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Abstract

In this paper we describe the application of Formal Concept Analysis (FCA) for analysis of

data tables with different types of attributes. FCA represents one of the conceptual data mining

methods. The main limitation of FCA in classical case is the exclusive usage of binary attributes.

More complex attributes then should be converted into binary tables. In our approach, called

Generalized One-Sided Concept Lattices, we provide a method which deal with different types

of attributes (e.g., ordinal, nominal, etc.) within one data table. Therefore, this method allows to

create same FCA-based output in form of concept lattice with the precise many-valued attributes

and the same interpretation of concept hierarchy as in the classical FCA, without the need for

speci c uni ed preprocessing of attribute values.

Keywords: formal concept analysis, concept lattices, data mining, fuzzy logic

1. Introduction

The large amount of available data and the growing needs for their analysis brings up the new

challenges to the area of data mining. It is an emerging  eld where the need for more effective

and understandable methods and algorithms for data analysts is evident. The common methods

for analysis and adequate software are sometimes too complex and are able only to work with

the limited set of attributes types. Moreover, most of the classical data mining solutions have

limitations according to the understanding of data, which can limit the completeness of analysis

and make it dif cult.

On the other hand, conceptual models of data focus on their meaning and are capable of

dealing with both unstructured and structured data. One of the conceptual data mining method is

called Formal Concept Analysis (FCA, [5]), which is a theory of data analysis for identi cation of

conceptual structures among data sets. It is also known as a theory of concept lattices based on the

notion of formal context, which is represented by the binary relation between the set of objects and

the set of attributes. FCA constructs objects-attributes pairs known as the formal concepts, which

together with the hierarchical structure of them ordered by the generalization and specialization

forms a concept lattice. It is a type of concept hierarchy, where each node represents a subset of

objects (extent) with the corresponding set of attributes (intent). FCA has been found useful in

data/text mining, knowledge discovery, information retrieval, business intelligence, as well as in

other areas related to machine learning and arti cial intelligence.
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One of the problems usually related to the applications of classical FCA framework is in ex-
clusive usage of binary data tables. It means that classical FCA approach provides crisp case,
where object-attribute model is based on the binary relation (object has/has-not the attribute). In
practice, there are natural examples of object-attribute models for which relationship between ob-
jects and attributes are represented by fuzzy relations. Generally, there are two possibilities how
to deal with such issue. First option is scaling method, where each complex attribute is decom-
posed into appropriate number of binary attributes. Second option is to consider various fuzzy
generalizations of classical FCA. We mention work of B!elohlávek [1], Georgescu and Popescu
[6], Kraj!ci [10], Popescu [14], Medina, Ojeda-Aciego, Ruiz-Calviño [11], and also an approach
of Pócs generalizing all approaches based on Galois connections [13]. A survey and comparison
of some existing approaches to fuzzy concept lattices is presented in [2].

A special case of fuzzy FCA is so-called one-sided concept lattice, where usually objects are
considered as a crisp subsets and attributes obtain fuzzy values. The main advantage of such
approaches is in combination of object clusters interpretation as in classical FCA, with fuzzy
attributes for analysis of their non-binary attributes. From existing one-sided approaches we
mention papers of Kraj!ci [9], Yahia and Jaoua [3], Jaoua and Elloumi [8]. All recently known
approaches allows only one type of structure for truth degrees. However, it is reasonable that in
some data mining problems we have to consider object-attribute models with different truth value
structures for their attributes (different types of attributes).

Our main aim is to introduce one-sided fuzzy approach for processing of non-homogeneous
set of attributes within data tables applicable in data mining or similar domains. It means that this
approach can be applied for different types of attributes, e.g., qualitative attributes with possible
values 0 and 1, quantitative attributes from some real-valued interval, ordinal attributes, etc. The
possibility of this approach was presented in [13]. The main de nitions and proofs regarding the
generalization of one-sided concept lattices based on the Galois connections were introduced in
[4], some of the mathematical basics (necessary for the purposes of this paper) will be presented
here. The processing of non-homogeneous data tables (i.e., data tables with different types of
attributes) is the main difference in usage of FCA within the standard data mining solutions. The
main advantage to them is direct usage of data models with different types of attributes (not only
binary) without necessary conversion of attributes to set of binary attributes. Also, it is possible
(instead of previous fuzzy FCA approaches) to work with the different types of attributes in one
context using the proposed algorithm for creation of so-called generalized one-sided concept lat-
tices. And  nally, without the need for speci c scaling or discretization method, it is possible to
de ne any attribute from the raw data exactly in the form, as it was measured/extracted. It means
that if data analyst has own understanding of truth values structure for his attribute, our approach
allows him to work with the same structure during the whole process of analysis without the need
for changing of his semantic model (i.e., how he understands the model in his mind) of attribute,
which can be quite complex lattice-based structure (e.g., modeled directly for particular problem).

The paper is organized as follows. In section 2 we will describe the details regarding the
method of generalized one-sided concept lattices and its algorithm. Use of different types of at-
tributes in classic approaches by scaling to binary tables and bene ts of our approach are described
in section 3, together with the illustrative example, which shows the usage of our approach.

2. Generalized One-sided Concept Lattices

The main idea of fuzzi cations of classical FCA is the usage of graded truth. In classical logic,
each proposition is either true or false, hence classical logic is bivalent. In fuzzy logic, to each
proposition there is assigned a truth degree from some scale L of truth degrees. The structure L
of truth degrees is partially ordered and contains the smallest and the greatest element. If to the
propositions φ and ψ are assigned truth degrees ‖ φ ‖ = a and ‖ ψ ‖ = b, then a ≤ b means
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that φ is considered less true than ψ. In object-attribute models the typical propositions are of the

form �object has attribute in degree a". The structures of truth degrees commonly used in various

modi cations of fuzzy logic are real unit interval [0, 1], Boolean algebras, MV-algebras or more

generally residuated lattices. All this structures are equipped with binary operations simulating

implication and the logical connective and, but the important fact is that they form a complete

lattice according to the partial order de ned on them. In order to introduce the notion of the

generalized one-sided concept lattices as a fuzzy generalization of FCA we assumed the only one

minimal condition, i.e., the structures of truth degrees form complete lattices.

First, we recall some basic notions about complete lattices and Galois connections, which stay

behind the theory of concept lattices. Further, we describe generalized one-sided concept lattices

(GOSCL) and we give an algorithm for creation of GOSCL.

2.1 Mathematical preliminaries

In this subsection we brie#y describe algebraic framework for GOSCL and we give a basic

overview of the algebraic notions needed for our purposes.

As we already mentioned, theory of concept lattices is build within the framework of lattice

theory, hence we recall some basic notions. We will use the standard terminology and the notation

as in [7]. In the sequel, we will assume that the reader is familiar with the notion of partially

ordered set. Let (P,≤) be a partially ordered set and H ⊆ P be an arbitrary subset. An element

a ∈ P is said to be the least upper bound or supremum ofH , if a is the upper bound of the subset

H (h ≤ a for all h ∈ H) and a is the least of all elements majorizing H (a ≤ x for any upper

bound x ofH). We shall write a = supH or a =
∨

H . The concepts of the greatest lower bound

or in�mum is similarly de ned and it will be denoted by infH or
∧

H .

A partially ordered set (L,≤) is a lattice if sup{a, b} and inf{a, b} exist for all a, b ∈ L. A

lattice L is called complete if
∨

H and
∧

H exist for any subset H ⊆ L. Obviously, each  nite

lattice is complete. Note that any complete lattice contains the greatest element 1L = supL =
inf ∅ and the smallest element 0L = inf L = sup ∅. In what follows we will denote the class of
all complete lattices by CL.

If Li for i ∈ I is a family of lattices the direct product
∏

i∈I Li is de ned as the set of all

functions

f : I →
⋃

i∈I

Li (1)

such that f(i) ∈ Li for all i ∈ I with the �componentwise" order, i.e, f ≤ g if f(i) ≤ g(i)
for all i ∈ I . If Li = L for all i ∈ I we get a direct power LI . The direct product of lattices

forms complete lattice if and only if all members of the family are complete lattices (see [7]).

The straightforward computations show that the lattice operations in the direct product
∏

i∈I Li

of complete lattices are calculated componentwise, i.e., for any subset {fj : j ∈ J} ⊆
∏

i∈I Li

we obtain
(

∨

j∈J

fj
)

(i) =
∨

j∈J

fj(i) and
(

∧

j∈J

fj
)

(i) =
∧

j∈J

fj(i), (2)

where this equalities hold for each index i ∈ I .

Let L be a complete lattice and U 6= ∅ be a set. L-sets (L-fuzzy subsets) in universe U are

de ned as elements of LU =
∏

u∈U L. In practice the most common example are fuzzy subsets,

where values are obtained from real unit interval [0, 1]. Hence, in the sequel for a given family Lu,

u ∈ U one can consider about members of
∏

u∈U Lu as a generalization of the notion of fuzzy

subsets. In this case, any element u ∈ U can obtain the values from the corresponding lattice Lu.

Crucial role in the mathematical theory of fuzzy concept lattices play special pairs of map-

pings between complete lattices, commonly known as Galois connections. Hence, we provide

necessary details regarding Galois connections and related topics.
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Let (P,≤) and (Q,≤) be an ordered sets and let ϕ : P → Q and ψ : Q → P be maps
between these ordered sets. Such a pair (ϕ,ψ) of mappings is called a Galois connection between
the ordered sets if the following condition is ful lled:

p ≤ ψ(q) if and only if ϕ(p) ≥ q. (3)

Galois connections between complete lattices are closely related to the notion of closure op-
erator and closure system. Let L be a complete lattice. By a closure operator in L we understand
a mapping cL : L→ L satisfying:

(a) x ≤ cL(x) for all x ∈ L,

(b) cL(x1) ≤ cL(x2) for x1 ≤ x2,

(c) cL(cL(x)) = cL(x) for all x ∈ L, (i.e., cL is idempotent).

A subsetX of a complete lattice L is called a closure system inL ifX is closed under arbitrary
meets. We note, that this condition guarantee that (X,≤) is a complete lattice, in which the in ma
are the same as in L, but the suprema in X may not coincide with those from L. It was shown
in [15] that each closure system uniquely determines closure operator and similarly each closure
operator uniquely determines closure system.

From the result of Ore [12] one obtain that any Galois connection between complete lattices L
andM induces closure operators on L andM , respectively. Moreover, the corresponding closure
systems are dually isomorphic. On the other side, each pair of dually isomorphic closure systems
uniquely determine Galois connection.

As an example, we now describe Galois connections between power sets, which are the cor-
nerstones of the classical FCA (see [5]).

Let (B,A, I) be a formal context, i.e., B,A 6= ∅ and I ⊆ B×A be a binary relation between
B and A. There is de ned a pair of mappings � : 2B → 2A and � : 2A → 2B as follows:

X� = {y ∈ A : (x, y) ∈ I for all x ∈ X}, (4)

Y � = {x ∈ B : (x, y) ∈ I for all y ∈ Y }. (5)

Note that for any set S symbol 2S denotes the power set of the set S, i.e., the set of all subsets
of S. As it can be proved, this pair of mappings forms Galois connection between 2B and 2A.
On the other hand, any Galois connection between 2B and 2A can be obtained this way, thus this
approach provides the most general method of creating Galois connections between power sets.
The mentioned universality is one of the key feature of the classical FCA.

The properties of Galois connections allow us to construct complete lattices (the notion Galois
lattices is also common in the literature), which are used as a framework for general fuzzy concept
lattices. Formally, let (ϕ,ψ) be a Galois connection between complete lattices L andM . Denote
by Gϕ,ψ a subset of L ×M consisting of all pairs (x, y) with ϕ(x) = y and ψ(y) = x. De ne a
partial order on Gϕ,ψ as follows:

(x1, y1) ≤ (x2, y2) iff x1 ≤ x2 and y1 ≥ y2. (6)

Let (ϕ,ψ) be a Galois connection between complete lattices L andM . Then (Gϕ,ψ,≤) forms
a complete lattice, where

∧

i∈I

(xi, yi) =
(

∧

i∈I

xi, ϕ
(

ψ
(

∨

i∈I

yi
))

)

(7)
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and
∨

i∈I

(xi, yi) =
(

ψ
(

ϕ
(

∨

i∈I

xi
))

,
∧

i∈I

yi

)

. (8)

for each family (xi, yi)i∈I of elements from Gϕ,ψ.

Let us remark that lattices of the form Gϕ,ψ are considered as fuzzy concept lattices. In the

special case if L = 2B ,M = 2A and the Galois connection (�, �) is determined by binary relation
I ⊆ B × A, the resulting lattice G�,� is usually denoted by B(B,A, I) and it is called concept
lattice determined by formal context (B,A, I).

If one of the lattices L orM is equal to the power set 2B of some non-empty set B, we will

refer to Gϕ,ψ as one-sided concept lattices.

2.2 Theory of Generalized One-Sided Concept Lattices

As we mentioned, one-sided concept lattices are de ned via Galois connection between 2B (set

of all subsets of a given set of objects) and arbitrary complete lattice. In homogeneous cases,

i.e., if each attribute has assigned the same lattice representing the structure of truth values, this

complete lattice was considered as LA (L-fuzzy sets over the universe of the set of attributes A).

The information about the relationship between objects and attributes is expressed by L-binary

relation R : B × A → L and its interpretation is given by: object b has attribute a in degree

R(b, a) ∈ L.

In order to obtain a non-homogeneous generalization of one-sided approach for handling

object-attribute models with different truth value structures for their attributes, it was introduced

the notion of formal one-sided context, which differs only little from that commonly used (see

[4]).

A 4-tuple
(

B,A,L, R
)

is said to be a generalized one-sided formal context if the following

conditions are ful lled:

(1) B is a non-empty set of objects and A is a non-empty set of attributes.

(2) L : A → CL is a mapping from the set of attributes to the class of all complete lattices.

Hence, for any attribute a, L(a) denotes the complete lattice, which represents structure of
truth values for attribute a.

(3) R is generalized incidence relation, i.e., R(b, a) ∈ L(a) for all b ∈ B and a ∈ A. Thus,

R(b, a) represents a degree from the structure L(a) in which the element b ∈ B has the

attribute a.

Now we provide a basic results about generalized one-sided concept lattices.

Let
(

B,A,L, R
)

be a generalized one-sided formal context. Then we de ne a pair of mapping

↑: 2B →
∏

a∈A L(a) and ↓:
∏

a∈A L(a) → 2B as follows:

↑
(

X
)

(a) =
∧

b∈X

R(b, a), (9)

↓ (g) = {b ∈ B : for each a ∈ A, g(a) ≤ R(b, a)}. (10)

The pair (↑, ↓) de ned by (9) and (10) forms a Galois connection between 2B and
∏

a∈A L(a).

Consequently, for a given formal context
(

B,A,L, R
)

denote C
(

B,A,L, R
)

the set of all

pairs (X, g), where X ⊆ B, g ∈
∏

a∈A L(a), satisfying

↑
(

X
)

= g and ↓ (g) = X. (11)
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In this case, the set X is usually referred as extent and g as intent of the concept (X, g). Further
we de ne partial order on C

(

B,A,L, R
)

as follows:

(X1, g1) ≤ (X2, g2) iff X1 ⊆ X2 iff g1 ≥ g2. (12)

Let
(

B,A,L, R
)

be a generalized one-sided formal context. According to the equations (7)
and (8) from previous subsection, the set C

(

B,A,L, R
)

with the partial order de ned above forms
a complete lattice, where

∧

i∈I

(

Xi, gi
)

=
(

⋂

i∈I

Xi, ↑↓
(

∨

i∈I

gi
)

)

(13)

and
∨

i∈I

(Xi, gi) =
(

↓↑
(

⋃

i∈I

Xi

)

,
∧

i∈I

gi

)

(14)

for each family (Xi, gi)i∈I of elements from C
(

B,A,L, R
)

. This lattice is called generalized
one-sided concept lattice.

It was proved in [4] that any Galois connection between 2B and
∏

a∈A
L(a) can be obtained by

suitable generalized one-sided formal context, henceGOSCL have the same universality property
as classical FCA. As a consequence of this fact, one easily obtain that GOSCL approach contain
any existing approach to the one-sided concept lattices de ned via Galois connections as a special
case.

2.3 Incremental Algorithm for Creation of GOSCL

At the end of this section we provide an incremental algorithm for creation of generalized one-
sided concept lattice. The main idea of the presented algorithm is to create the set of all intents
corresponding to the Galois connection (↑, ↓).

Let
(

B,A,L, R
)

be a generalized one�sided formal context. For b ∈ B put R(b) an element
of

∏

a∈A
L(a) such that R(b)(a) = R(b, a), i.e., R(b) represents b-th row in data table R. Let 1L

denote the greatest element of L =
∏

a∈A
L(a), i.e., 1L(a) = 1L(a) for all a ∈ A.

Algorithm

Input: generalized context
(

B,A,L, R
)

begin

create lattice L :=
∏

a∈A
L(a)

C := {1L}, C ⊆ L, C - set of all intents

while(B 6= ∅)
{

choose b ∈ B

C∗ := C

for each c ∈ C∗

C := C ∪ {c ∧R(b)}
B := B r {b}

}

for each c ∈ C

C
(

B,A,L, R
)

:= C
(

B,A,L, R
)

∪ {(↓ (c), c)}
end

Output: set of all concepts C
(

B,A,L, R
)

Correctness of the algorithm yields from the following facts. Evidently, C is the smallest
closure system in L containing {R(b) : b ∈ B}. Since R(b) =↑ ({b}), we obtain C ⊆↑

(

2B
)

.
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Conversely, if g =↑ (X) ∈↑
(

2B
)

, then g =
∧

b∈X
↑ ({b}) =

∧

b∈X
R(b) ∈ C . Hence

C =↑
(

2B
)

.

Let us remark that algorithm step for creation of the lattice L :=
∏

a∈A
L(a) can be done in

various ways and it is up to programmer. For example, it is not necessary to store all elements of
∏

a∈A
L(a), but it is suf cient to store only particular lattices L(a), since lattice operations in L

are calculated component-wise.

3. Illustrative Example

In this section we present the illustrative example, which describes the usage of GOSCL for ap-

plication of concept lattices to the tables with different types of attributes, together with the com-

parison of our approach and standard scaling. The method of scaling, described in monography

[5], is simply the representation of complete lattices using the classical (crisp) concept lattices.

In our case we will show the representation of some well-known types of scaling (nominal and

ordinal), and also the representation of one attribute with the scale based on the general lattice.

The presented illustrative example is very simple due to fact that we only want to theoretically

show the main difference our generalized approach and classical case (where complex attributes

are preprocessed into sets of binary attributes using scaling and discretization), as well as the

bene ts of its usage. As we already mentioned, most of the fuzzy approaches cannot be used

for data tables with different types of attributes. In next example we will show that GOSCL

can work with data tables containing different lattice-based types of attributes (nominal, ordinal,

general lattice, etc.) without the need for speci c preprocessing to binary case. As we will see,

the main bene ts of our approach are in better interpretability of attributes and created concept

lattice (due to fact that attributes are described as de ned, not by the combination of many binary

attributes), as well as in the possibility to work with more complex attributes without some speci c

preprocessing. We just want to emphasis that it is only an illustrative theoretical example with

 ctive data inputs and attributes.

Nominal scale is in general represented using the lattices of type Mn, i.e., consists of n-

mutually incomparable elements with the smallest and the greatest element, respectively. This

kind of scale is appropriate for attributes in data tables, with mutually incomparable values like

names, types, etc. As example in our case we have lattice M3, which represents three incompa-

rable values, e.g., as a car species like Fiat, Ford and BMW. The visualization and representation

of this nominal scale (attribute) is presented on Fig.1 and in Table 1 respectively. The table also

shows that for correct representation of such scale we need three binary attributes, or n binary

attributes in general.

Fiat

Ford

BMW

0

1

Figure 1: Nominal scale

fiat ford bmw

Fiat ×

Ford ×

BMW ×

Table 1: Corresponding formal context

Representation of this scale by binary table means, that if an object has the value of this

attribute equal to Fiat, then corresponding row of the table should be applied for resulting formal

context in classical FCA.

The second commonly used attribute type is known as ordinal scale. In this case, the repre-

sentation of such type is chain, i.e., totally ordered set where x ≤ y or y ≤ x, for all elements
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x, y. The usage of such scale is applicable for the attributes with the ordered values like numer-
ical values, rankings, etc. As example in our case we have chain with four elements as some
values expressing the driving levels, e.g., Beginner, Advanced, Expert and Professional. The vi-
sualization and representation of this ordinal scale (attribute) is presented on Fig.2 and in Table
2 respectively. For correct representation of such scale in classical FCA framework four binary
attributes are needed, or in general it is needed to use m binary attributes for any ordinal scale of
length m. Similarly, the corresponding row should be used in formal context for classical FCA.

Beginner

Advanced

Expert

Professional

Figure 2: Ordinal scale

beg adv exp pro

Beginner ×

Advanced × ×

Expert × × ×

Professional × × × ×

Table 2: Corresponding formal context
The third presented attribute is based on general lattice scale. While we are presenting the

simple example, in general it is possible to de ne very complex attributes, e.g., interordinal, bior-
dinal, multiordinal, etc. The usage of such scales is applicable for the attributes which are usually
speci c for some analysis. As example in our case we have a lattice with  ve elements as some
values of car insurance types like Basic, Medium, Ext1, Ext2 and Full. The visualization and rep-
resentation of this general scale (attribute) is presented on Fig.3 and in Table 3 respectively. For
correct representation of such scale in classical FCA framework  ve binary attributes are needed.
It can be shown, that in general case the number of binary attributes needed for the representation
of general lattice scale withm values is from interval with the lower bound log2 m and the upper
bound m. As it can be seen, for larger and complicated lattices, the interpretation of the inputs
based on the set of m binary attributes becomes dif cult, especially for the cases without some
speci c patterns (like was in nominal or ordinal case).

Basic

Medium

Ext1

Ext2

Full

Figure 3: General lattice scale

bas med ext1 ext2 full

Basic ×

Medium × ×

Ext1 × × ×

Ext2 × × ×

Full × × × × ×

Table 3: Corresponding formal context
Numerical attributes (e.g., de ned as interval of reals) are in crisp case usually discretized into

ordinal attribute, which is then scaled into set of binary attributes (as it was shown in example of
ordinal attribute representation). As it is not different usage according to crisp case, we do not
need to describe it in illustrative example. Our approach is able to work also directly with the
numerical attribute due to fact that it is only a speci c ordinal scale for current examples in data
tables. It can be seen as ordinal scale for ordered set of attribute values available in data table
during the incremental runs of GOSCL algorithm. This is the reason why example of ordinal
scale is suf cient for the comparison of classical FCA and our approach in case of numerical
attribute. The main bene t for practical applications is that numerical attribute is used directly
(without the preprocessing based on the discretization and ordinal scale).
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Now we provide the illustrative example of the context with many-valued attributes. Consider

data table based on the values of previously introduced scales with the set of eight objects repre-

senting some imaginary information about the particular cases of car insurance contracts. Further,

there are three attributes A1, A2, A3, representing type of car, driving experiences, and type of

insurance product, respectively. The particular values of attributes are de ned on Fig.1, Fig.2 and

Fig.3. The corresponding data table is depicted in Tab.4. As one can easily see, this data table

also represents generalized one-sided formal context, as it was de ned in section 2.

A1 A2 A3

c1 BMW Professional Full

c2 Ford Advanced Full

c3 BMW Professional Ext1

c4 Fiat Advanced Medium

c5 BMW Advanced Full

c6 Ford Advanced Ext1

c7 Fiat Beginner Medium

c8 BMW Advanced Ext1

Table 4: Example of generalized one-sided formal context

For the usage of classical FCA framework, converting and preprocessing of this data table is

needed. One of the possible approaches is the usage of scaling method. In the case of attributes

in presented example scaling is described by the corresponding binary tables. Hence, this scaling

process results in input table for classical FCA framework presented in Tab.5.

fiat ford bmw beg adv exp pro bas med ext1 ext2 full

c1 × × × × × × × × × ×

c2 × × × × × × × ×

c3 × × × × × × × ×

c4 × × × × ×

c5 × × × × × × × ×

c6 × × × × × ×

c7 × × × ×

c8 × × × × × ×

Table 5: Classical formal context using binary scaling of our example

After the application of classical FCA on converted tables the resulted concepts are described

by plenty of binary attributes (12 in our example) and it can be dif cult to interpret resulting

concepts as a object-attribute pairs. On the other side, the application of GOSCL approach is

possible directly for generalized one-sided formal context described in Tab.4. In this case object-

attribute pairs consist of subsets of objects and generalized fuzzy subsets of attributes, i.e., in

our case intent is formed by a triple of attribute values. Therefore, the interpretation of resulting

generalized one-sided concept lattice can be easier and straightforward, due to directly applicable

semantics and interpretation of attributes contained in concepts.

The application of GOSCL approach for table Tab.4 gives the concept lattice shown on Fig.4

(abbreviations of some values names were used for better reading). Every concept is represented

by the rectangle with the lists of corresponding objects (extent, at the bottom of the concept

description) and values of attributes (intent, at the top of the concept description). Lines between

the concepts show relationships between the concepts in form of concept hierarchy, from the most

general concept (top of the concept lattice) to the most speci c concept (bottom of the concept

lattice).
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∅

(1,Pro,Full)

{c1}

(BMW,Pro,Full)

{c2}

(Ford,Adv,Full)

{c4}

(Fiat,Adv,Med)

{c1, c3}

(BMW,Pro,Ext1)

{c1, c5}

(BMW,Adv,Full)

{c2, c6}

(Ford,Adv,Ext1)

{c4, c7}

(Fiat,Beg,Med)

{c1, c2, c5}

(0,Adv,Full)

{c1, c3, c5, c8}

(BMW,Adv,Ext1)

{c1, c2, c3, c5, c6, c8}

(0,Adv,Ext1)

{c1, c2, c3, c4, c5, c6, c8}

(0,Adv,Med)

{c1, c2, c3, c4, c5, c6, c7, c8}

(0,Beg,Med)

Figure 4: Generalized one-sided concept lattice

{}
(Fiat,Ford,BMW,Beg,Adv,Exp,Pro,Bas,Med,Ext1,Ext2,Full)

{c1}
(BMW,Beg,Adv,Exp,Pro,Bas,Med,Ext1,Ext2,Full)

{c2}
(Ford,Beg,Adv,Bas,Med,Ext1,Ext2,Full)

{c4}
(Fiat,Beg,Adv,Bas,Med)

{c1,c3}
(BMW,Beg,Adv,Exp,Pro,Bas,Med,Ext1)

{c1,c5}
(BMW,Beg,Adv,Bas,Med,Ext1,Ext2,Full)

{c2,c6}
(Ford,Beg,Adv,Bas,Med,Ext1)

{c4,c7}
(Fiat,Beg,Bas,Med)

{c1,c2,c5}
(Beg,Adv,Bas,Med,Ext1,Ext2,Full)

{c1,c3,c5,c8}
(BMW,Beg,Adv,Bas,Med,Ext1)

{c1,c2,c3,c5,c6,c8}
(Beg,Adv,Bas,Med,Ext1)

{c1,c2,c3,c4,c5,c6,c8}
(Beg,Adv,Bas,Med)

{c1,c2,c3,c4,c5,c6,c7,c8}
(Beg,Bas,Med)

Figure 5: Classical concept lattice de ned by Table 5
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For comparison, the classical concept lattice involving new introduced binary attributes ob-

tained using pair of operators (4) and (5) applied on Tab.5 is shown on Fig.5. The better interpre-

tation of concepts can be easily seen from the fact that every concept (in classical case) should be

described by the set of more binary attributes (in our case twelve attributes), which are grouped

in sequences related to the concrete truth value of the particular attribute.

If there are many and more complex attributes, it can be very dif cult for interpretation of

the results within the classical FCA framework. For example, for attribute with the general truth

value structure with 10 different values, the number of necessary binary attributes is bounded

between log2 10 and the upper bound 10 (it depends on the structure of such attribute lattice).

It means that our approach also provide space reduction for representation of the attributes (and

input data), e.g., for 10 different values we need minimum of 4 binary attributes (in best case).

If data analyst works with the classical FCA for 10 complex attributes, it is at least 40 binary

attributes as minimum (it is usually more in practice). Therefore, data analyst should combine

results for at least 40 binary attributes in order to interpret real values of original 10 attributes in

created concept lattice.

In our small illustrative example we had 12 binary attributes for only 3 original attributes.

The difference can be seen when you imagine that every concept have 12 binary values in its

intent (instead of 3 concrete values), and you have to convert them into original values using

table for every presented example of scale. Moreover, it is necessary (for data analyst) to prepare

correct scales and their converting tables (what can be quite non-trivial for some complex general

attribute lattice) into suitable representation of complex attributes in binary representation. Our

approach allows data analyst to work directly with the attributes without speci c preprocessing

and conversion of attributes into set of binary attributes, and it helps him to interpret the results

with the attributes values as they were originally de ned. Moreover, it can be done for different

types of attributes within the one input data table.

4. Conclusion

In this paper we have presented generalized one-sided concept lattices based on the Galois con-

nections, which are applicable for object-attributes models with different types of attributes. This

approach extends the possibility of classical FCA to work with different attributes without the

need for their scaling and converting to binary tables. The resulted generalized one-sided con-

cept lattice leads to better and straightforward interpretation of object-attribute pairs contained in

concepts.

Acknowledgments

This work was supported by the Slovak Research and Development Agency under contracts

APVV-0035-10 and APVV-0208-10.

References

[1] B!elohlávek, R. Lattices of Fixed Points of Fuzzy Galois Connections. Mathematical Logic

Quarterly, 47(1), pp. 111-116, 2001.

[2] B!elohlávek, R; Vychodil, V. What is a fuzzy concept lattice? Concept Lattices and their

Applications (CLA 2005), pp. 34-45, Olomouc, Czech Republic, 2005.

[3] Ben Yahia, S; Jaoua, A. Discovering knowledge from fuzzy concept lattice. Data Mining

and Computational Intelligence, pp. 167-190, Physica-Verlag, Heidelberg, Germany, 2001.



12

JIOS, VOL. 36, NO. 1 (2012), PP. 1-12

BUTKA, PÓCSOVÁ, AND PÓCS USE OF CONCEPT LATTICES FOR DATA TABLES WITH DIFFERENT TYPES...

[4] Butka, P; Pócs, J. Generalization of one-sided concept lattices. Computing and Informatics,
forthcoming.

[5] Ganter, B; Wille, R. Formal concept analysis: Mathematical foundations. Springer, Berlin,
1999.

[6] Georgescu, G; Popescu, A. Non-dual fuzzy connections. Archive for Mathematical Logic,
43, pp. 1009-1039, 2004.

[7] Grätzer, G. Lattice Theory: Foundation. Springer, Basel, 2011.

[8] Jaoua, A; Elloumi, S. Galois connection, formal concepts and Galois lattice in real rela-
tions: application in a real classi er. The Journal of Systems and Software, 60, pp. 149-163,
2002.

[9] Kraj!ci, S. Cluster based ef cient generation of fuzzy concepts. Neural Network World,
13(5), pp. 521-530, 2003.

[10] Kraj!ci, S. A generalized concept lattice. Logic Journal of the IGPL, 13(5), pp. 543-550,
2005.

[11] Medina, J; Ojeda-Aciego, M; Ruiz-Calviño, J. Formal concept analysis via multi-adjoint
concept lattices. Fuzzy Sets and Systems, 160, pp. 130-144, 2009.

[12] Ore, O. Galois Connexions. Transactions of the American Mathematical Society, 55, pp.
493-513, 1944.

[13] Pócs, J. Note on generating fuzzy concept lattices via Galois connections. Information
Sciences, 185(1), pp. 128-136, 2012.

[14] Popescu, A. A general approach to fuzzy concepts. Mathematical Logic Quarterly, 50(3),
pp. 265-280, 2004.

[15] Ward, M. The closure operators of a lattice. Annals of Mathematics, 43(2), pp. 191-196,
1942.


