

JIOS, VOL. 48, NO. 2 (2024), PP. 295-309 295

Journal of Information and Organizational Sciences
Volume 48, Number 2 (2024)
Journal homepage: jios.foi.hr JIOS

DOI: 10.31341/jios.48.2.4 UDC 004.056:004.85:343.3/.7
 Open Access Original Scientific Paper

Proactive Detection of Malicious Webpages Using Hybrid Natural
Language Processing and Ensemble Learning Techniques

Althaf Ali A1*, Rama Devi K2, Syed Siraj Ahmed N3, Ramchandran P4 and Parvathi S5

1Department of Computer Application, Madanapalle Institute of Technology & Science, Madanapalle, India
2Department of Information Technology, Panimalar Engineering College, Chennai, India

3School of Computer Science Engineering and Information Science, Presidency University, Bangalore, India
4Department of computer Application, Parul institute of engineering and technology, Parul University, P.O.limda, Tal.waghodia, Dist.Vadodra,

India-391760
5Department of Computer Science and Engineering, Erode Sengunthar Engineering College, Erode, India

*Correspondence: althafalia@mits.ac.in

P A P E R I N F O

A B S T R A C T

Paper history:
Received 7 December 2023
Accepted 18 October 2024
Published 18 December 2024

Citation:
Ali, A. A., Rama Devi, K., Ahmed,
N. S. S., Ramchandran, P., &
Parvathi, S. (2024). Proactive
Detection of Malicious Webpages
Using Hybrid Natural Language
Processing and Ensemble Learning
Techniques. In Journal of
Information and Organizational
Sciences, vol. 48, no. 2, pp. 295-
309

Copyright:
© 2024 The Authors. This work is
licensed under a Creative
Commons Attribution BY-NC-ND
4.0. For more information, see
https://creativecommons.org/licen
ses/by-nc-nd/4.0/

 The proliferation of malicious webpages presents a growing threat to online security,
necessitating advanced detection methods to mitigate risks. This paper proposes a novel
approach that integrates Natural Language Processing (NLP) techniques with an
ensemble of machine learning models for the proactive detection of malicious web
content. By leveraging semantic analysis, lexical patterns, and metadata extraction, the
proposed framework enhances the identification of suspicious patterns in web page
content. The ensemble model combines decision trees, random forests, and gradient
boosting methods, optimizing classification accuracy and reducing false positives. A
comprehensive evaluation using a large dataset of web pages, including both benign
and malicious examples, demonstrates the superiority of the proposed method over
traditional single-model approaches. With accuracy rates exceeding 98%, this
framework achieves a robust, scalable solution for real-time web content analysis,
providing a critical tool for cybersecurity professionals to detect and block malicious
webpages before they can cause harm. Future directions include the integration of deep
learning architectures and adaptive filtering techniques to further refine detection
capabilities.

Keywords: Count, Term frequency and Inverse document frequency, Machine learning
model, Phishing, Malicious webpages

1. Introduction
The rapid expansion of the internet has revolutionized communication, business, and information sharing,
but it has also introduced significant security threats. Malicious webpages are among the most pervasive forms
of cyber threats, used by attackers to spread malware, launch phishing attacks, and steal sensitive information.
These pages often masquerade as legitimate sites, deceiving users into disclosing personal data or infecting
their systems with malicious software. As web usage continues to increase globally, the detection and
prevention of such threats have become critical components of cybersecurity strategies. Traditional web
filtering systems based on URL blacklists, signature matching, or rule-based methods are no longer sufficient
due to the dynamic and evolving nature of malicious webpages. Attackers continuously modify their methods,
including changing URLs, obfuscating content, and employing sophisticated evasion techniques that can
bypass conventional detection systems. Consequently, there is a pressing need for advanced, intelligent

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

296 JIOS, VOL. 48, NO. 2 (2024), PP. 295-309

systems that can effectively analyze and classify web content in real-time, ensuring that malicious webpages
are identified before they cause harm [1-4]. Recent advancements in artificial intelligence (AI) and machine
learning (ML) have opened new avenues for detecting and preventing these threats. Natural Language
Processing (NLP), a subfield of AI, offers promising techniques for analyzing the textual content of webpages,
identifying semantic patterns, and detecting anomalies that may indicate malicious intent. NLP allows the
system to analyze not only the structure and syntax of a webpage but also its context, meaning, and underlying
intent. Combining NLP with machine learning models enables the development of systems that can adapt to
new and evolving threats, going beyond the limitations of static rules or predefined signatures. This approach
leverages a more holistic analysis of web content, considering multiple dimensions such as lexical features,
syntactic structure, sentiment analysis, and even the metadata associated with the page, such as domain age
and source credibility [5-7].

Machine learning models, particularly ensemble methods, have demonstrated their effectiveness in
various classification tasks, including cybersecurity applications. These models, which combine the strengths
of multiple classifiers, have been shown to improve accuracy and reduce false positives by balancing the
weaknesses of individual algorithms. In the context of web content analysis, ensemble learning can enhance
detection by integrating various perspectives on the features extracted from a webpage [8-12]. For instance,
decision trees can capture hierarchical relationships between features, random forests can provide robustness
through random feature selection, and gradient boosting can improve model accuracy by correcting the errors
of weaker models. This fusion of machine learning techniques with NLP-driven content analysis offers a
comprehensive solution to the challenges posed by malicious webpages.

However, despite these advancements, existing methods often struggle with a few key limitations. First,
many models rely heavily on predefined feature sets that may not fully capture the complexity of malicious
content. Attackers often use obfuscation techniques, such as encoding malicious scripts or dynamically
generating webpage content, making it difficult for static feature-based models to detect these threats.
Additionally, many models focus primarily on the URL or metadata of a webpage, neglecting the rich
information available in the webpage's content [13-15]. While URL-based detection methods can be effective
in certain scenarios, they are often easily circumvented by attackers who can rapidly generate new URLs or
use URL shortening services to hide their intent. As a result, there is a growing consensus that content-based
detection methods, which analyze the actual substance of a webpage, are critical to improving the detection
of malicious webpages. Another limitation of current approaches is their focus on specific types of malicious
webpages, such as phishing sites or malware distribution pages, without considering the broader landscape
of threats. A more generalized approach that can classify various types of malicious webpages is essential to
create a more resilient cybersecurity framework. Furthermore, many existing systems are not designed to
operate in real-time or at scale, limiting their effectiveness in large, dynamic environments such as corporate
networks or global internet infrastructure [16-17]. Given the growing number of webpages created each day
and the increasing sophistication of cyber-attacks, it is essential to develop systems that can operate at scale,
processing large volumes of web content in real-time to provide timely protection against emerging threats.
In this paper, we propose a novel framework that integrates NLP methods with an ensemble of machine
learning models for the effective analysis of web content to classify malicious webpages. Our approach
addresses the limitations of existing models by employing a hybrid methodology that combines lexical,
syntactic, and semantic analysis with advanced machine learning techniques. This framework leverages NLP
to extract meaningful features from the textual content of webpages, including keyword frequency, sentiment
analysis, and semantic relationships, which are then fed into a machine learning ensemble for classification.
The ensemble model consists of multiple classifiers, including decision trees, random forests, and gradient
boosting, each of which brings a unique perspective to the classification task. By combining the outputs of
these classifiers, our system achieves high accuracy and robustness in detecting a wide variety of malicious
webpages, including phishing sites, malware distribution pages, and fraudulent websites.

One of the key innovations of our approach is the use of a dynamic feature extraction process, which
allows the system to adapt to new types of threats by continuously updating its feature set based on the
evolving characteristics of malicious webpages. This dynamic process ensures that the system remains
effective even as attackers modify their methods to evade detection. In addition, our framework is designed
to operate at scale, capable of processing large volumes of web content in real-time. This scalability is achieved
through the use of parallel processing techniques and distributed computing, which enable the system to
analyze multiple webpages simultaneously without compromising performance.

To evaluate the effectiveness of our proposed framework, we conducted extensive experiments using a
large dataset of web pages, including both benign and malicious examples. The dataset was collected from
multiple sources, including publicly available web repositories and specialized datasets containing known
malicious webpages. Our experiments focused on evaluating the classification accuracy, false positive rate,
and scalability of the system. The results demonstrate that our approach significantly outperforms traditional

ALI, RAMADEVI, AHMED, RAMACHANDRAN AND PARVATHI PROACTIVE DETECTION OF MALICIOUS WEBPAGES…

JIOS, VOL. 48, NO. 2 (2024), PP. 295-309 297

single-model methods, achieving an overall classification accuracy of over 98%. In addition, the system was
able to maintain low false positive rates, ensuring that legitimate webpages are not incorrectly flagged as
malicious. These results highlight the potential of our framework to provide a robust, scalable solution for
the detection of malicious webpages in real-world environments.

Our contributions in this paper are threefold: First, we introduce a novel framework that integrates NLP
techniques with an ensemble of machine learning models to improve the detection of malicious webpages.
Second, we develop a dynamic feature extraction process that allows the system to adapt to evolving threats,
ensuring long-term effectiveness. Third, we demonstrate the scalability of our approach, showing that it can
operate in real-time and at scale, making it suitable for large networks and internet infrastructure. The
proposed framework not only enhances the detection accuracy of malicious webpages but also provides a
flexible, adaptive solution that can keep pace with the rapidly changing landscape of cyber threats. This
research represents a significant step forward in the development of intelligent systems for web security, with
potential applications in both enterprise and consumer settings.

2. RELATED WORKS
The detection of malicious web traffic has become a crucial area of study due to the increasing sophistication
of cyber-attacks, especially those that target sensitive information and critical infrastructure. Traditional
security measures, such as static rules or blacklist-based systems, are no longer sufficient to combat these
evolving threats. Modern approaches rely on advanced machine learning (ML) and natural language
processing (NLP) techniques to enhance real-time malicious traffic detection by analyzing various features,
including lexical content, metadata, and network behaviors. This section reviews key literature relevant to
online machine learning techniques, deep learning models, and their applications in malicious traffic
detection, particularly focusing on innovations in web content analysis.

A wide range of studies has explored the use of online machine learning for network traffic analysis.
Shahraki et al. (2022) conducted a comparative analysis of online machine learning techniques for analyzing
network traffic streams, highlighting the growing need for real-time, adaptive models in cybersecurity. Their
work emphasized the limitations of batch learning models, which often struggle to cope with the dynamic
nature of internet traffic. The study explored various online learning algorithms that allow models to update
incrementally as new data becomes available, ensuring the system remains up-to-date with the latest threats.
The research concluded that online machine learning offers significant advantages in scalability and
responsiveness, which are essential for mitigating real-time threats such as malicious webpages.

Further advancing the field, Zhang et al. (2023) proposed a real-time malicious traffic detection system
utilizing the online isolation forest algorithm over software-defined wide-area networks (SD-WAN). This
method demonstrated the efficiency of real-time anomaly detection in dynamic network environments, where
traditional detection mechanisms often fail to scale effectively. By using the isolation forest, the model was
able to detect anomalies in encrypted traffic streams, enhancing its ability to identify malicious activities.
This approach is particularly relevant to web-based attacks, where malicious behavior can be hidden within
encrypted traffic to evade traditional inspection methods.

Graph-based approaches have also been instrumental in improving detection techniques, as highlighted
by Hong et al. (2023), who proposed a hybrid analysis framework combining graph-based methods with
multi-view feature extraction for encrypted malicious traffic detection. By treating network traffic as a graph
of interconnected nodes, this approach allowed for the detection of more complex and camouflaged malicious
behaviors. Their framework focused on encrypted traffic, which is increasingly used to mask malicious
activity, and applied graph-based analysis to detect traffic anomalies by examining the relationships between
different traffic flows. This work complements traditional machine learning methods by adding a layer of
complexity that can improve the identification of deeply obfuscated threats.

Wang and Thing (2023) made significant contributions by investigating the role of feature mining in
encrypted malicious traffic detection using deep learning and traditional machine learning algorithms. Their
work demonstrated that deep learning models, particularly convolutional neural networks (CNNs), are highly
effective in capturing complex patterns in encrypted traffic that traditional models might miss. They explored
how different features, such as packet size, timing, and frequency, can be extracted from encrypted streams
and used to train models that identify malicious behaviors with high accuracy. Their research also pointed
out that combining deep learning with traditional machine learning algorithms, such as decision trees or
support vector machines (SVMs), can further enhance the robustness of detection systems.

Another innovative approach was proposed by Fang et al. (2021), who developed a communication-
channel-based method for detecting deeply camouflaged malicious traffic. Their model focused on analyzing
the communication patterns between nodes in a network to detect anomalies that might indicate malicious

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

298 JIOS, VOL. 48, NO. 2 (2024), PP. 295-309

activity. This method was particularly effective in identifying threats that rely on stealth and obfuscation, as
it focused on communication behaviors rather than the content of the traffic itself. By observing how different
nodes interact and detecting irregularities in these patterns, the model was able to flag suspicious behavior
even when the content of the traffic was encrypted or disguised.

Several studies have explored machine learning’s role in detecting encrypted malicious traffic in more
detail. Wang et al. (2022) conducted a comprehensive study of various machine learning approaches, datasets,
and techniques for encrypted malicious traffic detection. Their comparative study examined the efficacy of
several algorithms, including deep learning models like recurrent neural networks (RNNs) and long short-
term memory (LSTM) networks, which are capable of processing sequential data like network traffic streams.
Their findings showed that, while deep learning models are highly effective in detecting encrypted malicious
traffic, they require extensive computational resources and are often difficult to implement in real-time
scenarios. Nevertheless, their study highlighted the potential of these models to significantly improve
detection accuracy when applied in well-configured environments.

Aljabri et al. (2022) explored the use of lexical, network-based, and content-based features for detecting
malicious URLs using machine learning and deep learning models. Their assessment revealed that combining
multiple feature types leads to higher detection accuracy compared to using any single type of feature. Lexical
features, such as the structure of a URL, were particularly useful in identifying phishing sites, while content-
based features, which analyze the actual text on a webpage, helped detect malware distribution sites. This
comprehensive feature-based approach aligns with the hybrid techniques used in modern NLP-enhanced
models for web content analysis, further supporting the need for multi-dimensional feature extraction in the
fight against malicious webpages.

Advanced methods for malicious content detection have also been developed using deep learning
techniques like the spider bird swarm algorithm, as shown by Alex and Rajkumar (2021). Their study
employed deep belief networks to detect malicious JavaScript, which is often embedded within webpages to
execute harmful actions. By using an evolutionary algorithm to optimize feature selection and model training,
their approach demonstrated enhanced detection of web-based threats, particularly those utilizing obfuscated
or polymorphic JavaScript code. This method provided a flexible solution to a common problem in malicious
webpage detection: the dynamic and evolving nature of web content.

Shahrivar et al. (2020) contributed to the detection of phishing attacks using machine learning
techniques. Their research applied various ML algorithms, including random forests and decision trees, to
identify patterns commonly associated with phishing URLs. By focusing on features like domain name
characteristics, URL length, and keyword presence, their model was able to effectively differentiate between
legitimate and malicious webpages. The use of ensemble methods, which combine multiple algorithms, was
particularly successful in reducing false positives, a persistent issue in phishing detection systems.

Recent developments in natural language processing have also been applied to malicious webpage
detection, as demonstrated by Haynes et al. (2021), who developed a lightweight phishing detection system
using NLP transformers for mobile devices. Their work focused on analyzing the textual content of phishing
emails and webpages, using transformer models to extract semantic meaning and detect fraudulent intent.
This approach provided a low-resource solution that could be deployed on mobile devices, making it
accessible for broader use. The use of transformers in NLP has proven to be highly effective in understanding
complex language patterns, particularly in distinguishing between benign and malicious content.

Table 1 provides a comparative analysis of various machine learning (ML) and deep learning (DL)
techniques for detecting malicious traffic and phishing threats. Key findings highlight the scalability and
adaptability of online learning algorithms, effectiveness in encrypted traffic detection, and the benefits of
hybrid models and transformers in enhancing detection accuracy, especially for complex behaviors.

Finally, Lin et al. (2022) conducted an extensive survey on the use of transformer models in AI and
machine learning applications. Transformers have become a key technology in NLP due to their ability to
process large amounts of text efficiently, making them ideal for tasks like malicious content detection, where
semantic analysis plays a crucial role. The survey highlighted the growing importance of transformers in web
security, particularly in detecting phishing attempts, malware distribution, and other forms of cyber threats
hidden in web content.

Authors Title Focus Area Methods/Techniques Findings
Shahraki
et al.
(2022)

A comparative study
on online machine
learning techniques
for network traffic
streams analysis

Online
machine
learning for
network traffic
analysis

Comparative analysis
of online ML
techniques

Online learning
algorithms offer better
scalability and real-
time adaptability for

ALI, RAMADEVI, AHMED, RAMACHANDRAN AND PARVATHI PROACTIVE DETECTION OF MALICIOUS WEBPAGES…

JIOS, VOL. 48, NO. 2 (2024), PP. 295-309 299

dynamic traffic
streams.

Zhang et
al. (2023)

Real-time malicious
traffic detection
with online isolation
forest over SD-WAN

Real-time
malicious
traffic
detection using
online isolation
forest

Isolation Forest for
encrypted traffic
detection

Demonstrated effective
anomaly detection in
real-time SD-WAN
environments,
improving scalability
in encrypted traffic
streams.

Hong et
al. (2023)

Graph based
encrypted malicious
traffic detection
with hybrid analysis
of multi-view
features

Malicious
traffic
detection using
graph analysis

Graph-based hybrid
analysis of multi-view
features

Effective in detecting
complex, camouflaged
malicious behaviors
within encrypted
traffic using graph-
based models.

Wang &
Thing
(2023)

Feature mining for
encrypted malicious
traffic detection
with deep learning
and other ML
algorithms

Feature mining
and detection
in encrypted
traffic

Feature extraction
using deep learning
and traditional ML
algorithms

Deep learning,
combined with
traditional ML,
enhances detection
capabilities in
encrypted malicious
traffic streams.

Fang et
al. (2021)

A communication-
channel-based
method for detecting
deeply camouflaged
malicious traffic

Detecting
camouflaged
malicious
traffic

Communication-
channel-based traffic
anomaly detection

Focus on analyzing
communication
patterns to detect
deeply obfuscated
malicious traffic.

Wang et
al. (2022)

Machine learning for
encrypted malicious
traffic detection:
Approaches,
datasets, and
comparative study

ML techniques
for encrypted
malicious
traffic
detection

Comparative analysis
of deep learning
models (RNNs,
LSTMs)

Deep learning models
perform well but
require substantial
resources for real-time
encrypted traffic
detection.

Aljabri et
al. (2022)

An assessment of
lexical, network, and
content-based
features for
detecting malicious
URLs using ML and
DL models

Detecting
malicious URLs
using a feature-
based approach

Lexical, network, and
content-based features
analyzed with ML and
DL

Multi-dimensional
feature extraction leads
to higher detection
accuracy compared to
single-type feature
approaches.

Alex &
Rajkumar
(2021)

Spider bird swarm
algorithm with deep
belief network for
malicious JavaScript
detection

Detection of
malicious
JavaScript

Deep belief network
and spider bird swarm
algorithm

Demonstrated
enhanced detection of
obfuscated JavaScript
through evolutionary
algorithm
optimization.

Shahrivar
et al.
(2020)

Phishing detection
using machine
learning techniques

Phishing URL
detection

Random forests,
decision trees

Ensemble methods
improve accuracy in
detecting phishing
URLs while reducing
false positives.

Haynes et
al. (2021)

Lightweight URL-
based phishing
detection using NLP
transformers for
mobile devices

Phishing
detection using
NLP

Transformer-based
NLP analysis for
mobile phishing
detection

Lightweight NLP
transformer models
effectively detect
phishing on mobile
devices, offering a low-
resource, high-
accuracy solution.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

300 JIOS, VOL. 48, NO. 2 (2024), PP. 295-309

Lin et al.
(2022)

A survey of
transformers

Transformers
in AI and ML
applications

Survey of
transformer-based
architectures

Transformers are
highly effective for
NLP tasks, including
detecting malicious
web content via
semantic analysis and
phishing detection.

Table 1. Summary of Recent

3. PROPOSED SYSTEM
The detection of malicious webpages using machine learning techniques requires not only an effective
algorithmic framework but also a robust dataset for training and validation. In this enhanced version of the
proposed system, we incorporate additional components such as dataset details, vectorization methods, and
two algorithms: one for textual content extraction and another for vectorization. These additions are intended
to improve the system’s ability to handle various types of malicious activities on webpages and provide
insights into its underlying processes. To train and evaluate the proposed system, we utilize multiple datasets
consisting of both malicious and benign web traffic and webpage content [17-20]. The datasets are carefully
curated to include a wide variety of attack types (e.g., phishing, malware distribution, drive-by downloads)
and normal web activities to ensure comprehensive coverage and robustness. The datasets used include both
publicly available and synthetically generated data. Table 2 shows the summary of dataset.

Dataset Name Source Types of

Traffic/Webpages
No. of
Instances

Data Types Year
Released

CICIDS2017 Canadian
Institute for
Cybersecurity

Mixed (Malware,
Phishing, etc.)

3,000,000 Traffic,
Metadata,
Content

2017

PhishTank Open-Source
(PhishTank)

Phishing 500,000 URLs,
Webpage
Content

Ongoing

Alexa Top
Sites

Amazon Alexa Legitimate 1,000,000 URLs,
Webpage
Content

Ongoing

SD-WAN
Traffic
Dataset

Custom
Generated for
Testing

Malicious Encrypted
Traffic

2,500,000 Encrypted
Network
Traffic

2023

Synthetic
Dataset

Generated via
Web Scraping

Mixed (Malicious +
Benign)

1,500,000 URLs,
JavaScript
Content

2024

Table 2. Summary of Datasets Used

These datasets contain both raw network traffic and webpage content data (e.g., URLs, HTML, and
JavaScript). The malicious samples include known phishing websites, malware-infected pages, and other
harmful content flagged by security experts. The benign data comes from widely trusted sites like the Alexa
Top Sites.

3.1. Dataset Preprocessing
Each dataset undergoes preprocessing before being fed into the system. For web content data, unnecessary
HTML tags, formatting elements, and irrelevant data (such as advertisements) are removed to focus on the
core content. For network traffic, the packets are parsed to extract relevant features such as flow duration,
packet sizes, and timing intervals, while maintaining encryption privacy (i.e., no packet decryption).

ALI, RAMADEVI, AHMED, RAMACHANDRAN AND PARVATHI PROACTIVE DETECTION OF MALICIOUS WEBPAGES…

JIOS, VOL. 48, NO. 2 (2024), PP. 295-309 301

We present a robust and dynamic system for detecting malicious webpages by combining advanced
Natural Language Processing (NLP), machine learning, and real-time traffic analysis techniques. The proposed
framework effectively handles the complexities of modern web attacks, such as phishing, malware injection,
and malicious redirects, by analyzing both the content and network behavior of webpages. The system is
designed with a hybrid machine learning model and adaptive learning capabilities to ensure real-time
detection and scalability.

System Overview
The proposed system aims to detect malicious webpages by analyzing two primary inputs:
1. Webpage Content: Extracted from the HTML and JavaScript code of the webpage. Textual and

structural features are used for analysis.
2. Network Traffic: Analyzed in real time, including both the metadata and packet-level details.
The system is designed to handle multiple datasets, including both encrypted and unencrypted traffic,

allowing it to operate across diverse environments, such as corporate networks, educational institutions, and
personal systems.

To provide the system with a robust learning foundation, we utilize a collection of datasets from various
sources, including:

1. CICIDS2017: A widely used dataset for malicious traffic, including phishing, malware, and benign
traffic.

2. PhishTank: A repository of phishing URLs, which provides raw web content for phishing site
detection.

3. Alexa Top Sites: A dataset containing benign websites, used to train the system to recognize
legitimate pages.

Each dataset provides unique types of information, including web content (HTML, JavaScript), metadata
(URLs, descriptions), and network traffic data. This combination ensures the system is well-prepared to detect
a wide array of threats.

3.2. Text Vectorization Methods
In the proposed work, we explore different methods of vectorization of text documents that are crucial for
the effective analysis and classification of website content. The vectorization process transforms text data into
numerical format, enabling machine learning algorithms to process and analyze the information. Here, we
discuss three primary vectorization methods: Count Vectorization, TF-IDF Vectorization, and Hash
Vectorization.

1. Count Vectorization: Count Vectorization, also known as the Bag-of-Words model, is a
straightforward method that converts a collection of text documents into a matrix of token counts.
In this approach, each unique word in the dataset corresponds to a feature in the resulting feature
matrix. The value at each position in the matrix indicates the number of times a particular word
appears in a given document. This method is simple and effective for many text classification tasks;
however, it ignores the context and order of words, which may lead to the loss of semantic meaning.

Example:
Given two documents:

• Document 1: "I love cats"
• Document 2: "I love dogs"

2. The count vectorization will produce the following matrix:

Word Document 1 Document 2
I 1 1
love 1 1
cats 1 0
dogs 0 1

TF-IDF Vectorization: The Term Frequency-Inverse Document Frequency (TF-IDF) vectorization

method addresses some of the limitations of Count Vectorization. It not only considers the frequency of words
in a document (Term Frequency) but also evaluates the importance of each word across the entire dataset
(Inverse Document Frequency). The resulting values reflect how relevant a word is in a particular document
relative to its frequency in other documents. This method is particularly useful for identifying distinguishing
features in text data and helps reduce the impact of common words that may not contribute significantly to
the understanding of the document's content.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

302 JIOS, VOL. 48, NO. 2 (2024), PP. 295-309

Term Frequency (TF) is calculated as:

𝑇𝐹(𝑡, 𝑑) =
𝑓𝑡,𝑑

∑ 𝑓𝑘,𝑑𝑘

where 𝑓𝑡,𝑑 is the frequency of term t in document d and the denominator is the total number of terms in
the document.

Inverse Document Frequency (IDF) is calculated as:

𝐼𝐷𝐹(𝑡) = log (
𝑁

𝑛𝑡
)

where N is the total number of documents, and 𝑛𝑡 is the number of documents containing the term t.
The TF-IDF score is then given by:

𝑇𝐹𝐼𝐷𝐹(𝑡, 𝑑) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡)

Hash Vectorization: Hash Vectorization is a more advanced technique that employs a hashing function
to convert words into a fixed-size vector representation. Unlike Count Vectorization and TF-IDF, which rely
on the vocabulary of the dataset, Hash Vectorization uses a hash function to map words directly into the
feature space. This method can be particularly advantageous when dealing with large datasets or streaming
data, as it avoids the need to store the complete vocabulary in memory. However, the primary drawback is
that collisions can occur, meaning that different words may be mapped to the same feature, potentially
resulting in loss of information. Suppose we hash words to a feature space of size 5. The words "cats" and
"dogs" may both be hashed to the same index in the vector, resulting in a loss of distinct information.

3.3. Preprocessing and Feature Extraction
To effectively analyze the incoming data, it undergoes preprocessing and feature extraction steps to convert
raw data into a format suitable for machine learning models. The two main data sources—webpage content
and network traffic—require different preprocessing techniques.

Webpage Content Preprocessing
Webpage content (HTML and JavaScript code) is extracted and cleaned to remove unnecessary elements,

such as styling tags (<style>), script tags (<script>), and advertisements. We focus on extracting
meaningful textual content from metadata, body text, and embedded links.
The extracted content is tokenized, stopwords are removed, and stemming/lemmatization techniques are
applied to reduce words to their root forms. The processed content is then used for feature extraction.

Network Traffic Preprocessing
Network traffic data, including packet captures, is preprocessed by extracting relevant features such as

flow duration, packet size, time between packets, and the source/destination IP addresses. Encrypted traffic
is handled using statistical features rather than the content of the packets themselves, ensuring that user
privacy is maintained.

3.4. Feature Extraction and Vectorization
The processed data is transformed into numerical features using various methods:

• Textual Feature Extraction: Tokenized words are transformed using Term Frequency-Inverse
Document Frequency (TF-IDF), capturing the importance of each word within the webpage.

• Network Feature Extraction: For traffic analysis, we extract statistical features, such as the
average packet size, flow duration, and inter-arrival times.

The extracted features are vectorized for use in machine learning models.
Algorithm: ExtractTextContent(Webpage HTML)
Begin
Input: Raw HTML and JavaScript code from webpage
Initialize: Stopwords list, HTML parser
Step 1: Parse HTML content using BeautifulSoup
Step 2: Remove HTML tags, script tags, and other non-text elements
Step 3: Extract textual content and metadata (e.g., title, meta descriptions)
Step 4: Tokenize extracted text into words
Step 5: Remove stopwords (common words like "the," "is," etc.)

ALI, RAMADEVI, AHMED, RAMACHANDRAN AND PARVATHI PROACTIVE DETECTION OF MALICIOUS WEBPAGES…

JIOS, VOL. 48, NO. 2 (2024), PP. 295-309 303

Step 6: Apply stemming or lemmatization to reduce words to their root form
Step 7: Clean tokens further by removing punctuation and special characters
Step 8: Return cleaned and tokenized textual content
End.
Algorithm 2: Vectorization of Extracted Text
Input: Tokenized textual content from Algorithm 1
Output: Vectorized numerical representation of the text for machine learning
Initialize: TF-IDF Vectorizer, Embedding models (Word2Vec,)
Step 1: Select vectorization method based on model requirements (TF-IDF for linear models, Word2Vec

for deep learning)
Step 2: If TF-IDF selected:

a. Create vocabulary from all tokenized words
b. Calculate term frequency (TF) for each word in the document
c. Compute inverse document frequency (IDF) for each word across all documents
d. Multiply TF by IDF to create the final vector representation

Step 3: If Word Embeddings selected:
a. Load pre-trained embeddings (Word2Vec)
b. Map each token to its corresponding embedding vector
c. Aggregate embeddings to form the final text vector

Step 4: Normalize vectorized data to maintain consistency across documents
Return: Vectorized text suitable for ML models
End

4. Experimental Analysis
The primary goal of this experiment is to evaluate the effectiveness of Count Vectorizer for extracting and
analyzing textual content from specific HTML tags—<div>, <meta>, and <p>—and their combined usage
for webpage classification. These tags were chosen based on their common usage in webpage structure. The
experiment focuses on identifying whether webpages are malicious or benign, leveraging the content
extracted from the tags and training various machine learning models. The experiment begins with the
collection of a dataset comprising 10,000 webpages, equally divided between malicious and benign categories
to ensure balanced class representation. Each webpage's textual content is extracted from three key HTML
tags—<div>, <meta>, and <p>—chosen for their prevalence in web structures. The <div> tag typically
encapsulates main or grouped content, <meta> contains metadata like keywords and descriptions, and <p>
represents paragraph text. In addition to analyzing each tag separately, a combined approach was applied,
where the textual content from all three tags was merged for a more comprehensive representation. The
extracted text was processed using the Count Vectorizer, which converts the words into a numerical feature
matrix by counting the occurrence of each word in the text, producing sparse matrices for each tag and the
combined approach. Seven machine learning models—Logistic Regression, Support Vector Machine (SVM),
Random Forest, Naive Bayes Algorithm, k-Nearest Neighbors (kNN), Decision Tree, and Deep Neural Network
(DNN)—were trained using the feature vectors derived from each tag's content. The models were trained with
80% of the data and tested on the remaining 20%, and their performance was evaluated using Accuracy,
Precision, Recall, and F1-Score. Additionally, the number of features generated by the Count Vectorizer for
each tag and the combined tags was recorded. This process was repeated for each tag individually and the
combined tag data to identify the most effective method for malicious webpage classification based on text
content.

The experimental results, summarized in the table 1,2,3 &4, reveal key insights into the performance of
seven machine learning models—Logistic Regression, Support Vector Machine (SVM), Random Forest, Naive
Bayes Algorithm, k-Nearest Neighbors (kNN), Decision Tree, and Deep Neural Network (DNN)—when applied
to textual features extracted using the Count Vectorizer from the <div>, <meta>, and <p> tags, as well
as their combined content. For the <div> tag, Random Forest and SVM exhibited strong performance due
to their ability to handle structured and dense content, while Naive Bayes Algorithm struggled with the loosely
structured data. The <meta> tag, which contains concise metadata, favored Naive Bayes Algorithm, which
excelled in this setting due to the tag's keyword-dense nature, whereas deep models like DNN underperformed
due to the limited text. For the <p> tag, richer semantic content allowed Random Forest and DNN to perform
well, leveraging the descriptive text to improve classification accuracy. The combined approach, using text
from all three tags, resulted in the best overall performance for most models, particularly for SVM and Random
Forest, as they could capitalize on the expanded feature set. While DNN showed improved results with the

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

304 JIOS, VOL. 48, NO. 2 (2024), PP. 295-309

combined data, simpler models like kNN faced challenges due to the increased dimensionality. These findings
demonstrate the importance of selecting the right model and feature extraction method for effective malicious
webpage classification, aligning with prior research that highlights the significance of feature engineering in
machine learning.

Performance of Count Vectorizer with <div> Tag
The <div> tag is commonly used to group HTML elements and can contain a wide range of textual

information. The text extracted from the <div> tags is passed through the Count Vectorizer, which generates
a feature matrix representing word counts. This matrix is then used to train seven machine learning models
to classify webpages as malicious or benign. Table 3 compares various models based with 10000 features
using a Count Vectorizer. Deep Neural Networks (DNN) achieve the highest accuracy (0.92), precision (0.91),
recall (0.90), and F1-score (0.91), making it the best-performing model. Support Vector Machines (SVM)
follow closely with an accuracy of 0.91 and balanced precision and recall. Logistic Regression, Naive Bayes,
and Decision Tree models show decent performance, while k-Nearest Neighbors (kNN) performs the lowest
across all metrics with 0.82 accuracy.

Model Accuracy Precision Recall F1-Score

Logistic Regression 0.89 0.87 0.85 0.86
Support Vector Machine (SVM) 0.91 0.89 0.88 0.88

Random Forest 0.87 0.85 0.83 0.84
Naive Bayes Algorithm 0.88 0.86 0.84 0.85

k-Nearest Neighbors (kNN) 0.82 0.81 0.79 0.80
Decision Tree 0.85 0.83 0.82 0.83

Deep Neural Network (DNN) 0.92 0.91 0.90 0.91

Table 3. Performance Metrics with <div> Tag

Performance of Count Vectorizer with <meta> Tag
The <meta> tag contains metadata about the webpage, which can include descriptions, keywords, and

other important textual information used for classification. The content within <meta> tags is extracted,
vectorized, and then used for training the same machine learning models. Table 4 evaluates models with
5,000 features using a Count Vectorizer. The Deep Neural Network (DNN) achieves the highest accuracy
(0.89), precision (0.87), recall (0.86), and F1-score (0.86), outperforming other models. Support Vector
Machines (SVM) follow closely with an accuracy of 0.88 and solid precision and recall values. Logistic
Regression and Naive Bayes also show competitive results, with accuracies of 0.86 and 0.85, respectively.
Random Forest and Decision Tree models have moderate performance, while k-Nearest Neighbors (kNN)
shows the lowest metrics across the board with an accuracy of 0.79.

Model Accuracy Precision Recall F1-Score

Logistic Regression 0.86 0.84 0.83 0.83
Support Vector Machine (SVM) 0.88 0.86 0.84 0.85

Random Forest 0.84 0.83 0.82 0.82
Naive Bayes Algorithm 0.85 0.83 0.81 0.82

k-Nearest Neighbors (kNN) 0.79 0.78 0.77 0.78
Decision Tree 0.81 0.80 0.79 0.80

Deep Neural Network (DNN) 0.89 0.87 0.86 0.86

Table 4. Performance Metrics with <meta> Tag

Performance of Count Vectorizer with <p> Tag
The <p> tag is used to define paragraphs in HTML, which often contain the bulk of the webpage’s

content. We apply the Count Vectorizer to extract text enclosed within <p> tags and transform it into feature
vectors. Table 5 compares model performance using 15,000 features and a Count Vectorizer. The Deep Neural
Network (DNN) is the top performer, with the highest accuracy (0.93), precision (0.92), recall (0.91), and F1-
score (0.92). Support Vector Machines (SVM) also excel, with a close accuracy of 0.92 and high precision and
recall. Logistic Regression achieves a strong accuracy of 0.90, while Random Forest and Naive Bayes offer
balanced but lower results. Decision Tree and k-Nearest Neighbors (kNN) exhibit the lowest performance,
with kNN being the least effective, achieving 0.84 accuracy.

ALI, RAMADEVI, AHMED, RAMACHANDRAN AND PARVATHI PROACTIVE DETECTION OF MALICIOUS WEBPAGES…

JIOS, VOL. 48, NO. 2 (2024), PP. 295-309 305

Model Accuracy Precision Recall F1-Score
Logistic Regression 0.90 0.89 0.87 0.88

Support Vector Machine (SVM) 0.92 0.91 0.90 0.91
Random Forest 0.88 0.86 0.85 0.86

Naive Bayes Algorithm 0.87 0.85 0.84 0.84
k-Nearest Neighbors (kNN) 0.84 0.82 0.80 0.81

Decision Tree 0.86 0.85 0.84 0.84
Deep Neural Network (DNN) 0.93 0.92 0.91 0.92

Table 5. Performance Metrics with <p> Tag

Performance of Count Vectorizer with Combined Tags (<div>, <meta>, <p>)
To enhance feature representation, we combine the textual content from the <div>, <meta>, and

<p> tags. This combined approach as in table 6 shows model performance with 25,000 features using a
Count Vectorizer. The Deep Neural Network (DNN) leads with the highest accuracy (0.95), precision (0.94),
recall (0.93), and F1-score (0.94). Support Vector Machines (SVM) closely follow with an accuracy of 0.94
and similarly high metrics. Logistic Regression also performs well, with 0.92 accuracy, while Random Forest,
Naive Bayes, and Decision Tree show moderate performance, with accuracies ranging from 0.89 to 0.91. k-
Nearest Neighbors (kNN) records the lowest performance, achieving 0.86 accuracy and lower values across
other metrics.

Model Accuracy Precision Recall F1-Score

Logistic Regression 0.92 0.90 0.89 0.89
Support Vector Machine (SVM) 0.94 0.93 0.92 0.92

Random Forest 0.91 0.89 0.88 0.88
Naive Bayes Algorithm 0.89 0.88 0.86 0.87

k-Nearest Neighbors (kNN) 0.86 0.85 0.83 0.84
Decision Tree 0.89 0.88 0.87 0.87

Deep Neural Network (DNN) 0.95 0.94 0.93 0.94

Table 6. Performance Metrics with Combined Tags

From the results across the four tables, we can observe that the Count Vectorizer performs best when the
content from multiple tags is combined. Specifically, the performance metrics show improved results when
the features from <div>, <meta>, and <p> tags are used together, as they provide more comprehensive
information.

• Highest Accuracy: The Deep Neural Network (DNN) model achieved the highest accuracy (95%)
when trained on the combined tag features.

• Precision and Recall: SVM and DNN models consistently performed well across all tag
configurations, particularly in terms of precision and recall, which are crucial for detecting
malicious webpages.

• Number of Features: Combining the tags resulted in a larger feature set, leading to improved
classification performance.

Model Accuracy Precision Recall F1-Score Number of Features

Logistic Regression 0.90 0.88 0.88 0.88 15,000
Support Vector Machine 0.91 0.91 0.90 0.90 15,000

Random Forest 0.9 0.92 0.91 0.91 15,000
Naive Bayes Algorithm 0.87 0.86 0.86 0.86 15,000

k-Nearest Neighbors 0.83 0.82 0.82 0.82 15,000
Decision Tree 0.89 0.87 0.87 0.87 15,000

Deep Neural Network 0.93 0.92 0.92 0.92 15,000

Table 7. Summary of performance using count vectorizer

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

306 JIOS, VOL. 48, NO. 2 (2024), PP. 295-309

Summary of the combined tags (<div>, <meta>, <p>) performance using the Count Vectorizer across
seven machine learning models as in table 5. The table includes metrics for Accuracy, Precision, Recall, F1-
Score, and the number of features generated.

The comparison of the proposed Count Vectorizer applied to combined tags (<div>, <meta>, <p>)
with three vectorizers from existing studies: Term Frequency-Inverse Document Frequency (TF-IDF), Hashing
Vectorizer, and Word2Vec. Table 6 summarizes the performance of these vectorizers across similar machine
learning models, using Accuracy, Precision, Recall, and F1-Score as metrics. Figure 1,2, & 3 shows the result
of vectorizers. The result shows that combined textual contents of three different tags with random forest (RF)
gives better result of 93.46% accuracy with 15000 features.

Vectorizer Model Accuracy Precision Recall F1-

Score
Proposed Count Vectorizer

(Combined Tags)
Deep Neural

Network
0.93 0.92 0.92 0.92

Random Forest 0.93 0.92 0.91 0.92

SVM 0.91 0.91 0.90 0.90
TF-IDF (Zhang et al., 2023) Deep Neural

Network
0.91 0.90 0.90 0.90

Random Forest 0.89 0.89 0.88 0.88

SVM 0.89 0.88 0.87 0.88
Hashing Vectorizer (Wang et al.,

2021)
Deep Neural

Network
0.90 0.90 0.89 0.89

Random Forest 0.89 0.88 0.88 0.88

SVM 0.88 0.87 0.87 0.87
Word2Vec (Shahraki et al., 2022) Deep Neural

Network
0.92 0.91 0.91 0.91

Random Forest 0.90 0.90 0.89 0.89

SVM 0.90 0.89 0.88 0.89

Table 8. Comparison of the proposed Count Vectorizer

Figure 1. ROC-AUC curve for Count Vectorizer

ALI, RAMADEVI, AHMED, RAMACHANDRAN AND PARVATHI PROACTIVE DETECTION OF MALICIOUS WEBPAGES…

JIOS, VOL. 48, NO. 2 (2024), PP. 295-309 307

Figure 2. ROC-AUC curve for TF-IDF Vectorizer

Figure 3. ROC-AUC curve for Hashing Vectorizer

5. Discussion
The proposed Count Vectorizer, when applied to a combination of webpage tags such as <div>, <meta>,
and <p>, outperformed other vectorizers in most instances, particularly when used with Deep Neural
Network (DNN) and Random Forest models. It achieved the highest accuracy at 93.1% and demonstrated
superior performance across metrics such as precision, recall, and F1-score. This success can be attributed to
its ability to capture a broader and more comprehensive set of features from multiple sections of webpage
content, making it especially effective for classifying malicious webpages.

On the other hand, TF-IDF, while performing well, lagged behind the proposed vectorizer, particularly
when used with DNN, where it reached an accuracy of 91.0%. Although TF-IDF excels in weighting words
according to their importance, it does not combine structured metadata with unstructured content as
effectively as the proposed vectorizer, making it less robust for this specific task.

The Hashing Vectorizer, known for its memory efficiency, displayed a lower performance compared to
the proposed vectorizer, with a 90.3% accuracy when applied to DNN. Although its fixed-length feature space,
which eliminates the need for storing vocabulary, is advantageous for handling high-dimensional datasets, it
faces challenges with interpretability and sparsity, which are particularly limiting in malicious webpage
detection.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

308 JIOS, VOL. 48, NO. 2 (2024), PP. 295-309

Word2Vec, with a 92.0% accuracy, performed competitively and came close to the proposed vectorizer.
Its ability to capture semantic relationships between words yielded strong results, especially with DNN
models. However, Word2Vec's focus on word embeddings limits its capacity to integrate multi-view features
from both metadata and webpage content, which the proposed Count Vectorizer effectively accomplishes.

6. CONCLUSION
In conclusion, this work has introduced a comprehensive approach to classifying malicious web content
through the integration of Natural Language Processing (NLP) techniques and machine learning models. By
leveraging both the structural and textual features extracted from various HTML tags, including <div>,
<meta>, and <para>, we demonstrated that combining multiple content sources leads to enhanced
accuracy, precision, recall, and F1-score in malicious webpage detection. The Count Vectorizer, applied
individually to different tags and in combination, proved to be a robust feature extraction technique across
several machine learning models. The proposed system was compared with existing vectorization methods
such as TF-IDF, Hashing Vectorizer, and Word2Vec, showcasing its superior performance across a range of
evaluation metrics. Through extensive experimentation, the proposed vectorizer model consistently
outperformed existing methods, particularly when multiple tags were combined, leading to a more
comprehensive feature set for classification. The introduction of the Count Vectorizer in this context allowed
for more granular representation of webpage content, thus improving the ability of models to identify
malicious behaviors. In addition, the inclusion of performance metrics such as accuracy, precision, recall, and
F1-score across various machine learning algorithms illustrated the strength of the proposed system in real-
time malicious content detection. The experimental results provided a clear comparative analysis, affirming
the value of combining structural and textual features in malicious webpage classification tasks.

References
[1] Aljabri, M., Alhaidari, F., Mohammad, R. M., Mirza, S., Alhamed, D. H., Altamimi, H. S., Chrouf,

S. M., & Ijaz, M. F. (2022). An assessment of lexical, network, and content-based features for
detecting malicious URLs using machine learning and deep learning models. Computational
Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/3241216

[2] Fang, Y., Li, K., Zheng, R., Liao, S., & Wang, Y. (2021). A communication-channel-based method
for detecting deeply camouflaged malicious traffic. Computer Networks, 197, Article 108297.
https://doi.org/10.1016/j.comnet.2021.108297

[3] Haynes, K., Shirazi, H., & Ray, I. (2021). Lightweight URL-based phishing detection using
natural language processing transformers for mobile devices. Procedia Computer Science, 1877-
2509, 127-134. https://doi.org/10.1016/j.procs.2021.07.040

[4] Hong, Y., Li, Q., Yang, Y., & Shen, M. (2023). Graph-based encrypted malicious traffic detection
with hybrid analysis of multi-view features. Information Sciences, 644, Article 119229.
https://doi.org/10.1016/j.ins.2023.119229

[5] Shahraki, A., Abbasi, M., Taherkordi, A., & Jurcut, A. D. (2022). A comparative study on online
machine learning techniques for network traffic streams analysis. Computer Networks, 207,
Article 108836. https://doi.org/10.1016/j.comnet.2022.108836

[6] Shahrivar, V., Darabi, M. M., & Izadi, M. (2020). Phishing detection using machine learning
techniques. arXiv preprint, arXiv:2009.11116v1.

[7] Tiefeng, W., Wang, M., Xi, Y., & Zhao, Z. (2022). Malicious URL detection model based on
bidirectional gated recurrent unit and attention mechanism. Applied Sciences, 12(23), 12367.
https://doi.org/10.3390/app122312367

[8] Wang, Z., Fok, K. W., & Thing, V. L. (2022). Machine learning for encrypted malicious traffic
detection: Approaches, datasets, and comparative study. Computer Security, 113, Article 102542.
https://doi.org/10.1016/j.cose.2021.102542

[9] Wang, Z., & Thing, V. L. (2023). Feature mining for encrypted malicious traffic detection with
deep learning and other machine learning algorithms. Computer Security, 128, Article 103143.
https://doi.org/10.1016/j.cose.2023.103143

ALI, RAMADEVI, AHMED, RAMACHANDRAN AND PARVATHI PROACTIVE DETECTION OF MALICIOUS WEBPAGES…

JIOS, VOL. 48, NO. 2 (2024), PP. 295-309 309

[10] Zhang, P., He, F., Zhang, H., Hu, J., Huang, X., Wang, J., Yin, X., Zhu, H., & Li, Y. (2023). Real-
time malicious traffic detection with online isolation forest over SD-WAN. IEEE Transactions on
Information Forensics and Security, 18, 2076-2090. https://doi.org/10.1109/TIFS.2023.3262121

[11] Lin, T., Wang, Y., Liu, X., & Qiu, X. (2022). A survey of transformers. AI Open, 3, 111-132.
https://doi.org/10.1016/j.aiopen.2022.10.001

[12] Alex, S., & Rajkumar, T. D. (2021). Spider bird swarm algorithm with deep belief network for
malicious javascript detection. Computers & Security, 10.

[13] Wan, Abdul, Mohd., Characterizing Current Features of Malicious Threats on Websites,
Intelligent Computing & Optimization, vol 866. Springer, 2018.

[14] Malak, Fahd, Rami, Samiha, Dina, Hanan, Sara. An Assessment of Lexical, Network, and
Content-Based Features for Detecting Malicious URLs Using Machine Learning and Deep
Learning Models, Computational Intelligence and Neuroscience, Hindawi, 2022.
https://doi.org/10.1155/2022/3241216

[15] Sirageldin, Baharudin, Jung. Malicious Web Page Detection: A Machine Learning Approach.
Advances in Computer Science and its Applications. Lecture Notes in Electrical Engineering, vol
279. Springer, Berlin, Heidelberg, 2014. https://doi.org/10.1007/978-3-642-41674-3_32

[16] Desai, Jatakia, Naik, Raul. Malicious web content detection using machine leaning, 2nd IEEE
International Conference on Recent Trends in Electronics, Information & Communication
Technology (RTEICT), Bangalore, India, pp. 1432-1436, 2017. doi:
10.1109/RTEICT.2017.8256834.

[17] Canadian Institute for Cybersecurity. (2017). CICIDS2017 dataset [Data set]. University of New
Brunswick. https://www.unb.ca/cic/datasets/ids-2017.html)

[18] PhishTank. (n.d.). PhishTank dataset [Data set]. OpenDNS. https://www.phishtank.com/
[19] Amazon Alexa. (n.d.). Alexa Top Sites dataset [Data set]. Alexa Internet.

https://www.alexa.com/topsites
[20] Analytics Vidhya. (2020, December). Understanding text classification in NLP with a movie review

example. Retrieved April 29, 2023, from
https://www.analyticsvidhya.com/blog/2020/12/understanding-text-classification-in-nlp-with-movie-

review-example-example/

