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 Observing driver distractions while driving gives valuable information to prevent 
accidents, so it is necessary to use effective monitoring methods. Deep learning is 
showing new capabilities in solving this issue. This study evaluates the results of CNN, 
YOLOv8, ResNet50 and VGG16 deep learning models as they detect drivers who are 
practising distracted driving behaviours under real-time and various lighting conditions 
(day and night). The models were trained on two datasets: the labelled State Farm 
dataset and the Driver Monitor Dataset (DMD). They successfully identified ten distinct 
categories of distraction for the State Farm dataset and five categories for the 
monitoring drivers dataset. Pre-trained models were optimized using transfer learning 
through fine-tuning to enhance detection accuracy. This paper studies related work on 
distracted driving and shares ideas for designing advanced systems that use various 
methods to improve accuracy. YOLOv8 reached an outstanding test accuracy of 98.46% 
on the State Farm dataset, proving itself superior to other methods and confirming its 
effectiveness for monitoring. In addition, YOLOv8 reached 96.46% accuracy in the 
DMD dataset, outperforming VGG16 at 90.58% and ResNet50 at 70.80%. YOLOv8 was 
able to recognise important driver behaviours in real time with a dataset of 15 subjects 
and 20 different driving postures. The research proves that the YOLOv8 model is fit for 
use in intelligent monitoring systems designed to detect distracted driving and promote 
safer driving through focused actions. 

Keywords: VGG16, ResNet50, YOLOv8, distracted driver detection, Transfer learning 

1. Introduction  
Driver distraction refers to a temporary shift of attention from driving to an unrelated task, object, or event, 
which reduces awareness and increases the risk of accidents. Distractions can be categorised into four types:  

• Visual: Looking away from the road, like checking a GPS. 
• Auditory: Hearing unrelated sounds, like a phone ringing. 
• Biomechanical: Engaging in physical actions like eating. 
• Cognitive: Having mental focus elsewhere, like daydreaming. 
The various forms of driver distraction tend to combine when people both text and talk on the phone 

and radio adjustment at the same time, which demonstrates why reliable monitoring systems should be 
implemented. Research accuracy and effective prevention strategy development require a standardised 
definition of driver distraction [1]. Road accidents occur mainly because of driver distraction which endangers 
both vehicle operators and other people using the roads [2]. Sensor-based along with traditional methods 



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES 

 

140 JIOS, VOL. 49, NO. 1 (2025), PP. 139-159 

encounter significant challenges when dealing with the diverse driving situations that occur in actual settings 
[3]. Machine learning utilises algorithms and statistical models to detect sophisticated patterns in data that 
elude rules-based systems. These systems learn from data and adjust accordingly to new patterns 
autonomously without the need for those rules to be defined manually. A major idea is supervised learning, 
which allows for the development of a link between input variables and output reactions, where one can 
predict responses for unexplored inputs [4]. 

 New advancements in deep learning together with machine learning have improved our results by 
enhancing their accuracy and capabilities [5]. Modern computer vision technology working with deep 
learning enables automatic driver action detection and classification through in-car Infrared imaging cameras 
operate effectively under both daytime and nighttime conditions [6], [7]. Random neural networks enable 
driver distraction pattern analysis through camera and computer processing unit integrated systems which 
monitor driver body positions to collect driving data. Model training mechanisms utilize the gathered data to 
detect driver behaviors including sleeping and eating and conversing [8], [9]. 

Transfer learning serves as a method for weight adjustment and model unification to boost classification 
outcomes. The reliability of CNN-based approaches has improved through recent developments [3], [10]. The 
research analyses VGG16 ResNet50 and YOLOv8 to establish driver distraction detection methods and design 
alert systems for accident prevention [8]. VGG16 neural network stores and hosts 16 layers that consist of 
thirteen convolutional layers with three fully connected layers. A complete training process took place for 
this network on the wide-ranging State Farm image dataset and the dataset for monitoring drivers. The 
convolutional layers of this model use 3x3 filters as an established image classification method [11]. The 
ResNet network allows for better image classification because the residual connections will solve the gradient 
vanishing problem easily in deep networks training. The system demonstrates exceptional feature extraction 
ability to accurately identify photos related to driver distractions [12]. Real-time object detection is a strong 
point of YOLO models which is why YOLOv8 stands out for spotting different objects in images making it an 
optimal solution for distracted driving hazard monitoring [13]. 

The field of computer vision uses object detection to identify different objects that exist within an image 
[14]. Object detection models exist as two primary types: single-stage and two-stage models. The YOLO is a 
single-stage models that make predictions about bounding boxes and class labels simultaneously through one 
network computation run without generating region proposals [15]. The two-stage detectors create candidate 
regions through their initial process before using VGG and ResNet pre-trained convolutional neural networks 
to extract and classify features [16]. The research demonstrates how object detection methods help enhance 
distracted driver detection systems [17]. 

This study introduces an approach to driver distraction detection and offers the following key 
contributions: 

• In our research, we expanded the dataset, which helps the model generalise effectively. We also 
trained the model on a wide variety of categories related to driver distraction. The method delivers 
a dual classification system that can be used to predict distracted driving in various vehicles, camera 
perspectives, and lighting including day and night. 

• We present a model that can detect distracted driving in real time. After training our system, we 
evaluated it under real-world conditions and achieved positive results. This validation demonstrates 
that our system can generalise effectively across diverse datasets, which is essential given the 
limited research on real-time distracted driving detection. 

• This study compares a CNN-based (VGG16, ResNet50, and YOLOv8) technique for the detection 
and recognition of distracted drivers to prevent road accidents and compares the results. From the 
results, we can see the effectiveness of YOLOv8 in the identification of all kinds of distracted 
behaviours, opening up the path for on-time automated systems that can give warnings for road 
safety. 

• We have effectively tackled the immediate detection of driver distraction at night. Regrettably, the 
literature on categorising the various distractions using nighttime images is minimal. This study 
utilises machine learning techniques on a comprehensive and diverse dataset to address this gap. 

The organisation of this work is outlined as follows: Section two reviews prior research and provides the 
scientific background on driver distraction detection. Section three details the methods used in the study, 
while Section four introduces a dataset. Section five introduces a proposed approach, Section six sets out and 
discusses experimental results and Section seven concludes with key ideas and results. 
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2. Related Work 
This section offers a discussion of driver distraction research, focusing on main results, methods, and 
advancements. Vaegae Naveen et al. [18] proposed using VGG16 and ResNet50 to identify distracted drivers, 
reporting accuracies of 86.1% using the VGG16 framework and 87.92% with ResNet50. They noted that 
similar poses in images can lead to different misclassifications. Additionally, our research has achieved 
improved results with VGG16 by using pre-trained weights for initialisation which has resulted in reduced 
training time. Dhiman A. et al. [19] executed research which contrasted CNN patterns with conventional 
machine-learning approaches. Their research determined how CNN surpassed logistic regression while 
beating ResNet50 and VGG16 within the chosen model selection process. The performance of deep learning 
analysis enables the exploration of potential traffic accidents to create safer traffic systems, while this research 
focuses on enhancing the real-time detection of distracted drivers using YOLOv8 technology.  

Mustafa Aljasim and Rasha Kashef [20] presented an ensemble model that unites VGG16 and ResNet50 
in their work. The model reached its maximum accuracy level of 92%. The model faces implementation 
difficulties on devices with limited computational power because it requires many parameters (138 million 
for VGG16 and 23 million for ResNet50) in addition to its complex nature. Constructing E2DR models without 
relying on predecessors is quite challenging. Recognising the importance of computing speed in real-time 
applications, YOLOv8 has achieved significant performance improvements through our research without 
significantly increasing computational complexity. Anirudh Muthuswamy et al. [3] presented an ensemble 
framework combining autoencoders with CNN models VGG19, DenseNet121 and ResNet50. The system 
adjusts to current conditions through transfer learning and data augmentation while the distraction level 
changes from one moment to the next. The framework reaches real-time driver distraction detection standards 
with the help of this system. An ensemble framework performs better than individual classifiers while an 
autoencoder combination brings equivalent performance improvements for distraction detection when used 
with the ensemble approach. The limitation of this study is its reliance on a framework that consists only of 
basic CNN models. There are no real-time object detection methods included, and the training images were 
all taken in daylight. In our proposed approach, we integrated an object detection model and trained it to 
enhance the dataset for detecting both daytime and nighttime driving. 

 A new framework appeared in Abdul Jamsheed V. et al. [21] The proposed framework consists of 
standard CNN along with deeper and augmented versions where transfer learning is applied to all parts. The 
authors evaluated their technique using the AUC dataset and obtained a remarkable accuracy rate of 97% 
through transfer learning. This work restricted the model training data to the State Farm. While there are 10 
classes for driver actions, visually similar behaviours (texting vs. phone use) may still be challenging to 
differentiate. In contrast, our research used several models to accurately identify all categories of driver 
distraction. Mittal, H and Verma, B [22]  Merged innovative methods through which convolutional neural 
networks received input from attention-based capsule networks (CapsNet). As a result, we obtained very good 
classification results, which show the merit and great potential of fusion networks. The AUC dataset partial 
gender balance (22 males, 9 females) may limit the model generalizability. The fixed input size of 128×128 
pixels may constrain performance by omitting critical visual details during resizing. The image resize has 
been set to 256 x 256 for all models used in our work. Chenghao Guo et al. [23] built a temporal information 
fusion network based on CNN architectures which detects driver distractions. The researchers present 
beneficial information about implementing fusion neural networks in image processing applications. The self-
attention mechanism in transformer methods results in significant success rates in detecting objects and 
classifying images. The limited resolution of the Brain4cars dataset limits semantic segmentation accuracy, 
unlike the datasets used in our work.  

A modified VGG architecture combined with transfer learning produced results of 96.95% accuracy 
according to Khalid Alshalfan et al. [24]. The researchers moved the weights from ImageNet into their 
network structure. The dataset consists of over 33,000 images which cover various classes. The researchers 
faced challenges while conducting their experiment because they had to distinguish similar yet distinct actions 
such as conversing with right-hand use from texting with right-hand use. The system struggles to process real 
images because of a complex parameter list. A large number of parameters may overwhelm the computational 
resources and could cause system failure. Our research focused on building a comprehensive dataset based 
on actual images and utilising advanced techniques. Liu Shugang et al. [25] proposed a method for detecting 
driver distraction using infrared (IR) images. Generally, this method addresses the specific issues of IR imaging 
by employing preprocessing techniques including image inversion, CLAHE, and histogram equalisation. In 
response to these issues, the CEAM-YOLOv7 model enhances the YOLOv7 architecture with a Global Attention 
Mechanism (GAM), uses lightweight techniques, and improves the dataset through Channel Expansion (CE) 
algorithm. Experimental evaluations demonstrated an improved mean Average Precision (mAP) of 0.736, a 

https://www.researchgate.net/profile/Mustafa-Aljasim?_sg%5B0%5D=F3PvNZOyhT4z2nlwrxPl5G7U0ep4SWf445sKsk6lKGMiqDDWa4kyKggVbXSbfh1HCJXNWBI.Umcpd56vjqMM7GixxN_BVQiq5ubxvwF6GD0-ioVpm4lk1_IuG8bTu9U5mAyaHL_b0UPjHCWsS2CRRHZkgg8M4A&_sg%5B1%5D=bayYdFRrKwNvQQ_0FyWn9eYTUSkQrMIS9_OC1h7-pkpxTt6ycCP7tkBWXKk7NYNTAShtWyY.GWp1I_XqdHGti0bhgiN8Nrz2_jMZoHlfqI_J20hplAEiSBN6MXkAPhBIpHMFghGfVZL6bdop0QWlWhFTbc5s4A&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19
https://www.researchgate.net/scientific-contributions/Anirudh-Muthuswamy-2255650678?_sg%5B0%5D=dRo-jfKU93Cucfn-GvGiUnd9NOgaukQX_l79uFbK_Bzv0C4xhJMT8HfEsY_N9ZFaV0LS-wM.X_CdQfEdySTr9SHsRL_--_0mpa2S0d-nZTYnjrKwcRYb-Bzu4CG9-bWpJQPfVBJXC0s6bG0SUisyBt8n098CGA&_sg%5B1%5D=qU8jLrNpaFw_VfMSm4WWW5xKcMeSYOfG2wvsVQXhi7kQrH4Ae1PJpeL5og70_8ngPQ604bk.VeaKVgEp5F3FsjWMZIq2Dj-a-Zfc381LrwRjX7OSASrSqQy2pL5YDrzD3mGOXqGEte4D_38AfiMRtPPRWaW9Ow&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlSGVhZGVyIn19


JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES 

 

142 JIOS, VOL. 49, NO. 1 (2025), PP. 139-159 

high processing speed (156 FPS), and reduced model complexity, making it suitable for in-vehicle deployment. 
However, the current model only focuses on four types of distraction behaviours, indicating a need for broader 
behavioural coverage; while our study analysed fifteen different types of driver distraction behaviours. 
 

3. Theoretical Background   
The following section examines CNN-based model architectures which detect driver distraction by using 
VGG16, ResNet50, and YOLOv8 transfer learning methods. 

3.1. CNNs (Convolutional Neural Networks)  
Modern image classification together with object detection and processing techniques have advanced 
considerably due to deep CNNs. This subset of deep learning consists of convolutional, pooling, and fully 
connected layers, as illustrated in Figure 1 [26]. 

• The convolutional Networks layer (ConvNets) extracts features from input images to generate the 
feature map; the convolution process maintains spatial relationships between pixels while learning 
detailed features from small regions of the image.  

• The pooling layer decreases the spatial dimensions of large input images by downsampling while 
retaining important information. Max pooling is a widely used technique that identifies the 
maximum value from input features.  

• Fully connected layer operates as the multi-layer neural network that predicts the probability of 
each value belonging to a specific class after feature extraction through convolutional layers and 
dimensionality reduction via pooling layers [27]. 

Models trained on larger datasets generally demonstrate better generalisation than those trained on 
smaller datasets [26]. Researchers have focused on developing convolutional neural networks to accurately 
detect distracted driver behaviours and ensure compatibility across different types of vehicles. However, this 
method leads to a complex model that is difficult to utilise in real-time applications such as VGG [28]. The 
emphasis has moved towards creating lightweight network architectures used in real time, such as Residual 
Networks, optimised explicitly for low-computation devices [29]. 

 

 

Figure 1. Structure of a CNN. 

3.2. Transfer Learning and Model Fine-Tuning  
Pre-trained models serve as a foundation for computer vision applications, effectively leveraging their ability 
to detect generic features in images [30]. Transfer learning entails training a base network on a primary 
dataset and adapting the acquired features for a different task and dataset within a target network. This 
process extracts accurate and concise feature sets from the training data [31]. Fine-tuning is a form of transfer 
learning where the parameters of a pre-trained model are adjusted for a particular task. For example, the final 
layer of the model trained on the source dataset can be modified and retrained with your data to classify 
custom categories. This approach helps tailor the model to your requirements and overcome the limitations 
of the pre-trained version [32]. Numerous pre-trained models, including ResNet50, VGG16, and YOLOv8, 
have been developed and widely shared. ResNet50 and VGG16 excel in convolutional neural networks for 
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image object detection, segmentation, and classification tasks, while YOLO is renowned for its speed and 
accuracy in object detection. All these models can be fine-tuned for specific applications. The details of each 
model are discussed below [33]. 

3.2.1. VGG16 model 

Figure 2 depicts the VGG16 architecture, a 16-layer version of the VGG model that includes thirteen 
convolutional layers, Max Pooling layers, and trainable Softmax layers. The network features five 
convolutional blocks, each succeeded by a Max Pooling layer. Starting with 64 channels, the number of 
channels doubles after each Max Pooling layer, culminating in 512 [34]. 

The first two blocks consist of two convolutional layers each, while the following three blocks include 
three convolutional layer. The architecture concludes with three dense layers, with a feature map size halving 
after each Max Pooling layer. The ReLU (rectified linear unit) activation function is widely applied throughout 
the network to introduce non-linearity [35]. 

 

 

Figure 2. Architecture of the VGG16. 

3.2.2. The ResNet50 Model 

ResNet50 is part of the Residual Networks family and is a CNN architecture designed to tackle challenges in 
training deep neural networks, particularly the degradation problem. ResNet50 effectively mitigates this issue 
by employing residual blocks with skip connections. The architecture utilises bottleneck residual blocks, 
which consist of 3 convolutional layers: the 1x1 layer for dimensionality reduction, the 3x3 layer for spatial 
feature extraction, and another 1x1 layer to restore the channel dimensions. Batch normalisation and ReLU 
activation functions are applied after each layer to enhance learning efficiency. The skip connections help 
preserve essential information from earlier layers, enabling the training of deeper networks [36]. 

ResNet50 is composed of 50 stacked bottleneck blocks. The initial layers perform conventional 
convolution and pooling while the residual blocks extract refined features. The final fully connected layers 
classify the image, making ResNet50 a highly efficient and accurate model for image classification tasks. The 
diagram in Figure 3 presents the architecture of the ResNet50 [37]. 

 

 

Figure 3. depicts the ResNet-50 model architecture. 
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3.2.3. YOLOv8 Model Structure 

YOLO (You Only Look Once) has revolutionised object detection with its integrated network design that 
concurrently detects object bounding boxes and classifies labels. Over years, YOLO has evolved through 
several versions, with the eighth iteration released in January 2023, highlighting significant enhancements 
[38]. 

• Backbone: YOLOv8 features an improved Cross Partial Stage (CSP) architecture that divides feature 
maps for more efficient convolution; this reduces computational complexity while preserving strong 
learning capabilities. The backbone is built on the C2f module, which is a faster adaptation of the 
CSP inspired by an ELAN structure used in YOLOv7. Additionally, the incorporation of the SPPF 
module improves performance in multi-scale detection [39]. 

• Neck: YOLOv8 includes the PAN-FPN module in its neck, which facilitates effective multi-scale 
feature fusion. This architecture merges the advantages of the PAN and FPN models, enabling the 
upper layers to capture detailed contextual information while the lower layers retain accurate 
spatial details. 

• Head: The YOLOv8 features the unique head design that separates classification from detection. 
Unlike previous anchor-based methods, it uses an anchor-free approach. This means it identifies 
objects by locating their centres and estimating the distances to the edges of the bounding boxes, 
eliminating the necessity for predefined anchors. 

Figure 4 shows the YOLOv8 model structure, chosen for its lightweight design, which allows for real-
time object detection with high performance across various scales [40].  

     

 

Figure 4. YOLOv8 Model Structure. 



JAAFAR AND ALZUBAIDI COMPARATIVE STUDY OF VGG16, RESNET50, AND YOLOV8… 
 

 

JIOS, VOL. 49, NO. 1 (2025), PP. 139-159 145 

4. Datasets 

This study classifies distracted driver behaviours using in-vehicle images from the State Farm dataset and the 
Driver Monitor Dataset, which was introduced in Kaggle. The dataset contains labelled images of ten distinct 
activities taken during the day for State Farm dataset and five classes taken during the night for the Driver 
Monitor Dataset, including normal driving, texting, phone use, Cigarette, Closed Eye, drinking, grooming, and 
conversing with passengers. 

The State Farm dataset consists of a labelled training set with 22,424 images and an unlabeled test set 
of 79,726 images. This study uses the training set, which covers ten categories of driver behaviour: normal 
driving (c0), messaging with the right hand (c1), speaking on the phone with the right hand (c2), messaging 
with the left hand (c3), speaking on the phone with the left hand (c4), adjusting the radio (c5), drinking (c6), 
reaching behind (c7), grooming (c8), and conversing with passengers (c9). Figure 5 summarises the image 
attributes for each category. The dataset is split into 80% will be allocated for training, 10% will be allocated 
for testing, and 10% will be allocated for validation to ensure effective model training and evaluation while 
minimising overfitting. The driver observation dataset includes night-time IR camera images categorised into 
five main categories for evaluating driver distraction of safety-related: seat belt, phone, cigarette, closed eye, 
and open eye. The dataset comprises the following number of images: 2039 for Seatbelt, 1495 for Phone, 
2423 for Cigarette, 2365 for Closed Eye, and 2359 for Open Eye. Figure 6 summarises the image attributes 
for each category. Because of this even distribution, detection models can be developed that are both robust 
and accurate. The dataset is allocated as follows: 80% for training, 10% for validation, and 10% for testing. 

 

 

Figure 5. Distribution of Driver Behaviour Classes in the State Farm Dataset. 

5. System Architecture Overview 

 This study investigates deep learning models such as simpler CNN, YOLOv8, ResNet50 and VGG16 for 
classifying and detecting driver distractions. The research aims to identify the most accurate and efficient 
model for monitoring driver activity and enhancing road safety by utilising transfer learning and extensive 
training on labelled datasets from State Farm and Driver Monitor. Algorithm 1 describes the functionality of 
these techniques. 
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Figure 6. Shows the distribution of the five behaviour classes in the DMD. 

Algorithm 1: Driver Distraction Detection by using the simpler CNN, VGG16, ResNet50, and YOLOv8 
models: 

1. Input: The State Farm and the Driver Monitor Datasets contain labelled images for 15 classes of 
driver distraction behaviours.  

2. Preprocessing: Load and resize all images to 256x256 pixels, normalise pixel values between 0 and 
1, and apply data augmentation techniques (rotation, flipping, zooming) to enhance dataset diversity 
and minimise overfitting. 

3. Model Selection: 
a) Model1 (Convolutional Neural Network): 

➢ Use multiple convolutional layers with ReLU activations for feature extraction. 
➢ Use max pooling to decrease the dimensionality. 
➢ Flatten the feature maps and apply dense layers. 
➢ Use softmax activation to output class probabilities. 

b) Model2 (VGG16 with Transfer Learning): 
➢ Load the pre-trained VGG16 model with weights, excluding the top classification 

layers. 
➢ Freeze all layers except the last five layers. 
➢ Flatten an output of a last pooling layer. 
➢ Add custom dense layers and batch normalisation. 
➢ Apply softmax activation for the multi class classification. 

c) Model3 (ResNet50 with Transfer Learning): 
✓ Load the pre-trained ResNet50 model with its weights, omitting the top classification 

layers. 
✓ Freeze all layers except for the last three. 
✓ Flatten the output from the residual layers. 
✓ Append custom dense layers and apply batch normalisation. 
✓ Use a softmax activation function to perform the classification.  

d) Model4 (YOLOv8 for object detection): 
✓  Load the pre-trained YOLOv8 model for object detection. 
✓ Directly pass the image through the YOLO model to output the predicted class. 

4. Use the Adam optimiser with a learning rate of 0.001, applying categorical cross-entropy as the 
accuracy and loss function in the classification tasks. 

5. Training 
✓ Divide the dataset into test, training, and validation sets. 
✓ Train the models using the following settings: 

✓ Learning rate: 0.001 
✓ Batch size: 32 
✓ Optimiser: Adam 
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✓ Monitor both training and validation accuracy after each epoch. 
✓ Implement early stopping techniques to validate loss to avoid overfitting while 

training models for 15 epochs, consistently monitoring their performance at 
every stage. 

6. Evaluate each trained model on an unseen test set, comparing metrics such as validation loss, 
validation accuracy, training loss, and training accuracy while analysing performance, primarily 
focusing on YOLO model speed and efficiency for object detection. 

7. Comparison and Analysis: The models were compared based on their accuracy in detecting 
distractions, computational efficiency, and suitability. VGG16 and ResNet50 excelled in 
classification tasks but required more processing time, while YOLO offered faster detection 
suitable for applications with a minor accuracy trade-off. 

8. Deployment Considerations: Based on the results, the most precise and effective model was 
selected for potential deployment in driver monitoring systems, with exploration into integrating 
the model to trigger warnings or interventions when driver distraction is detected. 

6. Result and Discussion  

Two open-source datasets (the State Farm and the Driver Monitoring) were 

utilised to classify fifteen distinct types of driver distractions, enabling effective 

detection across diverse lighting conditions. Deep learning models like simpler CNN, 

VGG16, ResNet50, and YOLOv8, were utilised to detect distracted driving. Both 

VGG16 and ResNet50, which were pre-trained on the State Farm dataset and DMD, 

achieved high accuracy through transfer learning. Meanwhile, YOLOv8 demonstrated 

superior speed and detection efficiency in real-time. Each model was trained for 15 

epochs, and performance was carefully monitored to prevent overfitting. Figure 7 

illustrates examples of detected distracted driving behaviours. 

 

Figure 7. illustrates a variety of driver activities. 

      The CNN architecture starts with multiple Conv2D layers that are responsible for feature extraction. Each 
Conv2D layer is paired with a MaxPooling2D layer to downsample the spatial dimensions of the data and 
includes Batch Normalisation to stabilise the activations. The network progressively increases the number of 
filters from 16 to 64, enabling the network to capture increasingly complex features. After feature extraction, 
the output is flattened and passed through two Dense layers with 512 and 1024 units, respectively, before 
reaching the final Dense layer, which has 10 neurons and uses the softmax activation function for 
classification. Table 1 summarises the model's details, highlighting that it has 29 million parameters and 
demonstrating its efficiency in image classification through effective pooling and regularisation techniques. 
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LAYER TYPE : OUTPUT SHAPE WITH PARAMETERS 
conv2D Conv2D: Output (None, 254, 254, 16) with 448 parameters 

max_pooling2D MaxPooling2D: Output (None, 127, 127, 16) with 0 parameters 
conv2D(1) Conv2D: Output (None, 125, 125, 32) with 4,640 parameters 

max_pooling2D(1) MaxPooling2D: Output (None, 62, 62, 32) with 0 parameters 
conv2D(2) Conv2D: Output (None, 60, 60, 64) with 18,496 parameters 

max_pooling2D_(2) MaxPooling2D: Output (None, 30, 30, 64) with 0 parameters 
Flatten(1) Flatten: Output (None, 57,600) with 0 parameters 
Dense(8) Dense: 512 neurons with 29,491,712 parameters 
Dense(9) Dense: 1,024 neurons with 525,312 parameters 

batch_normalization(3) Batch Normalisation: Output (None, 1,024) with 4,096 parameters 
Dense(10) Dense: 10 neurons with 10,250 parameters 

Table 1. The layers and parameters of The ConvNet Model. 

Table 2 details the CNN's performance over 15 epochs, highlighting consistent improvement in training and 
validation metrics. Initially, training accuracy was 21.30% and validation accuracy was 13.29%. By the fifth 
epoch, these values rose to 61.36% and 63.29%, respectively. Training reached 77.37% and validation at 
75.90% between the sixth and tenth epochs, with a significant loss reduction. At the fourteenth epoch, 
validation accuracy peaked at 88.74% with a loss of 0.3274. With early stopping, the final model achieved 
83.39% training accuracy and 85.81% validation accuracy, demonstrating effective generalisation. 
   

Epoch Training_Accuracy Training_Loss Validation_Accuracy Validation_Loss 
1 21.30% 2.3138 13.29% 2.2197 
2 41.65% 1.7088 38.29% 1.9599 
3 50.29% 1.4894 52.25% 1.5354 
4 56.84% 1.2452 60.81% 1.4425 
5 61.36% 1.1189 63.29% 1.0685 
6 67.01% 0.9965 72.07% 0.8172 
7 66.91% 0.9483 52.48% 1.4160 
8 73.64% 0.7969 81.08% 0.5542 
9 75.37% 0.7391 70.72% 0.8689 
10 77.37% 0.6708 75.90% 0.7258 
11 79.89% 0.6260 79.50% 0.6515 
12 80.21% 0.5717 74.55% 0.7923 
13 81.04% 0.5612 82.43% 0.5364 
14 81.63% 0.5135 88.74% 0.3274 
15 83.39% 0.4946 85.81% 0.4979 

Table 2. Training Results of the CNN Model Over Fifteen Epochs.  

Figure 8(a) illustrates the model achieving a training accuracy of 90.45% and a validation accuracy of 88.57%, 
demonstrating effective learning and generalisation. Figure 8(b) shows the loss plot, with training and 
validation losses steadily decreasing and minimal overfitting observed, attributed to the convergence of the 
curves, batch normalisation, and efficient feature extraction by the convolutional layers. 
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Figure 8. Graphs Illustrating the CNN Model Loss and Accuracy During Validation and Training. 

The VGG16 model serves as the feature extractor and is further enhanced with additional dense layers to 
classify the driver distraction State Farm dataset. This architecture combines the pre-trained VGG16 
convolutional layers with fully connected dense layers, batch normalisation, and dropout techniques to 
accomplish the final classification task, as shown in Table 3. 

 
VGG16 architecture Layers and parameter counts 

Input Layer Dimensions (256, 256, 3), 0 parameters. 
Convolutional Layers 
(Block 1) 

Two Conv2D layers (64 filters each), totalling 38,720 parameters ( with a 
total of 1,792 and 36,928 parameters), followed by MaxPooling2D 
reducing spatial dimensions to (128, 128, 64). 

Convolutional Layers 
(Block 2) 

Two Conv2D layers (128 filters each), totalling 221,440 parameters ( 
with 73,856 and 147,584 parameters), followed by MaxPooling2D 
reducing dimensions to (64, 64, 128). 

Convolutional Layers 
(Block 3) 

Three Conv2D layers (256 filters each), totalling 1,475,328 parameters 
(with 295,168, 590,080, and 590,080 parameters), followed by 
MaxPooling2D reducing dimensions to (32, 32, 256). 

Convolutional Layers 
(Block 4) 

Three Conv2D layers, each with 512 filters, account for a total of 
5,899,776 parameters, broken down as 1,180,160, 2,359,808, and 
2,359,808 respectively, followed by a MaxPooling2D layer that reduces 
the dimensions to (16, 16, 512). 

Flatten Layer Converts feature maps into a single vector (131,072 units). 
Dropout Layer Prevents overfitting by randomly disabling neurons during training. 
First Dense Layer 128 neurons, 16,777,344 parameters, followed by Batch Normalization. 
Second Dense Layer 256 neurons, 33,024 parameters, followed by Batch Normalization. 
Output Layer 10 neurons (final classification), 2,570 parameters. 

Table 3. VGG16 Pre-Trained Model with Dense Layers. 

The model was compiled using the adam optimiser and categorical cross entropy loss. It achieved optimal 
performance by leveraging feature extraction and mitigating overfitting with dropout and batch 
normalisation. The VGG model’s performance is improved until it reached a peak training accuracy of 93.03%, 
a validation accuracy of 98.42%, and a low validation loss of 0.0630 by epoch 10, as shown in Table 4 and 
Figure 9. The early stopping mechanism ensured the model was restored to this optimal state, highlighting 
its ability to generalise effectively and accurately classify driver distractions. 
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Epoch Training_Accuracy Training_Loss Validation_Accuracy Validation_Loss 
1 26.58% 2.2992 33.56% 2.2762 
2 65.95% 1.0329 69.82% 0.8151 
3 79.02% 0.5974 84.46% 0.4737 
4 85.28% 0.4547 92.12% 0.2748 
5 88.43% 0.3720 88.74% 0.3241 
6 89.85% 0.3032 92.79% 0.2049 
7 90.92% 0.2964 94.37% 0.1619 
8 90.67% 0.2850 96.17% 0.1245 
9 92.45% 0.2414 97.30% 0.1161 
10 93.03% 0.2107 98.42% 0.0630 
11 93.03% 0.2138 97.07% 0.0910 
12 94.41% 0.1654 96.40% 0.0943 
13 93.27% 0.2114 97.30% 0.0710 
14 94.13% 0.1847 97.97% 0.0570 
15 95.42% 0.1632 96.85% 0.1052 

     Table 4. Training Results of the VGG16 Model Over Fifteen Epochs. 

 

Figure 9. Graphs the Loss and Accuracy During Validation and Training for the VGG16 model. 

The ResNet50 model minimises the risk of overfitting and guarantees stable training by freezing the earlier 
layers. To improve the stability of the ResNet50 model for driver distraction detection, five dense layers with 
batch normalisation were added, as seen in Table 5. Both the deep residual and the dense layers were kept 
frozen during the training process. The ResNet50 model effectively utilises pre-trained weights, while the last 
three layers are made trainable. 

 
ResNet50 architecture Output shapes and parameter counts 

Input Layer The model starts with an input layer of size (256×256×3). A ZeroPadding2D 
layer is applied to expand the input dimensions to (262×262×3). 

Initial Convolutional 
Block 

• A Conv2D layer with 64 filters (9,472 parameters) processes the 
padded input to produce a feature map of (128×128×64). 

• This process includes batch normalisation (256 parameters) and ReLU 
activation, which contribute to stabilising the network. 

• MaxPooling2D reduces the spatial dimensions to (64×64×64). 
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Residual Block 
(conv2_block1) 

• Main Path: Two Conv2D layers with 64 filters each, BatchNorm and 
ReLU are applied, resulting in an output of (64×64×64). 

• Shortcut Path: A Conv2D layer with 256 filters (16,640 parameters) 
followed by BatchNorm. 

• Both paths are combined via an Add layer, producing a (64×64×256) 
feature map. 

Advanced Convolutional 
Block 

• A Conv2D layer with 512 filters (524,800 parameters) generates an 
(8×8×512) output, followed by BatchNorm (2,048 parameters) and 
ReLU activation. 

• The feature map is then passed through another Add layer and output 
(8×8×2048). 

Flattening and Dropout • The feature map is flattened into a vector of 131,072 units. 
• A Dropout layer is applied to reduce overfitting. 

Fully Connected Layers • A dense layer with 128 units (16,777,344 parameters) is followed by 
BatchNorm (512 parameters). 

• A second dense layer consisting of 256 units (33,024 parameters) is 
introduced, followed by Batch Normalization (1,024 parameters). 

• The final output is produced by a dense layer with 10 units (2,570 
parameters). 

Table 5. The layers and parameters of the ResNet50 model. 

The ResNet50 model is trained over 15 epochs and demonstrated significant improvement. The training 
accuracy rose from 17.73% to 65.24%, while the validation accuracy reached 74.55%. Additionally, the 
validation loss decreased notably from 11.1845 in the first epoch to 0.7474 by the 10th epoch, highlighting 
the effectiveness of transfer learning. However, performance plateaued after the 10th epoch, suggesting a 
potential need for further adjustments, like fine-tuning a learning rate or incorporating regularisation to 
enhance stability, as shown in Table 6.     

 
Epoch Train Accuracy Train Loss Validate Accuracy Validate Loss Time per Epoch (s) 

1 0.1773 2.6027 0.0968 11.1845 550 
2 0.3429 1.8421 0.1104 4.9851 564 
3 0.4342 1.6166 0.1779 5.1718 535 
4 0.4462 1.5588 0.3761 1.8280 534 
5 0.5051 1.4173 0.2973 5.7755 512 
6 0.5176 1.3586 0.3941 2.1522 531 
7 0.5462 1.2807 0.4054 1.8823 530 
8 0.5844 1.1987 0.5991 1.1240 528 
9 0.5766 1.1884 0.6937 0.8567 528 
10 0.6211 1.1193 0.7680 0.7474 506 
11 0.6125 1.1163 0.6982 0.8633 518 
12 0.6296 1.0709 0.7275 0.8295 578 
13 0.6458 1.0442 0.7793 0.6865 560 
14 0.6400 1.0412 0.6802 0.9194 559 
15 0.6524 1.0025 0.7455 0.7572 565 

Table 6. Training of the ResNet50 model across 15 epochs. 
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Figure 10 illustrates the ResNet50 model's consistent improvement in training and validation accuracy over 
15 epochs, ultimately reaching 65% and 74%, respectively. Additionally, there is a steady reduction in loss. 
However, the early epochs showed minor fluctuations in validation performance; the model stabilised by 
epoch 10, achieving a test accuracy of 77.58%. This demonstrates its strong potential for classifying driver 
behaviour, with opportunities for further enhancement through fine-tuning.  

 

 
Figure 10. Graphs the Loss and Accuracy During Validation and Training for the ResNet50 model. 

The YOLOv8 model was fine-tuned using the State Farm dataset, which includes ten behaviour classes for 
distracted drivers labelled from c0 to c9 to achieve effective detection. The model utilised pre-trained weights 
from the yolov8n-cls.pt file. Its architecture incorporates convolutional layers and C2f blocks to enhance 
feature extraction. The Adam optimiser regulates the learning rate and momentum, ensuring optimal 
performance. 

Table 7 outlines the architecture of the YOLOv8 model, which consists of 99 layers, 1,451,098 trainable 
parameters, and a computational cost of 3.4 GFLOPs. This streamlined architecture, featuring Conv2D layers 
and C2f blocks, enables lightweight yet highly accurate detection of driver distractions. 

 
Layer_Number Layer_Type Output_Shape Parameters 

0 Conv2D (None, 112, 112, 16) 464 
1 Conv2D (None, 56, 56, 32) 4,672 
2 C2f (None, 56, 56, 32) 7,360 
3 Conv2D (None, 28, 28, 64) 18,560 
4 C2f (None, 28, 28, 64) 49,664 
5 Conv2D (None, 14, 14, 128) 73,984 
6 C2f (None, 14, 14, 128) 197,632 
7 Conv2D (None, 7, 7, 256) 295,424 
8 C2f (None, 7, 7, 256) 460,288 
9 Classify (Head) (None, 10) 343,050 

   Table 7. Provides an overview of the YOLOv8 model’s architecture. 

Figure 11 shows a steady decrease in both training and validation loss over 15 epochs. This trend demonstrates 
the effectiveness of the YOLOv8 model in learning and its strong ability to generalise. The gradual 
convergence of these loss metrics towards low values indicates reduced overfitting and indicates strong 
performance in detecting driver distraction. 
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Figure 11. Graphs the Loss During Training and Validation for the YOLOv8 model 

Figure 12 demonstrates that the YOLOv8 models top-1 accuracy steadily increases, approaching nearly 99% 
by the 10th epoch. Meanwhile, the top-5 accuracy reaches 100% within the first few epochs. This robust and 
consistent performance highlights the model's high reliability for detecting driver distraction. 
 

 
Figure 12. Graphs the Accuracy During Training and Validation of the YOLOv8 Model. 

Figure 13 illustrates the normalised confusion matrix indicates for the State Farm dataset that the YOLOv8 
model achieved nearly flawless classification, attaining 100% accuracy in most classes (c1, c2, c3, c4, c5, c7, 
and c9). There were only minor misclassifications in classes c0, c6, and c8, leading to an overall test accuracy 
of 99.44%. This matrix underscores the model's strong predictive performance, as evidenced by the prominent 
diagonal values representing accurate detection for each category, thereby validating the reported accuracy. 

Figure 14 shows the models YOLOv8, VGG16, and ResNet50 applied to DMD. YOLOv8 outperforms the 
other models, recording a Top-1 accuracy of 97.7%. Its validation loss stabilises at approximately 1.06, 
making it highly reliable for real-time detection of driver behaviours such as distraction, drowsiness, or phone 
usage. Next, the VGG16 model returns a confidence of 96.3% and a slightly higher validation loss of 1.45, 
which makes for a nice compromise of performance and calculation cost. On the other hand, ResNet50 has 
the lowest accuracy rate at Top-1 (92.9%) and the highest validation loss of 1.25, indicating less generalisation 
and overfitting. From these results, YOLOv8 is the ideal selection for DMD applications that need a high level 
of precision and robustness. 
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Figure 13. The YOLOv8 model confusion matrix. 

 

Figure 14. Comparison of VGG16, ResNet50, and YOLOv8 Models in DMD: Training and Validation Losses 
and Accuracy. 



JAAFAR AND ALZUBAIDI COMPARATIVE STUDY OF VGG16, RESNET50, AND YOLOV8… 
 

 

JIOS, VOL. 49, NO. 1 (2025), PP. 139-159 155 

As shown in Figure 15, the proposed YOLOv8's performance on DMD images demonstrates its ability to 
detect crucial behaviours, including eye status (open/closed), smoking, and seatbelt wearing, in real-time 
under varying lighting and angles. This validates the effectiveness and reliability of YOLOv8 for practical 
usage in monitoring drivers. 

 

 

Figure 15. Real-Time Detection of Driver Behaviours Using YOLOv8 in DMD 

The Figure 16 displays confusion matrices for VGG16, ResNet50, and YOLOv8, which are evaluated on DMD 
in five classes: open eye, closed eye, cigarette, phone, and seatbelt. VGG16 exhibits strong overall accuracy, 
although it occasionally confuses visually similar classes, particularly between the open eye and closed eye. 
The ResNet50 performs poorly with increased abortion and low precision, especially in phone and seatbelt 
categories. On the other hand, Yolov8 achieves the best results, displaying the highest true positive rates and 
minimal confusion between squares. This underscores its robustness and suitability for real-time driver 
behaviour detection. 

 

 

Figure 16. Confusion Matrices of VGG16, ResNet50, and YOLOv8 Models on the DMS Dataset 

Figure 17 compares the performance of four models for driver distraction detection across two datasets: the 
State Farm and the Driver Monitoring. In the State Farm dataset, the accuracy attained the highest percentage 
in YOLOv8 with 98.46 %, while VGG16 recorded 97.58%, showing that both models are robust in the feature 
extraction performance. A CNN model was accuracy-wise scored 82.20% which means that increasing its 
complexity or the tuning process fine-tuning could potentially improve its performance. The ResNet50 model 
achieved a performance accuracy of 77.80%. However, when evaluated on the DMD, all models experienced 
a drop in performance reflecting the increased difficulty or variability within the DMD images. YOLOv8 
remained the top performer with 96.46%, maintaining high robustness across both datasets. VGG16 also 
showed strong generalisation with 90.58%, while CNN and ResNet50 saw larger declines, achieving 67.24% 
and 70.80%, respectively. These results highlight YOLOv8’s superior adaptability and confirm its effectiveness 
for real-world driver behaviour detection tasks. 
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Figure 17. Test Accuracy Results for the proposed work. 

The figure 18 illustrates the real-time implementation of the trained YOLOv8-based driver monitoring system. 
The algorithm was applied using a standard webcam to detect and classify driver behaviours across multiple 
individuals and scenarios. The system successfully identifies various states such as normal driving, texting 
right, drinking, and smoking, in addition to critical indicators like open eyes, phone usage, and seatbelt status. 
By providing real-time detections, the model demonstrates its worth and efficiency for practical situations, 
successfully establishing behavioural patterns in several scenarios. This confirms the model's readiness for 
deployment in live driver assistance systems aimed at improving road safety. 

 

 

Figure 18. illustrates the outcomes of the real-time identification of normal driving, texting, drinking, open 
eyes, phone usage, and seatbelt status. 
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7. Conclusion 
Distracted driving is now a major concern in recent years. This study examines three neural network 
architectures: VGG16, YOLOv8, and ResNet50, to detect distracted drivers using two open-source datasets to 
provide diversity in the number of classes as well as to predict distracted driving in different lighting 
conditions, day and night and different camera angles. The total data trained in the system exceeds 33,000 
images. The dataset was augmented and preprocessed to improve performance and transfer learning was used 
to train models over fifteen categories of distracted driving. The results show that YOLOv8 performed better 
than other models once implemented on the State Farm dataset with a resulting test accuracy of 98.46%. 
VGG16 was followed with great precision with accuracy rate of 97.58%, where effective transfer learning and 
feature extraction techniques were used. Despite the fact that CNN and ResNet50 models delivered fairly good 
results, YOLOv8 was faster and more accurate. YOLOv8 maintained its best performance after applying it to 
the DMD dataset, achieving 96.46%. VGG16 also demonstrated strong generalisation, achieving 90.58%, 
while CNN and ResNet50 achieved 67.24% and 70.80%, respectively. In totality, speed and precision in 
YOLOv8 make it the best tool for driver monitoring systems. YOLOv8 facilitates the timely detection of 
distracted behaviours, applied to real-time images captured from a camera and identifies different driver 
distraction categories successfully, supporting seamless integration into modern car dashboards that 
ultimately enhance road safety. 

The limitation of this study is that we found the VGG16 model outperforms ResNet50 when applied to 
two types of datasets. Despite ResNet50 being deeper and more complex, with over 23 million parameters, it 
requires more training epochs and better learning rate scheduling to achieve optimal performance. In our 
work, we utilised a relatively short training duration of only 15 to 20 epochs. 

Future research could consider different deep learning architectures, specifically their capacity to learn 
from a limited number of images, in order to add accuracy with fewer samples. This area has received little 
research attention. Learning based on Sample-Based Learning (SBL) has shown potential in improving 
accuracy with fewer samples. Additionally, there is a need for careful investigation into the ability to predict 
human behaviour using visual features, such as mouth movements, or physiological indicators that can 
identify anomalies in data. A hybrid approach to detecting driver distraction could be developed by combining 
deep learning techniques with an embedded search strategy. 
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