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 The proliferation of malicious webpages presents a growing threat to online security, 
necessitating advanced detection methods to mitigate risks. This paper proposes a novel 
approach that integrates Natural Language Processing (NLP) techniques with an 
ensemble of machine learning models for the proactive detection of malicious web 
content. By leveraging semantic analysis, lexical patterns, and metadata extraction, the 
proposed framework enhances the identification of suspicious patterns in web page 
content. The ensemble model combines decision trees, random forests, and gradient 
boosting methods, optimizing classification accuracy and reducing false positives. A 
comprehensive evaluation using a large dataset of web pages, including both benign 
and malicious examples, demonstrates the superiority of the proposed method over 
traditional single-model approaches. With accuracy rates exceeding 98%, this 
framework achieves a robust, scalable solution for real-time web content analysis, 
providing a critical tool for cybersecurity professionals to detect and block malicious 
webpages before they can cause harm. Future directions include the integration of deep 
learning architectures and adaptive filtering techniques to further refine detection 
capabilities. 

Keywords: Count, Term frequency and Inverse document frequency, Machine learning 
model, Phishing, Malicious webpages 

1. Introduction  
The rapid expansion of the internet has revolutionized communication, business, and information sharing, 
but it has also introduced significant security threats. Malicious webpages are among the most pervasive forms 
of cyber threats, used by attackers to spread malware, launch phishing attacks, and steal sensitive information. 
These pages often masquerade as legitimate sites, deceiving users into disclosing personal data or infecting 
their systems with malicious software. As web usage continues to increase globally, the detection and 
prevention of such threats have become critical components of cybersecurity strategies. Traditional web 
filtering systems based on URL blacklists, signature matching, or rule-based methods are no longer sufficient 
due to the dynamic and evolving nature of malicious webpages. Attackers continuously modify their methods, 
including changing URLs, obfuscating content, and employing sophisticated evasion techniques that can 
bypass conventional detection systems. Consequently, there is a pressing need for advanced, intelligent 
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systems that can effectively analyze and classify web content in real-time, ensuring that malicious webpages 
are identified before they cause harm [1-4]. Recent advancements in artificial intelligence (AI) and machine 
learning (ML) have opened new avenues for detecting and preventing these threats. Natural Language 
Processing (NLP), a subfield of AI, offers promising techniques for analyzing the textual content of webpages, 
identifying semantic patterns, and detecting anomalies that may indicate malicious intent. NLP allows the 
system to analyze not only the structure and syntax of a webpage but also its context, meaning, and underlying 
intent. Combining NLP with machine learning models enables the development of systems that can adapt to 
new and evolving threats, going beyond the limitations of static rules or predefined signatures. This approach 
leverages a more holistic analysis of web content, considering multiple dimensions such as lexical features, 
syntactic structure, sentiment analysis, and even the metadata associated with the page, such as domain age 
and source credibility [5-7]. 

Machine learning models, particularly ensemble methods, have demonstrated their effectiveness in 
various classification tasks, including cybersecurity applications. These models, which combine the strengths 
of multiple classifiers, have been shown to improve accuracy and reduce false positives by balancing the 
weaknesses of individual algorithms. In the context of web content analysis, ensemble learning can enhance 
detection by integrating various perspectives on the features extracted from a webpage [8-12]. For instance, 
decision trees can capture hierarchical relationships between features, random forests can provide robustness 
through random feature selection, and gradient boosting can improve model accuracy by correcting the errors 
of weaker models. This fusion of machine learning techniques with NLP-driven content analysis offers a 
comprehensive solution to the challenges posed by malicious webpages. 

However, despite these advancements, existing methods often struggle with a few key limitations. First, 
many models rely heavily on predefined feature sets that may not fully capture the complexity of malicious 
content. Attackers often use obfuscation techniques, such as encoding malicious scripts or dynamically 
generating webpage content, making it difficult for static feature-based models to detect these threats. 
Additionally, many models focus primarily on the URL or metadata of a webpage, neglecting the rich 
information available in the webpage's content [13-15]. While URL-based detection methods can be effective 
in certain scenarios, they are often easily circumvented by attackers who can rapidly generate new URLs or 
use URL shortening services to hide their intent. As a result, there is a growing consensus that content-based 
detection methods, which analyze the actual substance of a webpage, are critical to improving the detection 
of malicious webpages. Another limitation of current approaches is their focus on specific types of malicious 
webpages, such as phishing sites or malware distribution pages, without considering the broader landscape 
of threats. A more generalized approach that can classify various types of malicious webpages is essential to 
create a more resilient cybersecurity framework. Furthermore, many existing systems are not designed to 
operate in real-time or at scale, limiting their effectiveness in large, dynamic environments such as corporate 
networks or global internet infrastructure [16-17]. Given the growing number of webpages created each day 
and the increasing sophistication of cyber-attacks, it is essential to develop systems that can operate at scale, 
processing large volumes of web content in real-time to provide timely protection against emerging threats.  
In this paper, we propose a novel framework that integrates NLP methods with an ensemble of machine 
learning models for the effective analysis of web content to classify malicious webpages. Our approach 
addresses the limitations of existing models by employing a hybrid methodology that combines lexical, 
syntactic, and semantic analysis with advanced machine learning techniques. This framework leverages NLP 
to extract meaningful features from the textual content of webpages, including keyword frequency, sentiment 
analysis, and semantic relationships, which are then fed into a machine learning ensemble for classification. 
The ensemble model consists of multiple classifiers, including decision trees, random forests, and gradient 
boosting, each of which brings a unique perspective to the classification task. By combining the outputs of 
these classifiers, our system achieves high accuracy and robustness in detecting a wide variety of malicious 
webpages, including phishing sites, malware distribution pages, and fraudulent websites. 

One of the key innovations of our approach is the use of a dynamic feature extraction process, which 
allows the system to adapt to new types of threats by continuously updating its feature set based on the 
evolving characteristics of malicious webpages. This dynamic process ensures that the system remains 
effective even as attackers modify their methods to evade detection. In addition, our framework is designed 
to operate at scale, capable of processing large volumes of web content in real-time. This scalability is achieved 
through the use of parallel processing techniques and distributed computing, which enable the system to 
analyze multiple webpages simultaneously without compromising performance. 

To evaluate the effectiveness of our proposed framework, we conducted extensive experiments using a 
large dataset of web pages, including both benign and malicious examples. The dataset was collected from 
multiple sources, including publicly available web repositories and specialized datasets containing known 
malicious webpages. Our experiments focused on evaluating the classification accuracy, false positive rate, 
and scalability of the system. The results demonstrate that our approach significantly outperforms traditional 
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single-model methods, achieving an overall classification accuracy of over 98%. In addition, the system was 
able to maintain low false positive rates, ensuring that legitimate webpages are not incorrectly flagged as 
malicious. These results highlight the potential of our framework to provide a robust, scalable solution for 
the detection of malicious webpages in real-world environments. 

Our contributions in this paper are threefold: First, we introduce a novel framework that integrates NLP 
techniques with an ensemble of machine learning models to improve the detection of malicious webpages. 
Second, we develop a dynamic feature extraction process that allows the system to adapt to evolving threats, 
ensuring long-term effectiveness. Third, we demonstrate the scalability of our approach, showing that it can 
operate in real-time and at scale, making it suitable for large networks and internet infrastructure. The 
proposed framework not only enhances the detection accuracy of malicious webpages but also provides a 
flexible, adaptive solution that can keep pace with the rapidly changing landscape of cyber threats. This 
research represents a significant step forward in the development of intelligent systems for web security, with 
potential applications in both enterprise and consumer settings. 

2. RELATED WORKS 
The detection of malicious web traffic has become a crucial area of study due to the increasing sophistication 
of cyber-attacks, especially those that target sensitive information and critical infrastructure. Traditional 
security measures, such as static rules or blacklist-based systems, are no longer sufficient to combat these 
evolving threats. Modern approaches rely on advanced machine learning (ML) and natural language 
processing (NLP) techniques to enhance real-time malicious traffic detection by analyzing various features, 
including lexical content, metadata, and network behaviors. This section reviews key literature relevant to 
online machine learning techniques, deep learning models, and their applications in malicious traffic 
detection, particularly focusing on innovations in web content analysis. 

A wide range of studies has explored the use of online machine learning for network traffic analysis. 
Shahraki et al. (2022) conducted a comparative analysis of online machine learning techniques for analyzing 
network traffic streams, highlighting the growing need for real-time, adaptive models in cybersecurity. Their 
work emphasized the limitations of batch learning models, which often struggle to cope with the dynamic 
nature of internet traffic. The study explored various online learning algorithms that allow models to update 
incrementally as new data becomes available, ensuring the system remains up-to-date with the latest threats. 
The research concluded that online machine learning offers significant advantages in scalability and 
responsiveness, which are essential for mitigating real-time threats such as malicious webpages. 

Further advancing the field, Zhang et al. (2023) proposed a real-time malicious traffic detection system 
utilizing the online isolation forest algorithm over software-defined wide-area networks (SD-WAN). This 
method demonstrated the efficiency of real-time anomaly detection in dynamic network environments, where 
traditional detection mechanisms often fail to scale effectively. By using the isolation forest, the model was 
able to detect anomalies in encrypted traffic streams, enhancing its ability to identify malicious activities. 
This approach is particularly relevant to web-based attacks, where malicious behavior can be hidden within 
encrypted traffic to evade traditional inspection methods. 

Graph-based approaches have also been instrumental in improving detection techniques, as highlighted 
by Hong et al. (2023), who proposed a hybrid analysis framework combining graph-based methods with 
multi-view feature extraction for encrypted malicious traffic detection. By treating network traffic as a graph 
of interconnected nodes, this approach allowed for the detection of more complex and camouflaged malicious 
behaviors. Their framework focused on encrypted traffic, which is increasingly used to mask malicious 
activity, and applied graph-based analysis to detect traffic anomalies by examining the relationships between 
different traffic flows. This work complements traditional machine learning methods by adding a layer of 
complexity that can improve the identification of deeply obfuscated threats. 

Wang and Thing (2023) made significant contributions by investigating the role of feature mining in 
encrypted malicious traffic detection using deep learning and traditional machine learning algorithms. Their 
work demonstrated that deep learning models, particularly convolutional neural networks (CNNs), are highly 
effective in capturing complex patterns in encrypted traffic that traditional models might miss. They explored 
how different features, such as packet size, timing, and frequency, can be extracted from encrypted streams 
and used to train models that identify malicious behaviors with high accuracy. Their research also pointed 
out that combining deep learning with traditional machine learning algorithms, such as decision trees or 
support vector machines (SVMs), can further enhance the robustness of detection systems. 

Another innovative approach was proposed by Fang et al. (2021), who developed a communication-
channel-based method for detecting deeply camouflaged malicious traffic. Their model focused on analyzing 
the communication patterns between nodes in a network to detect anomalies that might indicate malicious 
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activity. This method was particularly effective in identifying threats that rely on stealth and obfuscation, as 
it focused on communication behaviors rather than the content of the traffic itself. By observing how different 
nodes interact and detecting irregularities in these patterns, the model was able to flag suspicious behavior 
even when the content of the traffic was encrypted or disguised. 

Several studies have explored machine learning’s role in detecting encrypted malicious traffic in more 
detail. Wang et al. (2022) conducted a comprehensive study of various machine learning approaches, datasets, 
and techniques for encrypted malicious traffic detection. Their comparative study examined the efficacy of 
several algorithms, including deep learning models like recurrent neural networks (RNNs) and long short-
term memory (LSTM) networks, which are capable of processing sequential data like network traffic streams. 
Their findings showed that, while deep learning models are highly effective in detecting encrypted malicious 
traffic, they require extensive computational resources and are often difficult to implement in real-time 
scenarios. Nevertheless, their study highlighted the potential of these models to significantly improve 
detection accuracy when applied in well-configured environments. 

Aljabri et al. (2022) explored the use of lexical, network-based, and content-based features for detecting 
malicious URLs using machine learning and deep learning models. Their assessment revealed that combining 
multiple feature types leads to higher detection accuracy compared to using any single type of feature. Lexical 
features, such as the structure of a URL, were particularly useful in identifying phishing sites, while content-
based features, which analyze the actual text on a webpage, helped detect malware distribution sites. This 
comprehensive feature-based approach aligns with the hybrid techniques used in modern NLP-enhanced 
models for web content analysis, further supporting the need for multi-dimensional feature extraction in the 
fight against malicious webpages. 

Advanced methods for malicious content detection have also been developed using deep learning 
techniques like the spider bird swarm algorithm, as shown by Alex and Rajkumar (2021). Their study 
employed deep belief networks to detect malicious JavaScript, which is often embedded within webpages to 
execute harmful actions. By using an evolutionary algorithm to optimize feature selection and model training, 
their approach demonstrated enhanced detection of web-based threats, particularly those utilizing obfuscated 
or polymorphic JavaScript code. This method provided a flexible solution to a common problem in malicious 
webpage detection: the dynamic and evolving nature of web content. 

Shahrivar et al. (2020) contributed to the detection of phishing attacks using machine learning 
techniques. Their research applied various ML algorithms, including random forests and decision trees, to 
identify patterns commonly associated with phishing URLs. By focusing on features like domain name 
characteristics, URL length, and keyword presence, their model was able to effectively differentiate between 
legitimate and malicious webpages. The use of ensemble methods, which combine multiple algorithms, was 
particularly successful in reducing false positives, a persistent issue in phishing detection systems. 

Recent developments in natural language processing have also been applied to malicious webpage 
detection, as demonstrated by Haynes et al. (2021), who developed a lightweight phishing detection system 
using NLP transformers for mobile devices. Their work focused on analyzing the textual content of phishing 
emails and webpages, using transformer models to extract semantic meaning and detect fraudulent intent. 
This approach provided a low-resource solution that could be deployed on mobile devices, making it 
accessible for broader use. The use of transformers in NLP has proven to be highly effective in understanding 
complex language patterns, particularly in distinguishing between benign and malicious content.  

Table 1 provides a comparative analysis of various machine learning (ML) and deep learning (DL) 
techniques for detecting malicious traffic and phishing threats. Key findings highlight the scalability and 
adaptability of online learning algorithms, effectiveness in encrypted traffic detection, and the benefits of 
hybrid models and transformers in enhancing detection accuracy, especially for complex behaviors. 

Finally, Lin et al. (2022) conducted an extensive survey on the use of transformer models in AI and 
machine learning applications. Transformers have become a key technology in NLP due to their ability to 
process large amounts of text efficiently, making them ideal for tasks like malicious content detection, where 
semantic analysis plays a crucial role. The survey highlighted the growing importance of transformers in web 
security, particularly in detecting phishing attempts, malware distribution, and other forms of cyber threats 
hidden in web content. 

 
Authors Title Focus Area Methods/Techniques Findings 
Shahraki 
et al. 
(2022) 

A comparative study 
on online machine 
learning techniques 
for network traffic 
streams analysis 

Online 
machine 
learning for 
network traffic 
analysis 

Comparative analysis 
of online ML 
techniques 

Online learning 
algorithms offer better 
scalability and real-
time adaptability for 
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dynamic traffic 
streams. 

Zhang et 
al. (2023) 

Real-time malicious 
traffic detection 
with online isolation 
forest over SD-WAN 

Real-time 
malicious 
traffic 
detection using 
online isolation 
forest 

Isolation Forest for 
encrypted traffic 
detection 

Demonstrated effective 
anomaly detection in 
real-time SD-WAN 
environments, 
improving scalability 
in encrypted traffic 
streams. 

Hong et 
al. (2023) 

Graph based 
encrypted malicious 
traffic detection 
with hybrid analysis 
of multi-view 
features 

Malicious 
traffic 
detection using 
graph analysis 

Graph-based hybrid 
analysis of multi-view 
features 

Effective in detecting 
complex, camouflaged 
malicious behaviors 
within encrypted 
traffic using graph-
based models. 

Wang & 
Thing 
(2023) 

Feature mining for 
encrypted malicious 
traffic detection 
with deep learning 
and other ML 
algorithms 

Feature mining 
and detection 
in encrypted 
traffic 

Feature extraction 
using deep learning 
and traditional ML 
algorithms 

Deep learning, 
combined with 
traditional ML, 
enhances detection 
capabilities in 
encrypted malicious 
traffic streams. 

Fang et 
al. (2021) 

A communication-
channel-based 
method for detecting 
deeply camouflaged 
malicious traffic 

Detecting 
camouflaged 
malicious 
traffic 

Communication-
channel-based traffic 
anomaly detection 

Focus on analyzing 
communication 
patterns to detect 
deeply obfuscated 
malicious traffic. 

Wang et 
al. (2022) 

Machine learning for 
encrypted malicious 
traffic detection: 
Approaches, 
datasets, and 
comparative study 

ML techniques 
for encrypted 
malicious 
traffic 
detection 

Comparative analysis 
of deep learning 
models (RNNs, 
LSTMs) 

Deep learning models 
perform well but 
require substantial 
resources for real-time 
encrypted traffic 
detection. 

Aljabri et 
al. (2022) 

An assessment of 
lexical, network, and 
content-based 
features for 
detecting malicious 
URLs using ML and 
DL models 

Detecting 
malicious URLs 
using a feature-
based approach 

Lexical, network, and 
content-based features 
analyzed with ML and 
DL 

Multi-dimensional 
feature extraction leads 
to higher detection 
accuracy compared to 
single-type feature 
approaches. 

Alex & 
Rajkumar 
(2021) 

Spider bird swarm 
algorithm with deep 
belief network for 
malicious JavaScript 
detection 

Detection of 
malicious 
JavaScript 

Deep belief network 
and spider bird swarm 
algorithm 

Demonstrated 
enhanced detection of 
obfuscated JavaScript 
through evolutionary 
algorithm 
optimization. 

Shahrivar 
et al. 
(2020) 

Phishing detection 
using machine 
learning techniques 

Phishing URL 
detection 

Random forests, 
decision trees 

Ensemble methods 
improve accuracy in 
detecting phishing 
URLs while reducing 
false positives. 

Haynes et 
al. (2021) 

Lightweight URL-
based phishing 
detection using NLP 
transformers for 
mobile devices 

Phishing 
detection using 
NLP 

Transformer-based 
NLP analysis for 
mobile phishing 
detection 

Lightweight NLP 
transformer models 
effectively detect 
phishing on mobile 
devices, offering a low-
resource, high-
accuracy solution. 
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Lin et al. 
(2022) 

A survey of 
transformers 

Transformers 
in AI and ML 
applications 

Survey of 
transformer-based 
architectures 

Transformers are 
highly effective for 
NLP tasks, including 
detecting malicious 
web content via 
semantic analysis and 
phishing detection. 

Table 1. Summary of Recent 

3. PROPOSED SYSTEM 
The detection of malicious webpages using machine learning techniques requires not only an effective 
algorithmic framework but also a robust dataset for training and validation. In this enhanced version of the 
proposed system, we incorporate additional components such as dataset details, vectorization methods, and 
two algorithms: one for textual content extraction and another for vectorization. These additions are intended 
to improve the system’s ability to handle various types of malicious activities on webpages and provide 
insights into its underlying processes. To train and evaluate the proposed system, we utilize multiple datasets 
consisting of both malicious and benign web traffic and webpage content [17-20]. The datasets are carefully 
curated to include a wide variety of attack types (e.g., phishing, malware distribution, drive-by downloads) 
and normal web activities to ensure comprehensive coverage and robustness. The datasets used include both 
publicly available and synthetically generated data. Table 2 shows the summary of dataset. 

 
Dataset Name Source Types of 

Traffic/Webpages 
No. of 
Instances 

Data Types Year 
Released 

CICIDS2017 Canadian 
Institute for 
Cybersecurity 

Mixed (Malware, 
Phishing, etc.) 

3,000,000 Traffic, 
Metadata, 
Content 

2017 

PhishTank Open-Source 
(PhishTank) 

Phishing 500,000 URLs, 
Webpage 
Content 

Ongoing 

Alexa Top 
Sites 

Amazon Alexa Legitimate 1,000,000 URLs, 
Webpage 
Content 

Ongoing 

SD-WAN 
Traffic 
Dataset 

Custom 
Generated for 
Testing 

Malicious Encrypted 
Traffic 

2,500,000 Encrypted 
Network 
Traffic 

2023 

Synthetic 
Dataset 

Generated via 
Web Scraping 

Mixed (Malicious + 
Benign) 

1,500,000 URLs, 
JavaScript 
Content 

2024 

Table 2. Summary of Datasets Used 

These datasets contain both raw network traffic and webpage content data (e.g., URLs, HTML, and 
JavaScript). The malicious samples include known phishing websites, malware-infected pages, and other 
harmful content flagged by security experts. The benign data comes from widely trusted sites like the Alexa 
Top Sites. 

3.1. Dataset Preprocessing 
Each dataset undergoes preprocessing before being fed into the system. For web content data, unnecessary 
HTML tags, formatting elements, and irrelevant data (such as advertisements) are removed to focus on the 
core content. For network traffic, the packets are parsed to extract relevant features such as flow duration, 
packet sizes, and timing intervals, while maintaining encryption privacy (i.e., no packet decryption). 
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We present a robust and dynamic system for detecting malicious webpages by combining advanced 
Natural Language Processing (NLP), machine learning, and real-time traffic analysis techniques. The proposed 
framework effectively handles the complexities of modern web attacks, such as phishing, malware injection, 
and malicious redirects, by analyzing both the content and network behavior of webpages. The system is 
designed with a hybrid machine learning model and adaptive learning capabilities to ensure real-time 
detection and scalability. 

System Overview 
The proposed system aims to detect malicious webpages by analyzing two primary inputs: 
1. Webpage Content: Extracted from the HTML and JavaScript code of the webpage. Textual and 

structural features are used for analysis. 
2. Network Traffic: Analyzed in real time, including both the metadata and packet-level details. 
The system is designed to handle multiple datasets, including both encrypted and unencrypted traffic, 

allowing it to operate across diverse environments, such as corporate networks, educational institutions, and 
personal systems. 

To provide the system with a robust learning foundation, we utilize a collection of datasets from various 
sources, including: 

1. CICIDS2017: A widely used dataset for malicious traffic, including phishing, malware, and benign 
traffic. 

2. PhishTank: A repository of phishing URLs, which provides raw web content for phishing site 
detection. 

3. Alexa Top Sites: A dataset containing benign websites, used to train the system to recognize 
legitimate pages. 

Each dataset provides unique types of information, including web content (HTML, JavaScript), metadata 
(URLs, descriptions), and network traffic data. This combination ensures the system is well-prepared to detect 
a wide array of threats. 

3.2. Text Vectorization Methods 
In the proposed work, we explore different methods of vectorization of text documents that are crucial for 
the effective analysis and classification of website content. The vectorization process transforms text data into 
numerical format, enabling machine learning algorithms to process and analyze the information. Here, we 
discuss three primary vectorization methods: Count Vectorization, TF-IDF Vectorization, and Hash 
Vectorization. 

1. Count Vectorization: Count Vectorization, also known as the Bag-of-Words model, is a 
straightforward method that converts a collection of text documents into a matrix of token counts. 
In this approach, each unique word in the dataset corresponds to a feature in the resulting feature 
matrix. The value at each position in the matrix indicates the number of times a particular word 
appears in a given document. This method is simple and effective for many text classification tasks; 
however, it ignores the context and order of words, which may lead to the loss of semantic meaning. 

Example: 
Given two documents: 

• Document 1: "I love cats" 
• Document 2: "I love dogs" 

2. The count vectorization will produce the following matrix: 
 

Word Document 1 Document 2 
I 1 1 
love 1 1 
cats 1 0 
dogs 0 1 

 
TF-IDF Vectorization: The Term Frequency-Inverse Document Frequency (TF-IDF) vectorization 

method addresses some of the limitations of Count Vectorization. It not only considers the frequency of words 
in a document (Term Frequency) but also evaluates the importance of each word across the entire dataset 
(Inverse Document Frequency). The resulting values reflect how relevant a word is in a particular document 
relative to its frequency in other documents. This method is particularly useful for identifying distinguishing 
features in text data and helps reduce the impact of common words that may not contribute significantly to 
the understanding of the document's content. 
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Term Frequency (TF) is calculated as: 

𝑇𝐹(𝑡, 𝑑) =  
𝑓𝑡,𝑑

∑ 𝑓𝑘,𝑑𝑘
 

where 𝑓𝑡,𝑑 is the frequency of term t in document d and the denominator is the total number of terms in 
the document. 

Inverse Document Frequency (IDF) is calculated as: 

𝐼𝐷𝐹(𝑡) = log (
𝑁

𝑛𝑡
) 

where N is the total number of documents, and 𝑛𝑡 is the number of documents containing the term t. 
The TF-IDF score is then given by: 

𝑇𝐹𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡) 

Hash Vectorization: Hash Vectorization is a more advanced technique that employs a hashing function 
to convert words into a fixed-size vector representation. Unlike Count Vectorization and TF-IDF, which rely 
on the vocabulary of the dataset, Hash Vectorization uses a hash function to map words directly into the 
feature space. This method can be particularly advantageous when dealing with large datasets or streaming 
data, as it avoids the need to store the complete vocabulary in memory. However, the primary drawback is 
that collisions can occur, meaning that different words may be mapped to the same feature, potentially 
resulting in loss of information. Suppose we hash words to a feature space of size 5. The words "cats" and 
"dogs" may both be hashed to the same index in the vector, resulting in a loss of distinct information. 

3.3.  Preprocessing and Feature Extraction 
To effectively analyze the incoming data, it undergoes preprocessing and feature extraction steps to convert 
raw data into a format suitable for machine learning models. The two main data sources—webpage content 
and network traffic—require different preprocessing techniques. 

Webpage Content Preprocessing 
Webpage content (HTML and JavaScript code) is extracted and cleaned to remove unnecessary elements, 

such as styling tags (<style>), script tags (<script>), and advertisements. We focus on extracting 
meaningful textual content from metadata, body text, and embedded links. 
The extracted content is tokenized, stopwords are removed, and stemming/lemmatization techniques are 
applied to reduce words to their root forms. The processed content is then used for feature extraction. 

Network Traffic Preprocessing 
Network traffic data, including packet captures, is preprocessed by extracting relevant features such as 

flow duration, packet size, time between packets, and the source/destination IP addresses. Encrypted traffic 
is handled using statistical features rather than the content of the packets themselves, ensuring that user 
privacy is maintained. 

3.4. Feature Extraction and Vectorization 
The processed data is transformed into numerical features using various methods: 

• Textual Feature Extraction: Tokenized words are transformed using Term Frequency-Inverse 
Document Frequency (TF-IDF), capturing the importance of each word within the webpage. 

• Network Feature Extraction: For traffic analysis, we extract statistical features, such as the 
average packet size, flow duration, and inter-arrival times. 

The extracted features are vectorized for use in machine learning models. 
Algorithm: ExtractTextContent(Webpage HTML) 
Begin 
Input: Raw HTML and JavaScript code from webpage 
Initialize: Stopwords list, HTML parser 
Step 1: Parse HTML content using BeautifulSoup 
Step 2: Remove HTML tags, script tags, and other non-text elements 
Step 3: Extract textual content and metadata (e.g., title, meta descriptions) 
Step 4: Tokenize extracted text into words 
Step 5: Remove stopwords (common words like "the," "is," etc.) 
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Step 6: Apply stemming or lemmatization to reduce words to their root form 
Step 7: Clean tokens further by removing punctuation and special characters 
Step 8: Return cleaned and tokenized textual content 
End. 
Algorithm 2: Vectorization of Extracted Text 
Input: Tokenized textual content from Algorithm 1 
Output: Vectorized numerical representation of the text for machine learning 
Initialize: TF-IDF Vectorizer, Embedding models (Word2Vec,) 
Step 1: Select vectorization method based on model requirements (TF-IDF for linear models, Word2Vec 

for deep learning) 
Step 2: If TF-IDF selected: 

a. Create vocabulary from all tokenized words 
b. Calculate term frequency (TF) for each word in the document 
c. Compute inverse document frequency (IDF) for each word across all documents 
d. Multiply TF by IDF to create the final vector representation 

Step 3: If Word Embeddings selected: 
a. Load pre-trained embeddings (Word2Vec) 
b. Map each token to its corresponding embedding vector 
c. Aggregate embeddings to form the final text vector 

Step 4: Normalize vectorized data to maintain consistency across documents 
Return: Vectorized text suitable for ML models 
End 

4. Experimental Analysis 
The primary goal of this experiment is to evaluate the effectiveness of Count Vectorizer for extracting and 
analyzing textual content from specific HTML tags—<div>, <meta>, and <p>—and their combined usage 
for webpage classification. These tags were chosen based on their common usage in webpage structure. The 
experiment focuses on identifying whether webpages are malicious or benign, leveraging the content 
extracted from the tags and training various machine learning models. The experiment begins with the 
collection of a dataset comprising 10,000 webpages, equally divided between malicious and benign categories 
to ensure balanced class representation. Each webpage's textual content is extracted from three key HTML 
tags—<div>, <meta>, and <p>—chosen for their prevalence in web structures. The <div> tag typically 
encapsulates main or grouped content, <meta> contains metadata like keywords and descriptions, and <p> 
represents paragraph text. In addition to analyzing each tag separately, a combined approach was applied, 
where the textual content from all three tags was merged for a more comprehensive representation. The 
extracted text was processed using the Count Vectorizer, which converts the words into a numerical feature 
matrix by counting the occurrence of each word in the text, producing sparse matrices for each tag and the 
combined approach. Seven machine learning models—Logistic Regression, Support Vector Machine (SVM), 
Random Forest, Naive Bayes Algorithm, k-Nearest Neighbors (kNN), Decision Tree, and Deep Neural Network 
(DNN)—were trained using the feature vectors derived from each tag's content. The models were trained with 
80% of the data and tested on the remaining 20%, and their performance was evaluated using Accuracy, 
Precision, Recall, and F1-Score. Additionally, the number of features generated by the Count Vectorizer for 
each tag and the combined tags was recorded. This process was repeated for each tag individually and the 
combined tag data to identify the most effective method for malicious webpage classification based on text 
content. 

The experimental results, summarized in the table 1,2,3 &4, reveal key insights into the performance of 
seven machine learning models—Logistic Regression, Support Vector Machine (SVM), Random Forest, Naive 
Bayes Algorithm, k-Nearest Neighbors (kNN), Decision Tree, and Deep Neural Network (DNN)—when applied 
to textual features extracted using the Count Vectorizer from the <div>, <meta>, and <p> tags, as well 
as their combined content. For the <div> tag, Random Forest and SVM exhibited strong performance due 
to their ability to handle structured and dense content, while Naive Bayes Algorithm struggled with the loosely 
structured data. The <meta> tag, which contains concise metadata, favored Naive Bayes Algorithm, which 
excelled in this setting due to the tag's keyword-dense nature, whereas deep models like DNN underperformed 
due to the limited text. For the <p> tag, richer semantic content allowed Random Forest and DNN to perform 
well, leveraging the descriptive text to improve classification accuracy. The combined approach, using text 
from all three tags, resulted in the best overall performance for most models, particularly for SVM and Random 
Forest, as they could capitalize on the expanded feature set. While DNN showed improved results with the 
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combined data, simpler models like kNN faced challenges due to the increased dimensionality. These findings 
demonstrate the importance of selecting the right model and feature extraction method for effective malicious 
webpage classification, aligning with prior research that highlights the significance of feature engineering in 
machine learning. 

Performance of Count Vectorizer with <div> Tag 
The <div> tag is commonly used to group HTML elements and can contain a wide range of textual 

information. The text extracted from the <div> tags is passed through the Count Vectorizer, which generates 
a feature matrix representing word counts. This matrix is then used to train seven machine learning models 
to classify webpages as malicious or benign. Table 3 compares various models based with 10000 features 
using a Count Vectorizer. Deep Neural Networks (DNN) achieve the highest accuracy (0.92), precision (0.91), 
recall (0.90), and F1-score (0.91), making it the best-performing model. Support Vector Machines (SVM) 
follow closely with an accuracy of 0.91 and balanced precision and recall. Logistic Regression, Naive Bayes, 
and Decision Tree models show decent performance, while k-Nearest Neighbors (kNN) performs the lowest 
across all metrics with 0.82 accuracy. 

 
Model Accuracy Precision Recall F1-Score 

Logistic Regression 0.89 0.87 0.85 0.86 
Support Vector Machine (SVM) 0.91 0.89 0.88 0.88 

Random Forest 0.87 0.85 0.83 0.84 
Naive Bayes Algorithm 0.88 0.86 0.84 0.85 

k-Nearest Neighbors (kNN) 0.82 0.81 0.79 0.80 
Decision Tree 0.85 0.83 0.82 0.83 

Deep Neural Network (DNN) 0.92 0.91 0.90 0.91 

Table 3. Performance Metrics with <div> Tag 

Performance of Count Vectorizer with <meta> Tag 
The <meta> tag contains metadata about the webpage, which can include descriptions, keywords, and 

other important textual information used for classification. The content within <meta> tags is extracted, 
vectorized, and then used for training the same machine learning models. Table 4 evaluates models with 
5,000 features using a Count Vectorizer. The Deep Neural Network (DNN) achieves the highest accuracy 
(0.89), precision (0.87), recall (0.86), and F1-score (0.86), outperforming other models. Support Vector 
Machines (SVM) follow closely with an accuracy of 0.88 and solid precision and recall values. Logistic 
Regression and Naive Bayes also show competitive results, with accuracies of 0.86 and 0.85, respectively. 
Random Forest and Decision Tree models have moderate performance, while k-Nearest Neighbors (kNN) 
shows the lowest metrics across the board with an accuracy of 0.79. 

 
Model Accuracy Precision Recall F1-Score 

Logistic Regression 0.86 0.84 0.83 0.83 
Support Vector Machine (SVM) 0.88 0.86 0.84 0.85 

Random Forest 0.84 0.83 0.82 0.82 
Naive Bayes Algorithm 0.85 0.83 0.81 0.82 

k-Nearest Neighbors (kNN) 0.79 0.78 0.77 0.78 
Decision Tree 0.81 0.80 0.79 0.80 

Deep Neural Network (DNN) 0.89 0.87 0.86 0.86 

Table 4. Performance Metrics with <meta> Tag 

Performance of Count Vectorizer with <p> Tag 
The <p> tag is used to define paragraphs in HTML, which often contain the bulk of the webpage’s 

content. We apply the Count Vectorizer to extract text enclosed within <p> tags and transform it into feature 
vectors. Table 5 compares model performance using 15,000 features and a Count Vectorizer. The Deep Neural 
Network (DNN) is the top performer, with the highest accuracy (0.93), precision (0.92), recall (0.91), and F1-
score (0.92). Support Vector Machines (SVM) also excel, with a close accuracy of 0.92 and high precision and 
recall. Logistic Regression achieves a strong accuracy of 0.90, while Random Forest and Naive Bayes offer 
balanced but lower results. Decision Tree and k-Nearest Neighbors (kNN) exhibit the lowest performance, 
with kNN being the least effective, achieving 0.84 accuracy. 



ALI, RAMADEVI, AHMED, RAMACHANDRAN AND PARVATHI PROACTIVE DETECTION OF MALICIOUS WEBPAGES… 
 

 

JIOS, VOL. 48, NO. 2 (2024), PP. 295-309 305 

Model Accuracy Precision Recall F1-Score 
Logistic Regression 0.90 0.89 0.87 0.88 

Support Vector Machine (SVM) 0.92 0.91 0.90 0.91 
Random Forest 0.88 0.86 0.85 0.86 

Naive Bayes Algorithm 0.87 0.85 0.84 0.84 
k-Nearest Neighbors (kNN) 0.84 0.82 0.80 0.81 

Decision Tree 0.86 0.85 0.84 0.84 
Deep Neural Network (DNN) 0.93 0.92 0.91 0.92 

Table 5. Performance Metrics with <p> Tag 

Performance of Count Vectorizer with Combined Tags (<div>, <meta>, <p>) 
To enhance feature representation, we combine the textual content from the <div>, <meta>, and 

<p> tags. This combined approach as in table 6 shows model performance with 25,000 features using a 
Count Vectorizer. The Deep Neural Network (DNN) leads with the highest accuracy (0.95), precision (0.94), 
recall (0.93), and F1-score (0.94). Support Vector Machines (SVM) closely follow with an accuracy of 0.94 
and similarly high metrics. Logistic Regression also performs well, with 0.92 accuracy, while Random Forest, 
Naive Bayes, and Decision Tree show moderate performance, with accuracies ranging from 0.89 to 0.91. k-
Nearest Neighbors (kNN) records the lowest performance, achieving 0.86 accuracy and lower values across 
other metrics. 

 
Model Accuracy Precision Recall F1-Score 

Logistic Regression 0.92 0.90 0.89 0.89 
Support Vector Machine (SVM) 0.94 0.93 0.92 0.92 

Random Forest 0.91 0.89 0.88 0.88 
Naive Bayes Algorithm 0.89 0.88 0.86 0.87 

k-Nearest Neighbors (kNN) 0.86 0.85 0.83 0.84 
Decision Tree 0.89 0.88 0.87 0.87 

Deep Neural Network (DNN) 0.95 0.94 0.93 0.94 

Table 6. Performance Metrics with Combined Tags 

From the results across the four tables, we can observe that the Count Vectorizer performs best when the 
content from multiple tags is combined. Specifically, the performance metrics show improved results when 
the features from <div>, <meta>, and <p> tags are used together, as they provide more comprehensive 
information. 

• Highest Accuracy: The Deep Neural Network (DNN) model achieved the highest accuracy (95%) 
when trained on the combined tag features. 

• Precision and Recall: SVM and DNN models consistently performed well across all tag 
configurations, particularly in terms of precision and recall, which are crucial for detecting 
malicious webpages. 

• Number of Features: Combining the tags resulted in a larger feature set, leading to improved 
classification performance. 

 
Model Accuracy Precision Recall F1-Score Number of Features 

Logistic Regression 0.90 0.88 0.88 0.88 15,000 
Support Vector Machine 0.91 0.91 0.90 0.90 15,000 

Random Forest 0.9 0.92 0.91 0.91 15,000 
Naive Bayes Algorithm 0.87 0.86 0.86 0.86 15,000 

k-Nearest Neighbors 0.83 0.82 0.82 0.82 15,000 
Decision Tree 0.89 0.87 0.87 0.87 15,000 

Deep Neural Network 0.93 0.92 0.92 0.92 15,000 

Table 7. Summary of performance using count vectorizer 
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Summary of the combined tags (<div>, <meta>, <p>) performance using the Count Vectorizer across 
seven machine learning models as in table 5. The table includes metrics for Accuracy, Precision, Recall, F1-
Score, and the number of features generated. 

The comparison of the proposed Count Vectorizer applied to combined tags (<div>, <meta>, <p>) 
with three vectorizers from existing studies: Term Frequency-Inverse Document Frequency (TF-IDF), Hashing 
Vectorizer, and Word2Vec. Table 6 summarizes the performance of these vectorizers across similar machine 
learning models, using Accuracy, Precision, Recall, and F1-Score as metrics. Figure 1,2, & 3 shows the result 
of vectorizers. The result shows that combined textual contents of three different tags with random forest (RF) 
gives better result of 93.46% accuracy with 15000 features.  

 
Vectorizer Model Accuracy Precision Recall F1-

Score 
Proposed Count Vectorizer 

(Combined Tags) 
Deep Neural 

Network 
0.93 0.92 0.92 0.92 

 
Random Forest 0.93 0.92 0.91 0.92  

SVM 0.91 0.91 0.90 0.90 
TF-IDF (Zhang et al., 2023) Deep Neural 

Network 
0.91 0.90 0.90 0.90 

 
Random Forest 0.89 0.89 0.88 0.88  

SVM 0.89 0.88 0.87 0.88 
Hashing Vectorizer (Wang et al., 

2021) 
Deep Neural 

Network 
0.90 0.90 0.89 0.89 

 
Random Forest 0.89 0.88 0.88 0.88  

SVM 0.88 0.87 0.87 0.87 
Word2Vec (Shahraki et al., 2022) Deep Neural 

Network 
0.92 0.91 0.91 0.91 

 
Random Forest 0.90 0.90 0.89 0.89  

SVM 0.90 0.89 0.88 0.89 

Table 8. Comparison of the proposed Count Vectorizer 

 

Figure 1. ROC-AUC curve for Count Vectorizer 
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Figure 2. ROC-AUC curve for TF-IDF Vectorizer 

 

Figure 3. ROC-AUC curve for Hashing Vectorizer 

5. Discussion 
The proposed Count Vectorizer, when applied to a combination of webpage tags such as <div>, <meta>, 
and <p>, outperformed other vectorizers in most instances, particularly when used with Deep Neural 
Network (DNN) and Random Forest models. It achieved the highest accuracy at 93.1% and demonstrated 
superior performance across metrics such as precision, recall, and F1-score. This success can be attributed to 
its ability to capture a broader and more comprehensive set of features from multiple sections of webpage 
content, making it especially effective for classifying malicious webpages. 

On the other hand, TF-IDF, while performing well, lagged behind the proposed vectorizer, particularly 
when used with DNN, where it reached an accuracy of 91.0%. Although TF-IDF excels in weighting words 
according to their importance, it does not combine structured metadata with unstructured content as 
effectively as the proposed vectorizer, making it less robust for this specific task. 

The Hashing Vectorizer, known for its memory efficiency, displayed a lower performance compared to 
the proposed vectorizer, with a 90.3% accuracy when applied to DNN. Although its fixed-length feature space, 
which eliminates the need for storing vocabulary, is advantageous for handling high-dimensional datasets, it 
faces challenges with interpretability and sparsity, which are particularly limiting in malicious webpage 
detection. 
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Word2Vec, with a 92.0% accuracy, performed competitively and came close to the proposed vectorizer. 
Its ability to capture semantic relationships between words yielded strong results, especially with DNN 
models. However, Word2Vec's focus on word embeddings limits its capacity to integrate multi-view features 
from both metadata and webpage content, which the proposed Count Vectorizer effectively accomplishes. 

6. CONCLUSION 
In conclusion, this work has introduced a comprehensive approach to classifying malicious web content 
through the integration of Natural Language Processing (NLP) techniques and machine learning models. By 
leveraging both the structural and textual features extracted from various HTML tags, including <div>, 
<meta>, and <para>, we demonstrated that combining multiple content sources leads to enhanced 
accuracy, precision, recall, and F1-score in malicious webpage detection. The Count Vectorizer, applied 
individually to different tags and in combination, proved to be a robust feature extraction technique across 
several machine learning models. The proposed system was compared with existing vectorization methods 
such as TF-IDF, Hashing Vectorizer, and Word2Vec, showcasing its superior performance across a range of 
evaluation metrics. Through extensive experimentation, the proposed vectorizer model consistently 
outperformed existing methods, particularly when multiple tags were combined, leading to a more 
comprehensive feature set for classification. The introduction of the Count Vectorizer in this context allowed 
for more granular representation of webpage content, thus improving the ability of models to identify 
malicious behaviors. In addition, the inclusion of performance metrics such as accuracy, precision, recall, and 
F1-score across various machine learning algorithms illustrated the strength of the proposed system in real-
time malicious content detection. The experimental results provided a clear comparative analysis, affirming 
the value of combining structural and textual features in malicious webpage classification tasks. 
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