−  −

n n

n n
 

 
( ) ( )1 2

1 0
2 1 2 1− −

= 
−  −n n

 3, 1 = −n N  (34) 

and 

( ) ( )
( )
( ) ( )

2 1 2 2 12

1 2 1 2

2 2 2 2 2 12 1
2 1 2 1 2 1 2 1

− − − − −−

− − − −

−  − − +
− = =

−  − −  −

n n n n nn

n n n n
 

( ) ( )
2 3

1 2

2 2 1
2 1 2 1

−

− −

− −
= =

−  −

n n

n n
 

 
( )

( ) ( )
3

1 2

2 1 2 1
0

2 1 2 1

−

− −

 − −
= 

−  −

n n

n n
 3, 1 = −n N  (35) 

then there always  3, 1  −n N  such that the inclusion in (18) is true, and the 

interval in (18) is nonempty, and situation (17) is a saddle point. Suppose that another 
entry on the main diagonal exists, mmk  by  3, 1 −m N  and m n , which is a saddle 

point also. This can be possible if both the membership in (18) and membership 
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( ) ( )

2

1 1 2

1 2;
2 1 2 1 2 1

−

− − −

 
 

− −  −  

m

m m m
a  (36) 

are true, i. e. intersection 

 
( ) ( ) ( ) ( )

2 2

1 11 2 1 2

1 2 1 2; ;
2 1 2 12 1 2 1 2 1 2 1

− −

− −− − − −

   
     

− −−  − −  −      
I

n m

n mn n m m
. (37) 

If m n  then 

1 1
1 1

2 1 2 1− −
− −m n  

and so inequality 

 ( ) ( )
2

11 2

2 1
2 12 1 2 1

−

−− −


−−  −

n

mn n
 (38) 

must hold for (37). However, 

( ) ( )
2

11 2

2 1
2 12 1 2 1

−

−− −
− =

−−  −

n

mn n
 

( )
( ) ( ) ( )

2 1 2 1 2 2 1

1 2 1

2 2 2 2 2 2 2 1

2 1 2 1 2 1

− − − − − − −

− − −

 − −  − − +
= =

−  −  −

n m n n n n n

n n m
 

( ) ( ) ( )
2 1 1 2 3

1 2 1

2 2 2 2 1
2 1 2 1 2 1

− − − −

− − −

 + − −
= =

−  −  −

n m n n

n n m
 

 
( )

( ) ( ) ( )
1 2 2

1 2 1

2 2 1 2 1

2 1 2 1 2 1

− − −

− − −

 + − −
=

−  −  −

n m n

n n m
. (39) 

As  then  
2 22 1 2− −+ m n  

and thus 
2 22 1 2 0− −+ − m n , 

whence 

( )1 2 22 2 1 2 1 0− − − + − − n m n . 

So, ratio (39) is negative and inequality (38) does not hold. If m n  then 
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1 1
1 1

2 1 2 1− −
− −m n  

and so inequality 

 ( ) ( )
2

11 2

2 1
2 12 1 2 1

−

−− −


−−  −

m

nm m
 (40) 

must hold for (37). By analogy to (39), just by interchanging m  and n , 

( ) ( )
2

11 2

2 1
2 12 1 2 1

−

−− −
− =

−−  −

m

nm m  

 
( )

( ) ( ) ( )
1 2 2

1 2 1

2 2 1 2 1

2 1 2 1 2 1

− − −

− − −

 + − −
=

−  −  −

m n m

m m n
. (41) 

As  then  
2 22 1 2 0− −+ − n m , 

whence 

( )1 2 22 2 1 2 1 0− − − + − − m n m . 

So, ratio (41) is negative and inequality (40) does not hold. Therefore, saddle point 
(17) existing for some  3, 1 −n N  is single for any . 

Now, consider entry NNk  for . This entry is the result of when 
both the duelists simultaneously shoot at the duel end corresponding to situation (19). 
If situation (19) is a saddle point, then, in the N -th row of matrix (7), inequality 

  1  =j Ny x  (42) 

must hold. From inequality (42) it follows that 

  1 jy . (43) 

As  

  (44) 

then inequality (43) is transformed into 

, 
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So, ratio (41) is negative and inequality (40) does not hold. Therefore, saddle point 
(17) existing for some  3, 1 −n N  is single for any . 

Now, consider entry NNk  for . This entry is the result of when 
both the duelists simultaneously shoot at the duel end corresponding to situation (19). 
If situation (19) is a saddle point, then, in the N -th row of matrix (7), inequality 

  1  =j Ny x  (42) 

must hold. From inequality (42) it follows that 

  1 jy . (43) 

As  

  (44) 

then inequality (43) is transformed into 
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, 

, 

whence 

 , (45) 

which is true due to the membership in (20) is true, i. e. inequality (42) holds by (45). 
Consequently, if the membership in (20) is true, then situation (19) is a saddle point.
  

 
Theorem 3. In a progressive discrete silent duel (6) by (4), (5), (7) for 

, situation (11) is optimal for . For , this saddle 
point is the single one. 

Proof. For 3=N , owing to Theorem 1, situation (11) is the single saddle point 
for (13) by 1a  and it is one of the four saddle points for (13) by 1=a . For 

 consider entry 22k  that is the result of when both the duelists 
simultaneously shoot at the middle of the duel time span corresponding to situation 
(11). This entry is in the second row of matrix (7), where 

 ( )2 1
1, , 0 0
2 2

 = =  
 

aK x y K  (46) 

and 

 ( )
21 , 1 2

2 2 2 2
  = − + =  − + 
 

j j j j j
a a aK y ay y y ay  1

2
 jy . (47) 

If 1=a  then  

 

and (47) is nonnegative: 

  1
2

 jy , (48) 

where  

 2
1 1, ,1 0
2 2

   = = =   
   

N NK y K k . (49) 

Inequality (46) with inequality (48) and (49) imply that the second row by 1=a , 
except for entries 22 0=k  and 2 0=Nk , contains only positive entries, whence 
situation (11) is a saddle point. Owing to (45) is false, inequality (42) is impossible, 
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the N -th column cannot contain saddle points, and so saddle point (11) is the single 
one in the second row. Inequalities (46) and (48) also imply that entries 2 0ik  

3, 1 = −i N  in the second column, so saddle point (11) is the single one by 1=a . 

If 1a  then, as , 

, 

, 

, 

, 

and 

  by 1 ;1
2

   
jy . (50) 

Inequality (50) is followed by inequality 

 1 2 0− + j jy ay  (51) 

whence (47) is positive: 

 ( )1 , 1 2 0
2 2

  =  − +  
 

j j j
aK y y ay  1

2
 jy . (52) 

Inequality (46) with inequality (52) imply that the second row by 1a , except for 
entry 22 0=k , contains only positive entries, whence situation (11) is a saddle point. 
Inequalities (46) and (52) also imply that situation (11) is the single saddle point in 
the second row, and entries 2 0ik  3, 1 = −i N  in the second column. The latter 
implies that the second row is the single nonnegative row by 1a  and saddle point 
(11) is the single one also.  

 
Strictly speaking, Theorem 2 does not claim that pure strategy solutions (17) and 

(19) by respective conditions (18) and (20) are the only possible pure strategy saddle 
points of matrix (7). Nevertheless, by Theorem 3, pure strategy saddle point (11) is 
single for  and . 
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the second row, and entries 2 0ik  3, 1 = −i N  in the second column. The latter 
implies that the second row is the single nonnegative row by 1a  and saddle point 
(11) is the single one also.  

 
Strictly speaking, Theorem 2 does not claim that pure strategy solutions (17) and 

(19) by respective conditions (18) and (20) are the only possible pure strategy saddle 
points of matrix (7). Nevertheless, by Theorem 3, pure strategy saddle point (11) is 
single for  and . 
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4. Peculiarities of the solutions 
A peculiarity in Theorem 2 is that the left endpoint in the membership (18) closed 
interval by 1n N= −  and the right endpoint in the membership (20) half-interval are 
the same. This peculiar case of the duelist’s accuracy factor a  is considered 
separately. 

Theorem 4. In the progressive discrete silent duel (6) by (4), (5), (7) for 
, situations (19), 

  
2 2

1 1 2 2
2 1 2 1, ,

2 2

− −

− − − −

 − −
=  
 

N N

N N N Nx y  (53) 

and 

  
2

1 2
2 1, ,1

2

−

− −

 −
=  
 

N

N N Nx y  (54) 

and 

  
2

1 2
2 1, 1,

2

−

− −

 −
=  
 

N

N N Nx y  (55) 

are saddle points by 

 2
1

2 1−=
−Na . (56) 

Apart from situations (19), (53) — (56), there are no other saddle points in this duel. 
Proof. Owing to Theorem 2, here 1= −n N  and (56) satisfies both (20) and (18). 

Thus, situations (19) and (53) are saddle points. Besides, 

( )
2 2 2

2 2 2 2 2 22

2 1 1 2 1 1 1 2 1,1
2 2 1 2 2 1 22 1

− − −

− − − − −−

 − − −
=  − +  =  − −  −

N N N

N N N N NN
K  

2 2 2 2
1 1 1 1

2 2 1 2 1 2− − − −= − +  =
− −N N N N  

 
( )

2 2 2

22 2

2 1 2 1 2 10 1,
22 1 2

− − −

−− −

 − − + −
= = =  

−   

N N N

NN N
K  (57) 

that implies the optimality of situations (54) and (55). 
The first and second rows do not contain saddle points, so it remains to consider 

the rows whose index is  3, 2 −m N . Owing to Theorem 2, situation (53) is the 

single saddle point on the main diagonal, not considering the last row. This implies 
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that each of the 4−N  rows whose index is  3, 2 −m N  contains at least one 

negative entry, i. e. these rows do not contain saddle points.  
 
If the duelist’s accuracy factor satisfying inequality 0 1 a  is not (56), this is 

another supplement to Theorem 2. 
Theorem 5. A progressive discrete silent duel (6) by (4), (5), (7) for 

 by (18) and 

 2
1

2 1−
−Na  (58) 

has a single saddle point (17). 
Proof. Owing to Theorem 2, while situation (17) is a saddle point, the membership 

in (20) is impossible due to (58). Therefore, situation (19) is not a saddle point, and 
saddle point (17) is the single one on the main diagonal. Analogously to that in 
Theorem 4, this implies that each of the 4−N  rows whose index is 

   3, 1 \ −m N n  contains at least one negative entry, i. e. these rows do not contain 

saddle points.  
 
So, pure strategy saddle point (17) is indeed single by (18) and (58). The next 

assertion is for the case when the membership in (18) is false. 
Theorem 6. A progressive discrete silent duel (6) by (4), (5), (7) for 

 by  

 2
10;

2 1−
  − Na  (59) 

has the single saddle point (19). 
Proof. Owing to Theorem 2, situation (19) is a saddle point by (59). Analogously 

to (42) — (45), when (59) is true, 

2
11

2 1− 
−N a , 

( )21 2 1−  −Na , 

( )2 2 22 2 1 2 1− − − − +  −N N Na , 

, 

1
1


+ jy

a
, 
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assertion is for the case when the membership in (18) is false. 
Theorem 6. A progressive discrete silent duel (6) by (4), (5), (7) for 

 by  

 2
10;

2 1−
  − Na  (59) 

has the single saddle point (19). 
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 1 0− − j jy ay  1 jy . (60) 

Using inequality (60), there is inequality 

 ( ) ( )2, 1 0= − − = − − N j N j N j j jK x y ax ay a x y a y ay  1  =j Ny x  (61) 

in the N -th row of matrix (7). Inequality (61) implies that situation (19) is the single 
saddle point in the N -th row, and entries 0iNk  1, 1 = −i N  in the N -th column. 
The latter implies that the N -th row is the single nonnegative row by (59) and saddle 
point (19) is the single one also.  

 
Consequently, by Theorems 5 and 6, a progressive discrete silent duel (6) by (4), 

(5), (7) for  and 0 1 a  by either (58) or (59) has a single pure 
strategy saddle point. If (59) holds, then every duel has the same pure strategy 
solution, by which the optimal behavior of the duelist is to act (shoot) at the duel end 
moment. Otherwise, excluding the boundary case of Theorem 4, pure strategy saddle 
point (17) is single by 

 
( ) ( )

2

1 1 2

1 2;
2 1 2 1 2 1

−

− − −

 
 
 − −  −  

n

n n n
a  (62) 

and, if (62) does not hold, the duel is not solved in pure strategies. 

5. Discussion and conclusion 
Duels are game-theoretic patterns used to model timing competitive interactions 
between two sides personified as players or duelists. The solutions to duels allow 
players holding at the most reasonable strategies and develop rationalized processes 
of sharing resources for which the players compete [3], [24], [17], [25], [22], [12]. 
Particular examples of the interactions are auctioning, advertising, market control 
struggle, product placement, retailing, and many other socioeconomic competitive 
processes between two sides [13], [15], [23], [12], [14].  

Although there are almost no linearly developing real-time processes, the linear 
accuracy with a proportionality factor is a generalization that allows to make an initial 
approximation of the interaction model. Besides, the accuracy factor allows to 
consider various patterns of the duelists, which may be worse or better shooters (i. e., 
be worse or better at making smarter decisions). In addition, specifying locations of 
moments (4) of possible shooting as (5) is natural as well. As the duelist approaches 
to the duel end, the tension and responsibility grow, and so time moments of possible 
shooting must be located progressively denser. The geometrical progression is a quite 
natural pattern of the growth, which still can be made more complicated by adding 
some noise. 

The proved assertions contribute to the games of timing a few specificities of the 
discrete silent duel. Firstly, a specificity consists in that the solution of a generalized 
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progressive discrete silent duel, with identical linear accuracy functions of the 
duelists, is not always a pure strategy saddle point if the duelist’s accuracy factor is 
less than 1 (as a corollary from Theorems 2, 5 and 6). Secondly, if the factor is not 
less than 1, the duelist’s optimal strategy is the middle of the duel time span (Theorem 
3). For a trivial game, where the duelist possesses just one moment of possible 
shooting between the duel beginning and end moments, and the accuracy factor is 1, 
any pure strategy situation in this 3 3  duel, not containing the duel beginning 
moment, is optimal (Theorem 1). As the accuracy factor becomes less than 1, this 
3 3  duel has only one pure strategy saddle point which is of the duel end moments 
(Theorem 1). In the boundary case, when the accuracy factor is equal to the inverse 
numerator of the ratio that is the time moment preceding the duel end moment, the 
duel has four pure strategy saddle points which are of the mentioned time moments 
(Theorem 4). 

Nonlinearity in the accuracy function can be a matter of further research on 
progressive discrete silent duels. For instance, it can be the quadratic and cubic 
accuracy. A special case is the square-root accuracy implying that the duelist is better 
at shooting (compared, e. g., to the linear accuracy by 1=a  as t t  for 0 1 t ). 
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