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 This paper introduces a novel approach to Vehicle Edge Computing (VEC), 
addressing the need for low-latency, high-reliability applications in vehicle 
networks. By leveraging nearby Multi-access Edge Computing (MEC) resources, 
VEC enhances data processing speed and reliability for applications like 
autonomous driving, real-time traffic management, and infotainment systems. The 
proposed solution models a multi-user non-cooperative computation offloading 
game in vehicular MEC networks, where each vehicle adjusts its offloading 
probability based on factors like distance to the MEC access point, communication 
model, and competition for resources. Additionally, a best response-learning 
algorithm is designed based on the computation offloading game model. The 
approach focuses on maximizing each vehicle’s utility while ensuring convergence 
to a single, stable equilibrium under defined conditions. To demonstrate the 
effectiveness and performance of the proposed algorithms, comprehensive 
experiments were performed. Numerical results demonstrate the fast convergence 
and improved performance achieved. 

Keywords: Game theory, Non-cooperative game, Vehicle Edge Computing, 
Computation offloading 

1. Introduction  
The rapid progress in Intelligent Transportation Systems (ITS) and automated driving technology has led to 
the development of numerous promising applications, including driving safety, traffic optimization, and in-
vehicle entertainment  [1], [2]. The demand for enhanced in-vehicle computing and storage capabilities has 
increased due to the proliferation of computationally intensive and time-critical applications [3], [4]. However, 
it is challenging for individual vehicles to fully satisfy the requirements of these applications using their own 
local resources due to constraints such as physical space limitations and economic costs. The emergence of 
5G networks has stimulated the development of MEC as a solution to reduce end-to-end transmission delays 
and alleviate compute and storage constraints [5], [6], [7]. However, MEC (Mobile Edge Computing) servers 
are constrained by limited computing and storage resources [8], [9], which can pose significant challenges 
when faced with the increasing computational demands from vehicles. This resource limitation may result in 
degraded Quality of Service (QoS) for vehicle applications, diminishing the benefits of offloading tasks. Thus, 
efficient task offloading decisions become essential [10]. Vehicles must carefully manage the trade-off between 
application execution time and the availability of MEC resources. This balance is critical to avoid resource 
exhaustion, maintain optimal workload distribution, and ensure seamless application performance in ITS. 
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Figure 1. Competition-Based Offloading in Vehicular MEC Networks 

In multi-vehicle computation offloading scenarios, as illustrated in Figure 1, both centralized and distributed 
approaches are employed to manage offloading strategies. Centralized methods focus on optimizing resource 
allocation for all vehicles through server-side planning, whereas distributed methods depend on interactions 
among vehicles to evaluate resource availability and maximize individual utility before offloading tasks to 
MEC servers [11], [12]. This paper focuses on distributed computation offloading, where each vehicle competes 
for MEC server resources. Vehicles independently determine their offloading strategies based on the current 
availability of MEC resources. The interaction among vehicles is modeled using a game-theoretic framework, 
which analyzes offloading strategies by assuming rational decision-making behavior. This paper’s main 
contributions include: 

    1) Proposing a multi-user non-cooperative computation offloading game for MEC scenarios. 
    2) Designing a participant’s payoff function considering factors like distance to MEC access points and 

competition for resources.  
    3) Developing a distributed algorithm ensuring convergence to a stable equilibrium.  
    4) Conducting experiments to analyze the proposed algorithms’ effectiveness and performance. 
The rest of this paper is structured as follows: Section II presents a review of related work. Section III 

introduces the computation offloading game model, including detailed discussions of the utility and price 
functions within the payoff structure. Section IV describes a distributed algorithm for solving the game. In 
Section V, we discuss the results, focusing on the convergence and uniqueness of the Nash equilibrium. Lastly, 
Section VI concludes the paper and suggests directions for future research. 

2. Related Works 
The challenge of computation offloading for mobile devices within MEC (Mobile Edge Computing) or MCC 
(Mobile Cloud Computing) architectures has been widely researched. Muoz et al. in [13] presented a 
framework for jointly optimizing the use of radio and computing resources using the trade-off between energy 
consumption and latency. In their approach, the authors focus on balancing energy consumption and latency 
by jointly optimizing the use of radio and computing resources. To minimize both the execution latency of all 
tasks and the energy consumption of the mobile device. Dinh et al. [14] proposed an optimization framework 
of offloading from a single mobile device to multiple edge devices. Zhang Jianchao studied multi-user 
computation offloading in dynamic mobile cloud computing environments [15]. Their research used a 
stochastic game approach to show that dynamic offloading decisions can achieve a pure-strategy Nash 
Equilibrium (NE). To ensure convergence to this NE, they developed the MASL algorithm, which provides a 
guaranteed convergence rate. The author of [16] formulates a bi-level optimization framework for efficient 
computation offloading in MEC systems, using game theory to achieve Nash equilibrium and optimize 
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resource pricing and allocation. his algorithm reduces system costs and maximizes profits for both ESP and 
DMs. Chen introduced a game-theoretic framework for efficient computation offloading in mobile cloud 
computing environments [17]. The study modeled the decision-making process for decentralized offloading 
among mobile users as a decentralized computation offloading game. To enhance system utility, Lyu et al. 
proposed a semi-distributed heuristic offloading decision algorithm (HODA) that optimizes both offloading 
decisions and the allocation of communication and computation resources [18]. In a different approach, Bi et 
al. developed an offloading strategy aimed at maximizing computation rates within a multi-user MEC network 
powered by wireless power transfer (WPT) [19]. Their scheme uses a binary computation offloading policy, 
where each energy-harvesting device chooses between processing tasks locally or offloading them to an MEC 
server. An adaptive task offloading and resource allocation algorithm using deep reinforcement learning in 
mobile edge computing is proposed in [20] to optimize response time, energy consumption and system utility, 
taking user mobility into account. In  [21], the authors introduce a Stackelberg game to optimize task 
offloading and pricing in mobile edge computing, proposing a differentiated pricing strategy to enhance server 
profit and reduce user latency. Cardellini et al. explored a three-tier architecture for mobile computing by 
proposing a model to assess how computation offloading impacts user-perceived performance [22]. They 
framed the problem as a generalized Nash equilibrium and developed a distributed algorithm to compute this 
equilibrium. Liu et al. tackled the task offloading challenge using a matching theory approach, introducing 
pricing-based matching algorithms aimed at minimizing overall network delay [23]. The authors in [24] 
developed the ECORA strategy to enhance resource allocation in vehicular networks, focusing on collaborative 
computation and storage, as well as adaptive task offloading, which significantly reduced task processing 
delays and improved network load balancing. The authors [25] explore online task offloading in mobile edge 
computing networks, focusing on time-variant task arrivals and diverse user requirements. They introduce a 
collaboration architecture that divides edge nodes into public and private ones, developing a system model 
for task latency analysis. A deep reinforcement learning-based online task scheduling algorithm is proposed, 
demonstrating significant latency reductions of 1.09%, 2.65%, and 4.34% compared to offline methods for 
varying correlation coefficients. The authors in [26] introduce a method that deploys passive RIS in a cell free 
network to enhance wireless capacity. Using deep reinforcement learning (DRL), the authors formulate a joint 
beamforming optimization problem to address complexity, achieve better latency and energy efficiency in 
mobile edge computing (MEC) environments. The work presented in [7] explores task scheduling strategies 
for MEC servers located on Roadside Units (RSUs). The primary aim is to minimize the total completion time 
for various applications. The authors introduce an optimized algorithm that prioritizes tasks and applications, 
meeting specific time constraints for task completion. Dai introduced a new offloading scheme for Vehicular 
Edge Computing (VEC) in [27], leveraging deep reinforcement learning to minimize processing latency. This 
scheme effectively reduces latency by dynamically optimizing offloading decisions between vehicles, edge 
servers, and the cloud, adapting to the changing conditions of the computing environment. In this paper, we 
emphasize the importance of incorporating vehicle locations and task deadline constraints into the MEC 
offloading process. Based on these factors, a best-response algorithm is utilized to guarantee that the strategy 
chosen by each vehicle leads to a unique Nash equilibrium. 

3. Computation Offloading Model  
For Vehicular Edge Computing, the development of an efficient compute offloading model is crucial for 
optimizing resource allocation and improving system performance. In this section, a description of the main 
elements and parameters of the offloading model is given, with a detailed perspective on the decision-making 
framework and the criteria used to evaluate system performance.  

3.1. Parameters Abstraction  
The application in each vehicle is abstracted using three essential parameters: input data size (𝐿𝑖), 
computational complexity (𝑎𝑖), and completion deadline (𝑡𝑖;𝑚𝑎𝑥). These parameters encapsulate the 
fundamental characteristics of the application, influencing its execution time and resource requirements. 

3.2. Local Execution Time 
The time taken for vehicle 𝑖 to execute a task locally depends on the computational power of its onboard CPU 
(𝑓𝑖;𝑙) and the complexity of the application (𝛼𝑖). This can be mathematically represented as: 
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                                                 𝑡𝑖;𝑙  =
𝛼𝑖𝐿𝑖

𝑓𝑖;𝑙
           (1) 

3.3. Communication Model 
The communication link between each vehicle and the MEC access point is represented by a frequency-flat 
block-fading Rayleigh channel. The path loss (𝜃𝑖) is influenced by the distance (𝑑𝑖) between the vehicle and 
the access point. Additionally, the model incorporates the channel-fading coefficient (ℎ𝑖) and the noise power 
(𝑁0) from white Gaussian noise. The data transmission rate (𝑅𝑖) for vehicle 𝑖 is then calculated based on the 
available channel bandwidth (𝑊𝑖) and the transmission power (𝑃𝑖) as follows: 

                                                  𝑅𝑖 = 𝑊𝑖 𝑙𝑜𝑔2 (1 + 
𝑃𝑖 𝑑

𝑖

−𝜃𝑖 

𝑁0
ℎ𝑖

2) (2) 

3.4. Transmission Delays 
The transmission delays for vehicle 𝑖 during computation offloading include uplink (𝑡𝑖;𝑈) and downlink (𝑡𝑖;𝐷) 
components. These delays are determined by the uplink and downlink transmission overheads (𝛽𝑖,𝑈 and 𝛽𝑖,𝐷), 
as well as the data transmission rate (𝑅𝑖). Mathematically, they are given by: 

                                                𝑡𝑖;𝑈 =  
𝛽𝑖,𝑈 𝐿𝑖

𝑅𝑖
 (3) 

                                                𝑡𝑖;𝐷 =  
𝛽𝑖,𝐷 𝐿𝑖

𝑅𝑖
  (4) 

3.5. MEC Execution Time 
The execution time (𝜏𝑖;𝑒) for vehicle i’s application in the MEC is dependent on the size of the input data (𝐿𝑖) 
and the processing capability of the MEC server (𝑓𝑒). This can be represented as: 

                                               𝜏𝑖;𝑒  =
𝛼𝑖 𝐿𝑖  

𝑓𝑒
                                                                                    (5) 

3.6. Total Execution Time 
The total computation offloading time (𝑡𝑖;𝑒) for vehicle 𝑖 is the combination of three factors: uplink 
transmission delay, processing time at the MEC server, and downlink transmission delay.  

                                             𝑡𝑖;𝑒    =  𝑡𝑖;𝑈  + 𝜏𝑖;𝑒  +  𝑡𝑖;𝐷                                         (6) 

A clear understanding of these components is fundamental for designing efficient utility and pricing models 
in the offloading game, allowing for optimized decision-making and resource allocation. 

4. System Model 
In this section, we begin by presenting the fundamental model of the computation offloading game, 
delineating the specific utility and price functions within the payoff framework based on parameters given in 
table 1. Next, we model the computation offloading as a non-cooperative game, applying the concept of Nash 
equilibrium. We also present proofs to demonstrate the existence and uniqueness of the equilibrium.  

Parameter Meaning  Parameter Meaning  

𝑛 =  7  Number of vehicles 
𝜎𝑖  =  0.7  MEC pricing factor 
𝜆𝑖  =  0.7  Task arrival rate 
𝑡i,max  The maximum execution time 
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𝛼𝑖  Task computational complexity 

𝛽𝑖,𝑈  Overhead of uplink transmission 

𝛽𝑖,𝐷  Downlink transmission overhead and the ratio of output 

𝐿𝑖 = 1𝑀𝐵𝑖𝑡𝑠  The input data size 

𝑓𝑖𝑙   Local computation capability 

𝑓𝑒   MEC computation capability 

𝜃𝑖  
 Path loss exponent 

ℎ𝑖𝑗   The channel fading coefficient 

𝑑𝑖  Distance to RSU 

𝑊𝑖  Channel bandwidth 

𝑁0 = 0.01  The white Gaussian noise power 

𝑃𝑖 = 0.2  Transmit power 

Table 1. Parameters Table 

4.1. Utility of Non-cooperative of the Computation Offloading 
Task execution time plays a crucial role in determining the vehicle’s utility, considering the variables 𝑡𝑖;𝑙, 𝑡𝑖;𝑒, 
and 𝑡𝑖;max discussed in the previous section. Shorter execution times, whether the task is processed locally or 
offloaded to the MEC server, lead to higher utility. However, if the execution time exceeds 𝑡𝑖;𝑚𝑎𝑥, the vehicle 
gains no benefit and may incur penalties. As a result, the utility function for vehicle i in a game with 
computation offloading can be derived as follows: 

                          Ui(ρ) =
ti;max−ti;l

ti;max
(1 − ρi)  + 

ti;max−ti;e

ti;max
ρi                                        (7) 

MEC environments can benefit from implementing a dynamic pricing mechanism to manage the offloading 
of vehicles due to limited computing and storage resources [28], [29]. By adjusting the pricing factor 𝜎 ∈
[0; 1] according to the task arrival rate 𝜆, the platform can ensure a balanced load, preventing both over- or 
under-utilization of available resources. 

                           Ci(ρ) =  ρi
2𝜎[1 − ∏ (1 − λjρj)j ≠ i ] (8) 

The payoff function for vehicle 𝑖 in the computation offloading game can be formulated as follows: 

                    Πi(ρ) =  
ti;max−ti;l

ti;max
(1 − ρi) +

ti;max−ti;e

ti;max
ρi − ρi

2σ[1 − ∏ (1 − λjρj)j ≠ i ] (9) 

4.2. Game Formulation 
In this paper, the computation offloading game is modeled as 𝛤 = {𝑁; (𝜌𝑖)𝑖∈𝑁 ;  (𝛱𝑖)𝑖∈𝑁 }, where 𝑁 =

 {1, 2, . . . , 𝑛} denotes the set of vehicles within the coverage of a MEC access point. 𝜌𝑖 ∈ [0, 1] represents the 
probability that vehicle i chooses to offload its computation, also known as its strategy, and 𝛱𝑖 is the payoff 
function of vehicle 𝑖. The term 𝜌−𝑖 = (𝜌1, . . . , 𝜌𝑖−1, 𝜌𝑖+1, . . . , 𝜌𝑛) refers to the offloading probabilities of all other 
vehicles in the system except vehicle 𝑖. The Nash equilibrium concept is then applied to characterize the 
equilibrium of this computation offloading game.  

Definition 1. A probability vector for computation offloading, represented as 𝜌∗ , is termed a Nash 
equilibrium (NE) if no vehicle can improve its payoff by unilaterally changing its strategy from the 
equilibrium. i.e.:  

                                     Π𝑖(𝜌𝑖
∗ ; 𝜌−𝑖

∗ ) ≥ Π𝑖(𝜌𝑖; 𝜌−𝑖
∗ )  ;   ∀ 𝜌𝑖                                      (11) 

Theorem 1. In the game, Nash equilibrium of the computation offloading exists and is unique. 
 
Proof 
The condition established by Rosen [30], [31] for proving the concavity of the utility function is as follows: 
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𝜕2Π𝑖

𝜕𝜌𝑖
2 < 0 

The first derivative of the function can be defined mathematically with the following equation: 

                 
𝜕Π𝑖

𝜕𝜌𝑖
= −

ti;max−ti;l

ti;max
+

ti;max−ti;e

ti;max
− 2ρi

 𝜎[1 − ∏ (1 − λjρj)j ≠ i ]             (12) 

In the same line, the computation offloading of utility function is: 

                                     
𝜕2Π𝑖

𝜕𝜌𝑖
2 = −2𝜎[1 − ∏ (1 − λjρj)j ≠ i ] < 0 (13) 

Thus, we conclude that a Nash equilibrium exists in the system. 
To establish the uniqueness of the Nash equilibrium using the contraction-mapping theorem [32], [33], we 
demonstrate that the norm of the Jacobian matrix is less than 1, i.e., (‖Ј‖ < 1). 

                             Ј𝑖𝑗 =
𝜕𝜌𝑖

𝜕𝜌𝑗
= {

  0 ,                                                  𝑖 = 𝑗  
−(ti;l−ti;e) ∏ (1 − λkρk)k ≠ i,j

2𝜎𝑡𝑖;𝑚𝑎𝑥[1 − ∏ (1 − λjρj)j ≠ i ]
2  ,       𝑖 ≠ 𝑗

 (14) 

The maximum value of the off-diagonal elements of 𝐽𝑖𝑗 is found by calculating the sum of their absolute values. 

                              ‖Ј‖∞ = ∑
−|ti;l−ti;e| ∏ (1 − λkρk)k ≠ i,j

2𝜎𝑡𝑖;𝑚𝑎𝑥[1 − ∏ (1 − λjρj)j ≠ i ]
2 𝑖∈{1…𝑁} < 1 (15) 

While ‖Ј‖∞ < 1, then equation (9) is a contraction mapping. Finally, the uniqueness of the Nash equilibrium 
is established. 

4.3. Distributed Best-Response Algorithm for Computation Offloading Game 
The Distributed Best Response algorithm 1 permits vehicles in a multi-access edge computing (MEC) 
environment to make decentralized offloading decisions through a trade-off between local computation and 
offloading to the edge server. This algorithm works iteratively, so that each vehicle can update its offload 
strategy according to local execution time, transmission conditions and the strategies of other vehicles. 

 Algorithm 1 Distributed Best-Response Algorithm for Computation Offloading Game 
1:  Initiation: 𝑠 = 0, the offloading probability vector 𝜌𝑠, the pricing vector 𝜎, and the task arrival rate vector 𝜆. 

2:  Locally at each node 𝑖, iterate through 𝑠. 

3:  Set  𝑠 ← 𝑠 + 1. 

4:  for  𝑖 ∈ {1, . . . , 𝑛} do 

5:   Calculate the local execution time of the task without computation offloading:  

                                                              𝜏𝑖;𝑒  =
𝛼𝑖  𝐿𝑖  

𝑓𝑒
 

6:      Estimate the data transmission rate based on the distance between vehicle and MEC access point:   

                                                                𝑅𝑖 = 𝑊𝑖 𝑙𝑜𝑔2 (1 +  
𝑃𝑖 𝑑𝑖

𝜃ℎ𝑖
2

𝑁0
) 

7:        Calculate the total execution time of the task with offloading: 

                                                           𝑡𝑖;𝑒    =  𝑡𝑖;𝑈  + τ𝑖;𝑒  +  𝑡𝑖;𝐷 =
𝛽𝑖,𝑈 𝐿𝑖

𝑅𝑖
+

𝛼𝑖  𝐿𝑖  

𝑓𝑒
+

𝛽𝑖,𝐷 𝐿𝑖

𝑅𝑖
 

8:   Update the best-response strategy according to offloading probabilities of other vehicles in the previous stage:  

                                                               𝜌𝑖
𝑠 = [

−(ti;l−ti;e) ∏ (1 − λkρk)k ≠ i,j

2𝜎𝑡𝑖;𝑚𝑎𝑥[1 − ∏ (1 − λjρj
−j

)j ≠ i ]
2 ]

0

1

 

9:          if  𝜌𝑖
𝑠 i has converged then 

10:           Vehicle 𝑖 decides whether to offload its task with a probability 𝜌𝑖
𝑠. 

11:       end if 

12:  end for 

13:  Go to Step 3. 
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Initially, the algorithm initializes several key variables, in particular the offload probability vector (𝜌𝑠), 
the pricing vector (𝜎) and the job arrival rate vector (𝜆). Each vehicle calculates the time required to process 
a task locally, based on the task size (𝐿𝑖), the workload coefficient (𝛼𝑖) and the vehicle CPU frequency (𝑓𝑖,𝑙). 
Then, this local execution time is compared with the time required to download the calculation to the MEC 
server. After calculating the local and offloading execution times, the vehicle updates its offloading probability 
based on the difference between the two times and the offloading strategies of other vehicles in the network. 
The updated offloading probability (𝜌𝑖

𝑠 ) considers the impact of other vehicles’ decisions by incorporating a 
probability function that reflects the task arrival rates and offloading probabilities from the previous iteration.  

The algorithm repeats this process, iteratively refining each vehicle’s offloading probability until 
convergence is achieved. Convergence occurs when the offloading probability stabilizes, meaning no further 
significant updates are needed. At this point, each vehicle has decided whether to offload its computation to 
the MEC server with an optimal probability, resulting in efficient resource utilization and balanced task 
execution across the network.  

The algorithm’s structure is formally outlined below, illustrating how each vehicle independently adjusts 
its offloading strategy in response to network conditions and other vehicles’ decisions. This distributed and 
iterative process ensures that the system reaches a Nash equilibrium, optimizing computation offloading 
across all vehicles. The algorithm 1 efficiently optimizes the computation offloading decisions, ensuring that 
vehicles achieve a balance between local processing and offloading, thereby enhancing system-wide 
performance in the MEC environment. 

5. Numerical Results  

5.1. Tuning Parameters  
The following section aims at providing a test case demonstrating the ability of the proposed game-theoretical 
model to enhance resource allocation of each vehicle. In particular, it is worth noting that our analysis is 
confined to the computation offloading game within a single MEC platform and does not account for inter-
MEC handover concerns. Additionally, we assume that each vehicle has knowledge of the offloading 
probabilities of other vehicles from the previous MEC stage. Based on the parameters and variables described 
in table 2, we have designed the algorithm 1. This algorithm is developed to obtain the results discussed in 
the following subsection. 

Parameter  Veh-1 Veh-2 Veh-3 Veh-4 Veh-5 Veh-6 Veh-7 
𝛼𝑖 1.5 2.0 1.8 1.6 1.7 1.9 2.1 
𝛽𝑖,𝑈

   0.8 1.2 1.0 0.9 1.1 1.3 1.4 
𝛽𝑖,𝐷

  0.1 0.05 0.08 0.07 0.06 0.09 0.11 
𝑓𝑖,𝑙 1.0 1.2 0.9 1.1 1.3 1.0 0.8 
𝑓𝑒 2.5 2.0 1.5 2.2 2.1 1.8 1.9 
𝜃𝑖  1.8 2.5 2.0 2.3 2.1 1.9 2.2 
ℎ𝑖𝑗   0.6 0.7 0.8 0.75 0.65 0.7 0.8 
𝑑𝑖  0.15 0.18 0.2 0.17 0.16 0.19 0.21 
𝑊𝑖   6 8 7 6.5 7.5 8.0 7.0 

Table 2. Simulation Parameters for Each Vehicle 

5.2. Convergence of Vehicles’ Strategies towards Nash Equilibrium 
The convergence of the vehicle competition towards the Nash equilibrium is clearly illustrated in Figure 2 
below. Throughout 8 iterations, we observe rapid convergence, showing that the vehicles swiftly adjust their 
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strategies to reach a stable equilibrium. This rapid convergence highlights the efficiency of the competition 
dynamics in achieving a balanced result within a brief period. 

Figure 2. Offloading Probability Convergence for Each Vehicle (n = 7) 

5.3. Offloading Probability as a Function of Distance: Non-Competitive vs. Competitive 
Behavior 

As shown in figure 3. In the absence of competition among vehicles for computation offloading, each vehicle 
offloads to the MEC with a probability of 1 when it is near the MEC. As the vehicle moves away from the 
MEC, its offloading probability decreases, which is expected in isolation without competition from other 
vehicles. 

Figure 3. Offloading Probability versus Distance: No Competition 
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Figure 4 illustrates the competitive offloading behavior of vehicles. When they are close to the MEC, the 
probability of offloading is approximately the same for all vehicles. Nevertheless, as they move further away, 
distinct trends can be observed. The probability of offloading increases for vehicles 1, 3 and 7, while it 
decreases for vehicles 2, 4, 5 and 6, until it reaches zero before 75 meters. In particular, vehicle 1’s offloading 
probability decreases to zero at 90 meters, followed by vehicle 3 at 105 meters, and finally, vehicle 7 at 120 
meters. This behavioral variation underlines the strategic adjustments that each vehicle makes in response to 
the actions of others and their distance from the MEC.  

In this way, the observed dynamics demonstrate the impact of competition on offloading strategies, with 
vehicles continually adapting their probabilities in order to optimize their performance within the MEC. The 
result confirms the idea that competitive interactions significantly influence offloading decisions, regardless 
of distance from the MEC. 
 

Figure 4. Offloading Probability versus Distance: With Competition 

5.4. Impact of Resource Competition and Pricing on Offloading Strategies 
From the results of figures 5 the observed phenomenon can be explained through resource competition 
dynamics in MEC networks. Initially, vehicles exhibit similar offloading probabilities, driven by utility 
maximization principles. As task arrival rates and pricing factor increase beyond 0.5, indicating ample 
resources in the MEC server, vehicles adapt their offloading strategies based on the probabilities of others. 
This strategic response reflects the dynamic nature of resource allocation and allows vehicles to optimize 
utility given changing network conditions. MEC server operators can further influence competition intensity 
by deploying varying server resources.  

Both figures 5 and 6 highlight significant changes in the offloading probabilities when the task arrival 
rate and the pricing factor exceed 0.3, indicating a critical threshold. In particular, vehicles 1 and 7 increase 
their offloading probabilities, while the others simultaneously reduce their probabilities. The above behavior 
reflects the impact of competitive interactions and resource availability on strategic adjustments.  

This dynamic response of vehicles to these parameters underlines the important role of strategic 
adaptation in optimizing performance in MEC networks. MEC server operators can influence competition by 
varying server resources, thus shaping vehicle strategies. Sensitivity to task arrival rate and pricing factor 
reinforces the need for dynamic resource management in MEC environments. 
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Figure 5. Offloading probability versus task arrival rate 𝜆𝑖 

Figure 6. Offloading probability versus MEC pricing factor 𝜎𝑖 

5.5. Utility Analysis Across Different Offloading Probability Scenarios 
In this section, we examine the implications of our results and compares the utilities obtained under different 
Offloading Probability scenarios. In addition, the comparison of total utilities for different numbers of vehicles 
is illustrated in table 3 and figure 7.  

• Utility Zero_Prob: In the case of no offloading, most vehicles have low or negative utilities. For example, 
vehicle 3 has a utility of -0.1111 and vehicle 6 has a utility of -0.0555. This scenario, with a total utility 
of 0.0811, demonstrates the inefficiency of not using offloading.  
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• Utility One_Prob: It entirely based on offloading without any local treatment also results in poor 
performance, since several vehicles have negative utilities. As two examples, vehicle 2 has a utility of -
0.0375 and vehicle 6 has a utility of -0.1190. Its total utility of -0.2729 is the lowest of all scenarios, and 
indicates that this approach is not suitable for maximizing system performance.  

• Utility Equi_Prob: The equi-probability scenario, based on a uniform distribution of offloading among 
vehicles. The utility of most vehicles is positive. The total utility of 2.3044 shows that this balanced 
approach is more efficient than no offloading or full offloading.  

• Utility Final_Prob: Our proposed game-theoretic approach, which iteratively optimizes offloading 
probabilities, achieves the highest utilities for all vehicles. This is because each vehicle has a positive 
utility. This brings the total utility to 2.4984, which is the highest of all the scenarios. Clearly, this proves 
the effectiveness of our optimization process in achieving optimal vehicle performance. 

Vehicle  Utility_Zero_Prob Utility_One_Prob Utility_Equi_Prob Utility_Final_Prob 
1 0.166667 0.139088 0.493416 0.532627  
2 0.074074 -0.037587 0.362242  0.359877  
3 -0.111111 -0.097960 0.207411 0.196504  
4 0.191919 0.019016 0.481546 0.499078  
5 0.273504 -0.077733 0.515114 0.507702 
6 -0.055556 -0.119056 0.259340 0.292444  
7  -0.458333 -0.098674 -0.014628 0.110261  
All-vehicles 0,081164 -0,272907 2,304442  2,498495  

Table 3. Utility comparison for different offloading probabilities 
 

 
Figure 7. The total utility for different offloading probabilities 𝜌𝑖 

 
 
The comparative analysis of different offloading probability scenarios underscores the importance of strategic 
offloading in mobile edge computing environments. The results clearly indicate that neither extreme (zero or 
full offloading) is optimal. Instead, a balanced and optimized approach, as achieved through our game-
theoretic method, ensures the best overall performance. 

The superiority of our approach is evident from the consistently higher utilities achieved across all 
vehicles. This highlights the role of iterative optimization in dynamically adjusting offloading probabilities to 
match the varying computational demands and resource availability of each vehicle. By doing so, our method 
not only enhances individual vehicle performance but also maximizes the collective utility of the system. 
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6. Conclusions 
This paper proposes an innovative approach to optimize computation offloading in vehicular MEC networks. 
The system adapts the offloading probability based on factors such as the proximity to MEC access points and 
resource competition. A distributed best-response algorithm is utilized to guarantee convergence to a stable 
equilibrium, improving system efficiency. Experimental results demonstrate the approach’s ability to achieve 
fast convergence and enhanced performance. Our study demonstrates that an optimized, game-theoretic 
approach to computation offloading is critical for maximizing utility in mobile edge computing. Furthermore, 
our method significantly outperforms existing dynamic offloading strategies, providing optimal utility for all 
participating vehicles. This underscores the potential of game theory and iterative optimization in improving 
the efficiency and performance of MEC systems. Future work could explore the application of this approach 
in more complex and heterogeneous edge computing environments to further assess its robustness and 
scalability.  
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