
JIOS, VOL. ??, NO. ? (???) SUBMITTED MM/YY; ACCEPTED MM/YY

Portable reflection for C++ with Mirror

Author Author@example.com
University
Faculty

Abstract
Reflection and reflective programming can be used for a wide range of tasks such as imple-

mentation of serialization-like operations, remote procedure calls, scripting, automated GUI-
generation, implementation of several software design patterns, etc. C++ as one of the most
prevalent programming languages however, for various reasons, lacks a standardized reflection
facility. In this paper we present Mirror - a portable library adding reflection to C++ with a
command-line utility automating its usage. This library supports functional style static compile-
time reflection and metaprogramming and also provides two different object-oriented run-time
polymorphic layers for dynamic reflection.
Keywords: reflection, reflective programming, metaprogramming, design-pattern implementa-
tion

1. Motivation

There is a range of computer programming tasks which involve the execution of the same algo-
rithm on a set of types defined by an application or on instances of these types, manipulating mem-
ber variables calling of free functions or class member function in an uniform manner, conversion
of data between the programming language’s intrinsic representation and an external formats for
the purpose of implementing the following:

• serialization or storing of persistent data in a custom binary format or in XML, JSON,
XDR, etc. and deserialization or (re-)construction of class instances from external data
representation formats (like those listed above), from the data stored in a RDBS, from the
data entered by a user through a user interface,

• automatic generation of a relational schema from the application object model and object-
relational mapping (ORM),

• scripting and remote procedure calls (RPC) / remote method invocation (RMI),

• object inspection and manipulation via a GUI and object access via web services (WS),

• visualization of application structure, data and the relations in the data,

• automatic or semi-automatic implementation of certain software design patterns,

• documentation or conceptual representation of a software system.

Several different aproaches to the implementation of such application features were proposed
in the past. The most obvious and also usually the most error-prone is manual implementation.



AUTHOR PORTABLE REFLECTION FOR C++ WITH MIRROR

Most of the operations listed above are inherently repetitive and basically require to process pro-
gramming language constructs like types (either atomic or elaborate), containers, functions, con-
structors, class inheritance, class member variables, enumerated values, etc.) in a uniform way
that could be easily algoritmized.

While it is acceptable (even if not very advantageous) for a design pattern [10] implementation
to be made by a human, writing RPC/RMI related code is a task much better suited for a computer.
Other tasks like creation of documentation or knowledge representation of a software system,
require some human work, but can be partially automated.

This leads to the second, commonly used approach: preprocessing and parsing of the program
source text by a (usually very specific) external program (documentation generation tool, interface
definition language compiler, web service interface generator, a rapid application development
environment with a form designer, etc.) resulting in additional program source code, which is
then compiled and integrated into the final application binary.

While acceptable in some situations, this approach has also several problems: First it requres
the external tools which may not fit well into the used build system or may not be portable between
platforms, etc.; second, such tools are task-specific and many of them allow only a limited, if any,
customization of the output.

Another approach to automation of these tasks is to use reflection, reflective programming,
metaprogramming [1] and generic programming [2], as shown for example in [12], for the im-
plementation of the factory design pattern (although the method described therein is somewhat
limited because it requires that the constructed types have a default constructor).

The same approach is taken by several other reflection facilities, with the same limitations.
Other examples of design pattern implementation with the help of reflection can be found in [17,
18, 34]. Reflection can also be employed to perform other tasks listed above as shown by projects
like [21, 29, 30, 33] and others.

2. Introduction to reflection and related work

The term reflection describes the ability of a computer program to observe and possibly alter
its own structure and/or its behavior. This includes building new or altering the existing data
structures, doing changes to algorithms or changing the way the program code is interpreted [11].
Reflective programming is a particular kind of metaprogramming.

One of the advantages of reflection is that everything is implemented in a single programming
language, and the human-written code can be closely tied with the customizable reflection-based
code which is automatically generated by compiler metaprograms, based on the metadata provided
by reflection.

Support for reflective programming is most common in high-level languages, often using
a virtual machine, an interpreter or another such run-time environment, like JAVA, C, CLOS
or Smalltalk [4, 5, 8] and less common or limited in lower-level statically typed languages like
Objective C, Lisp or Scheme [11].

Today, C++ as one of the most popular [26, 28] multi-paradigm programming languages,
lacks a direct support for reflection. One of the attempts for standardized reflection in C++ was
made in [16], but the work seems to be on hold recently [15]. Another recent attempt to add "rich
pointers" and reflection to C++ [3] looks more promising, but does not address several important
aspects like strongly typed enumerations, template parameters, traversal of namespace members,
etc.

There are several custom-built reflection systems, with varying degree of introspective and
reflective capabilities, using various approaches.

The OpenC++ [27] is a programming toolkit that allows writing meta-level source-to-source
transformation programs according to a meta-object-protocol (MOP) [5, 17] at the program pre-



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

processing/parse-time. The meta-level program is compiled by C++ compiler linked with an
OpenC++ add-on. Unfortunately only some compilers are supported which makes the approach
non-portable. Publications [19, 20] introduce another similar source-to-source translator named
FOG, adding support for aspect-oriented programming and compile-time reflection to C++. More
common are run-time reflection systems like, the CERN’s Seal C++ reflection system [15], or
those described in [8, 9, 13, 14, 22, 31]. There are also several static reflection facilities with
some run-time features, like the one described in [32].

3. Mirror reflection utilities

3.1 Introduction and history

Mirror is a set of non-intrusive and portable compile-time and run-time introspection and reflec-
tion utilities for the C++ language, developed by the author. It provides reusable metadata re-
flecting C++ constructs like namespaces, types, classes, base class inheritance, member variables,
class templates and their template parameters, free functions, etc., and implements an extensive
set of metaprogramming tools for the traversal and usage of these metadata in compile-time func-
tional and run-time object-oriented algorithms. Furthermore it provides several high-level tools,
like the factory generator utility, described in greater detail in [7]. It adheres to the three principles
attributed to well-designed reflective facilities [4]: encapsulation, stratification and ontological
correspondence.

There are two versions of the library, both available for download under the Boost Software Li-
cense (accessible at the following URL: http://www.boost.org/LICENSE_1_0.txt).

The first version [23], implemented in C++03, which is portable across all platforms having a
conforming C++ compiler. One of the basic usages of this library - object serialization and mar-
shalling in parallel applications using the MPI [25], is described in [6]. However, the development
of this version has been discontinued and its use is deprecated.

The second version [24], which is currently in active development, is using multiple new fea-
tures from the recent ISO C++ standard (C++2011). This version removes several design deficien-
cies discovered during the usage of the previous version and in addition contains also a run-time
layer, built on top of the compile-time metaobjects, providing a polymorphic object-oriented inter-
face for their usage in run-time reflective algorithms. Recently there has also been added a third -
object-oriented compile-time layer and a type-erasure utility. This quaternary interface makes the
libraries applicable in a wide range of scenarios. It is available for download from SourceForge.net
at the following URL: http://sourceforge.net/projects/mirror-lib/files/.

3.2 Architecture

Mirror uses a hierarchic architecture where each layer provides services to the layers above as
shown on Figure 1.

Figure 1: Architecture of the Mirror library



AUTHOR PORTABLE REFLECTION FOR C++ WITH MIRROR

• Registering and basic metadata: Since standard C++ provides only a very limited set of
metainformation to build upon, the basic programming language constructs like names-
paces, types, classes, variables, functions, etc. need to be registered before they can be
reflected. However Mirror tries to make the process of registering simple by providing a set
of user-friendly registering macros and has the native and many of the other common types,
classes, templates and namespaces pre-registered. This is the lowest layer and is used by the
application only to register its components. This registering could be in future replaced by
static meta-data provided by the compiler similar to the now standardized type_traits.

• Functional compile-time layer - Mirror: Built on the basic registered metadata. Suitable
for generic metaprogramming similar for example to the standard type_traits library.
Allows to write compile-time metaprograms which allow the compiler to generate efficient
program code based on the metadata provided by reflection.

• Object-oriented compile-time layer - Puddle: Based on the functional layer, it provides
an object-oriented interface which is more suitable for certain programming tasks and also
provides some run-time features, but is still inherently static, allowing for extensive opti-
mization by the compiler.

• Object-oriented type-erasure utility - Rubber: Based on the object-oriented compile-time
layer; its purpose is to remove the exact types of the instances of the metaobject concepts
provided by the lower layers and merge them into a single quasi-polymorphic type for each
compile-time metaobject concept. This allows the type-erased metaobjects to be stored
in standard containers (like vectors, maps, sets, etc.) and used in non-template functions
(for example C++ lambda functions). Unlike the next layer, it does not employ virtual
functions to achieve polymorphism. This utility is suited for situations where a combination
of compile-time and run-time reflection is required.

• Object-oriented run-time layer - Lagoon: Based on top of the compile-time layer, it pro-
vides a run-time polymorphic interface, more suitable for run-time reflective programming,
allowing the use of the provided metadata in a dynamic manner dependent on other data
available only at run-time. One of its disadvantages is the performance penalty induced by
virtual function calls and the inability of the compiler to inline such calls in many cases
together with long compilation times. In the future this layer will allow to compile the
metainformation into shared dynamic libraries separate from the applications and load them
on-demand.

3.3 Goals and Features

The libraries are developed with the following goals in mind:

• Reusability: The metadata provided by Mirror is reusable in many situations and for many
different purposes.

• Flexibility: Mirror and the additional layers built on top of it allow to access the provided
metadata both at compile-time and run-time in a functional and object-oriented manner
depending on the application needs.

• Encapsulation: Mirror and the additional layers provide interfaces for easy access to pro-
gram metadata.

• Stratification: Mirror is non-intrusive and separates the meta-level from the base-level con-
structs it reflects. Things that are not needed are generally not compiled-into the final ap-
plication.



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

• Ontological correspondence: The meta-level facilities correspond to the ontology of the
base-level C++ language constructs which they reflect.

• Completeness: Mirror tries to provide as much useful metadata as possible, including vari-
ous specifiers, iteration of namespace members and much more.

• Ease of use: Although Mirror allows to do very complicated reflective metaprogramming,
simple things are kept simple.

• Cooperation with other libraries: Mirror can be used with the introspection facilities pro-
vided by the standard library and other libraries.

3.4 Metaprogramming utilities

The metaprogramming tools implemented by Mirror allow writing complex algorithms, using
metadata describing the program, executed by the compiler at compilation time resulting in
compile-time constants, types or program code chunks in intermediate form which are afterwards
incorporated into the handwritten program code. The following program code snippet shows one
possible usage: processing all members of the global scope filtering out only types which have the
string ’long’ in their name, resulting in a series of calls to a lambda function printing the names
of the types to the standard output.

using namespace mirror;
std::cout << "Types having ’long’ in their name:" << std::endl;
mp::for_each<

mp::only_if<
members<MIRRORED_GLOBAL_SCOPE()>,
mp::and_<

mp::is_a<
mp::arg<1>,
meta_type_tag

>,
cts::contains<

static_name<mp::arg<1> >,
cts::string<’l’,’o’,’n’,’g’>

>
>

>
>(

[](const rubber::meta_named_object& type)
{

std::cout << type.base_name() << std::endl;
}

);

This example is rather synthetic, but there are also real-life scenarios where this feature could
be used. If a consistent naming policy is defined for a large applications (like the names of all
interfaces end with Intf or start with I, i.e. ComponentIntf or IComponent) special set
of classes, functions, etc. can be selected and processed by a meta-program.



AUTHOR PORTABLE REFLECTION FOR C++ WITH MIRROR

3.5 High-level utilities

As briefly mentioned above, Mirror, besides the metaobjects reflecting various language con-
structs, also provides several high-level utilities built on top of the basic metadata.

3.5.1 Factory generator

The factory generator utility allows to automate the implementation of the factory design pattern
for types which are reflectable by the Mirror library. By factory we mean here a class, which
can create instances of a product type, but does not require that the caller chooses the manner of
the construction nor supplies the required parameters directly in the native data representation of
C++.

Such generated factory examines the input which can be provided in an external data represen-
tation like XML, JSON, XDR, a simple scripting language, a dataset which results from a query
to a RDBS, a user interface, etc., selects the constructor that is the best match for the available
input data, converts the data from the external representation and calls the constructor. It may
even construct some of the arguments recursively by the means of other, nested factories.

The advantage of this reflection-based approach is, that it separates (from the programmer’s
point of view) and then automatically combines the parts specific to the construction of a particular
type from the general logic of the constructor selection, input data validation and conversion. This
way any reflectable type can be constructed from any input data format for which the conversion
logic is implemented.

The process how factories are generated from the metadata provided by Mirror and a set of
user-specified templates is described in greater detail in [7],[24]. Example of a GUI created by
factory which was generated by the Mirror’s factory generator for a simple tetrahedron class
with the following definition,

struct vector
{

double x,y,z;

vector(double _x, double _y, double _z);
vector(double _w);
vector(void);

// ... + other declarations
};

struct triangle
{

vector a, b, c;

triangle(const vector& _a, const vector& _b, const vector& _c);
triangle(void);

// ... + other declarations
};

struct tetrahedron
{

triangle base;



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

vector apex;

tetrahedron(const triangle& _base, const vector& _apex);
tetrahedron(

const vector& a,
const vector& b,
const vector& c,
const vector& d

);

// ... + other declarations
};

is shown on Figure 2. The automatically generated factory class creates a reusable GUI dialog
window which allows the user to select any combination of constructors of the classes declared in
the code shown above, and provides means to input the values necessary to construct an instance
of the tetrahedron class.

Figure 2: Example of a localized GUI created by an automatically generated factory.

It contains widgets for the input of the constructor parameters with atomic types (in this case
double) with validators rejecting input of any text not convertible to a floating-point value and
checking if all required data was provided. Upon clicking the OK button, the factory creates a new
instance. This process can be repeated multiple times without the need to recreate the input dialog.



AUTHOR PORTABLE REFLECTION FOR C++ WITH MIRROR

When the factory no longer required it takes care of properly freeing the resources associated with
the dialog window.

Figure 3 shows another two dialogs created by an automatically generated factory, for a
person class. In this example the support for localization is enabled (with the en_US and
sk_SK locales) which results in more user-friendly dialogs by translating the basic C++ identifier
names on the label widgets to a more human-readable form and adapting the input widgets to
regional format.

Figure 3: Example of a localized GUI created by a factory generated by the Mirror’s factory
generator.

3.5.2 Invoker generator

The invoker generator allows to create invoker classes which are able to call arbitrary reflectable
functions, in the same manner as the generated factories call constructors. This feature is however
still experimental.

3.6 External tools

The manual registering process can be tedious and error-prone in some situations. Although the
registering macros use auto-detection and many things do not have to be specified explicitly, some
changes in the base-level classes, like adding or removing of a member variable, constructor or a
whole class, etc. require changes in the registering code.

If no special tweaking in the reflection of the base-level constructs (like hiding certain mem-
bers or constructors of a class or specifying of getter/setter functions for a member variable) is
required, then support for automatic reflection is desirable.

To provide this support is the aim of the MAuReEn (Mirror Auto-Reflection Engine) project
also developed by the author, available at http://gitorious.org/maureen.

This tool parses the header files containing declarations of the base-level constructs to be
registered (namespaces, types, classes, variables, etc.) and outputs the required registering code
into header files as specifed by the user. It can be easily integrated into existing build systems
like GNU Make, CMake, Boost.Build and others. It has a modular architecture which allows to



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

implement various methods of input file parsing and output file generation. The automatically
generated registering code can be combined with hand-written registering code.

4. Conclusion and future work

As shown above, reflection can be a valuable programming tool. Even if excellent for compile-
time metaprogramming, the C++ language misses a standard reflection facility. The aim of the
Mirror library is to address this shortcoming and to provide portable reflection to C++. Mirror is
still in development and there are several features that are planned for future releases, including
but not limited to the following:

• Refactoring of the existing facilities for registering and reflection of free and class member
functions with proper support for function overloads.

• An abstract factory generator that would combine the concrete factories generated by the
existing factory generator utility into a single abstract factory.

• An object manipulator generator that would allow generating manipulators working on ex-
isting instances of various types. Such manipulators could perform tasks like GUI object
inspection, serialization, etc. in a similar manner as the generated factories are used for
object instantiation.

• An additional semantic-layer that would allow to tie conceptual data to the reflected pro-
gram components, allowing the visualization of application’s structure and data, generation
of more user-friendly GUI/Web interfaces, access for agent oriented systems and automated
reasoning.

References

[1] Abrahams, D; Gurtovoy, A. C++ Template Metaprogramming: Concepts, Tools, and Tech-
niques from Boost and Beyond. Addison-Wesley Professional, 2004

[2] Alexandrescu, A. Modern C++ Design: Generic Programming and Design Patterns Ap-
plied. Addison-Wesley Professional, 2001.

[3] Berris, M. D.; Austern, M.; Crowl, L.: Rich Pointers. ISO/IEC JTC1 SC22 WG21
N3340=120030, 2012. http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2012/n3340.pdf

[4] Bracha, G; Ungar, D. Mirrors: Design Principles for Meta-level Facilities of Object-
Oriented Programming Languages. Proceedings of the 19th ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications, pages 85 104,
2003.

[5] Chiba, S. A Metaobject Protocol for C++. Proceedings of the ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, 1995.

[6] Author. Support for object-oriented parallel programs for grids and clusters. Proceedings
of 2nd International Workshop on Grid Computing for Complex Problems, Bratislava, Slo-
vakia, pages 88-96, 2006.

[7] Author. Generating Object Factory Classes with the Mirror Reflection Library. Journal of
Information, Control and Management System, Vol. 8, No. 2, ISSN 1336-1716, 2010.



AUTHOR PORTABLE REFLECTION FOR C++ WITH MIRROR

[8] Chuang, T-R; Kuo, Y.S; WANG, C-M. Non-intrusive object introspection in C++. Software-
Practice and Experience, issue 32, pages 191-207, 2002.

[9] Devadithya, T; Chiu, K; Lu, W. C++ Reflection for High Performance Problem Solving
Environments. In Proceedings of the 2007 spring simulation multiconference, Volume 2,
Norfolk, Virginia, USA, pages: 435-440, 2007.

[10] Gamma, E; Helm, R; Johnson, R; Vlissides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Proffesional, ISBN 0-201-63361-2, 1995.

[11] Kirby, G.N.C. Reflection and Hyper-Programming in Persistent Programming Systems,
Ph.D. Thesis, University of St Andrews, 1992.

[12] Kovacs, R. Creating Dynamic Factories in .NET Using Reflection. http://msdn.
microsoft.com/en-us/magazine/cc164170.aspx.

[13] Madany, P. W; Islam, N; Kougiouris, P; Campbell, R. H. Reification and Reflection in C++:
An Operating Systems Perspective. 1992.

[14] Madina, D; Standish, R. K. A system for reflection in C++. Proceedings AUUG 2004:
Always on and Everywhere, 2004.

[15] Roiser, S; Mato, P. The Seal C++ Reflection system. CERN, Geneva, Switzerland.

[16] Stroustrup, B. XTI An Extended Type Information Library. http://lcgapp.cern.
ch/project/architecture/XTI_accu.pdf.

[17] Tanter, E; Noyé, J; Caromel, D; Cointe, P. Partial Behavioral Reflection: Spatial and Tem-
poral Selection of Reification. Proceedings OOPSLA’03, Anaheim, California, USA, 2003.

[18] Tatsubori, M; Chiba, S. Programming Support of Design Patterns with Compile-time Re-
flection. Proceedings OOPSLA’98 Workshop on Reflective Programming in C++ and Java,
Vancouver, Canada, 1998.

[19] Willink, E. D; Muchnick, V. B. Weaving a Way Past the C++ One Definition Rule. Proceed-
ings of European Conference on Object Oriented Programming. Lisbon, June 14, 1999.

[20] Willink, E. D. Preprocessing C++: Meta-Class Aspects. Proceedings of the Eastern Euro-
pean Conference on the Technology of Object Oriented Languages and Systems, TOOLS
EE 99, Blagoevgrad, Bulgaria, June 1999.

[21] A C++ reflection-based data dictionary, http://sourceforge.net/projects/
crd/.

[22] Metaclasses and Reflection in C++, http://www.vollmann.ch/pubs/meta/
meta/meta.html.

[23] Mirror C++ reflection library documentation (C++98 version), http://svn.boost.
org/svn/boost/sandbox/mirror/doc/html/mirror.html.

[24] Mirror C++ reflection library documentation (C++11 version), http://kifri.fri.
uniza.sk/~author/mirror-lib/html/.

[25] MPI: A Message-Passing Interface Standard. MPI Forum, 2003: http://www.
mpi-forum.org/docs/mpi1-report.pdf.



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[26] Ohloh.net: compare languages tool. http://www.ohloh.net/languages/
compare.

[27] OpenC++, http://opencxx.sourceforge.net.

[28] Programming Language Popularity, http://langpop.com/.

[29] Property Set Library (PSL), http://sourceforge.net/projects/psl/.

[30] QxOrm library, http://sourceforge.net/projects/qxorm/.

[31] Reflection for C++, http://www.garret.ru/cppreflection/docs/
reflect.html.

[32] Static reflection in C++ using minimal repetition, http://www.enchantedage.
com/cpp-reflection.

[33] Template Reflection Library, http://sourceforge.net/projects/trl/.

[34] The Visitor Pattern, http://www.oodesign.com/visitor-pattern.html.


