

JIOS, VOL. 49, NO. 1 (2025), PP. 39-52 39

Journal of Information and Organizational Sciences
Volume 49, Number 1 (2025)
Journal homepage: jios.foi.hr JIOS

DOI: 10.31341/jios.49.1.3 UDC 004.67Excel
 Open Access Original Scientific Paper

Model Checking Access Control Protocol for Spreadsheets
Miro Zdilar1*

1Faculty of Organization and Informatics, University of Zagreb, Varaždin, Croatia
*Correspondence: miro.zdilar@gmail.com

P A P E R I N F O

A B S T R A C T

Paper history:
Received 06 March 2025
Accepted 08 April 2025

Citation:
Zdilar, M. (2025). Model Checking
Access Control Protocol for
Spreadsheets. In Journal of
Information and Organizational
Sciences, vol. 49, no. 1, pp. 39-52

Copyright:
© 2024 The Authors. This work is
licensed under a Creative
Commons Attribution BY-NC-ND
4.0. For more information, see
https://creativecommons.org/licen
ses/by-nc-nd/4.0/

 Spreadsheets are one of the most used software systems in business and academia. Since
the first introduction of electronic spreadsheets for personal computers in 1979,
spreadsheets have significantly evolved. With recent technological advancements and
new features added, spreadsheets have become powerful computing platforms capable
of complex analysis and modelling. However, numerous publications over the years
described cases of spreadsheet errors. In focus of this research paper are spreadsheet
errors caused by unauthorized access and modifications of spreadsheets in multi-user
environments. Specifically, this paper is structured around formal verification of the
novel ABAC4S (Attribute Based Access Control for Spreadsheets) protocol designed for
prevention or detection of unauthorized modifications to spreadsheets in multi-user
environments. We utilized a model checking approach to verify ABAC4S protocol rules
for correctness.

Keywords: Spreadsheets, Spreadsheet Errors, Attribute Based Access Control Protocol,
Unauthorized Spreadsheet Modifications, Model Checking

1. Introduction
Spreadsheets are widely used and can be considered as the most successful end-user programming systems.
End-user programming systems allow end-users to build and execute powerful computer programs without
the use of traditional programming languages and supporting development tools. It has been estimated that
the number of end-user programmers outnumber traditional software programmers [1]. Spreadsheets are used
in almost all companies in the US and Europe [2]. Modern enterprises use spreadsheets to support key
processes such as capacity planning, financial reporting, stakeholder analysis, risk management, performance
calculation, data transformation, cash-flows analysis, time-series transformations and simulations [3]. Despite
their great success and importance, numerous publications over the years have described the importance of
spreadsheet errors as well as the extent to which it has caused significant financial and reputational risks to
individuals and organizations [4]. The European Spreadsheet Risk Interest Group (EuSpRIG), a non-profit and
voluntary organization maintains a list of horror stories that illustrate problems with uncontrolled usage of
spreadsheets [5].

In focus of this research paper are spreadsheet errors caused by unauthorized access and modifications
of spreadsheets in multi-user environments. Specifically, this paper is structured around formal verification
of the novel ABAC4S (Attribute Based Access Control for Spreadsheets) protocol designed for prevention or
detection of unauthorized modifications to spreadsheets in multi-user environments. In [6], we have
introduced Attribute Based Access Control conceptual model for spreadsheets. Herein we will provide
thorough model checking of ABAC4S protocol and verify it for correctness. The remainder of this paper is
organized as follows.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

40 JIOS, VOL. 49, NO. 1 (2025), PP. 39-52

Section 2 provides a summary of related work in the field of automated detection of spreadsheet errors
and controlled access for spreadsheet users in modern enterprises. In Section 3, the research methodology is
presented structured around model checking of the proposed ABAC4S protocol. Afterwards, in Section 4, the
ABAC4S protocol is presented with descriptions of model components and protocol rules. In Section 5, a brief
introduction to model checking concepts is presented. In Section 6, formal verification of the proposed
ABAC4S protocol with a symbolic model checker is provided. In Section 7, research results are discussed
within the context of the overall spreadsheet research. Finally, in Section 8, the conclusions and reflections
on research and verification procedures conducted are provided with proposals for future research
opportunities.

2. Related Work
The tremendous success of spreadsheets and impact of spreadsheet errors triggered significant interest of the
research community. In the following a critical review of the literature focused on taxonomy of spreadsheet
errors, automated detection of spreadsheet errors, and controlled access for spreadsheet users in modern
enterprises is provided.

2.1. Taxonomy of spreadsheet errors
Understanding types of spreadsheet errors is an important aspect of spreadsheet research and key to effective
detection and prevention of spreadsheet errors.

Early studies listed types of errors detected without classification of spreadsheet errors. Brown and Gould
[7] conducted reviews and experiments with volunteers experienced with spreadsheet use and development.
As a part of the experiment, volunteers had to complete three tasks and create three different spreadsheets
according to the instructions. Authors measured time required to complete the tasks, accuracy and visual
appearance of final solution. An interesting part of this experiment was the use of a key logger [8] that
recorded keystrokes of participants during the experiment and allowed insights to user behavior during
completion of given tasks. Regardless of the limited number of participants, the experiment identified errors
in formulae, mistyping, rounding and logical errors.

Galetta et al. [9] introduced two classes of spreadsheet errors. Authors distinguished between domain
errors and device errors. The domain refers to the spreadsheet application area (e.g., accounting), while the
device refers to the spreadsheet technology itself. For example, a mistake in logic due to a misunderstanding
of depreciation is a domain error, but entering the wrong reference in the depreciation function SLN is a
device error. Authors conducted an experiment with thirty accounting experts and thirty students to seek up
to two errors introduced in each of six spreadsheets used during experiment. While accounting experts
performed better in detection of domain errors, students demonstrated comparable performance in detection
of device errors.

In one of the first attempts to offer a complete classification of errors, Panko and Halverson distinguished
between quantitative and qualitative errors [10]. Quantitative errors are related to the current version of the
spreadsheet, while qualitative errors refer to risky practices that might lead to an error in later stages of a
spreadsheet’s lifecycle. Panko and Halverson further divided quantitative errors into three subcategories: (i)
mechanical errors, due to mistakes in typing or pointing, (ii) logic errors, due to choosing the wrong function
or creating the wrong formula, and (iii) omission errors, due to misinterpreting the situation to be modeled.
In critics to the above presented classification, Powell at al. [11] noted that this proposed classification does
not take into account context of spreadsheet use and how each error was committed.

The taxonomy of errors developed by Rajalingham et al. [12] is one of the first attempts that introduced
different spreadsheet user roles. This taxonomy is focused on user-generated errors and differentiates between
developer and end-user errors. End-users are further classified as data inputter and interpreter. However, the
given taxonomy classifies quantitative accidental errors as omission, alteration or duplication, without taking
into consideration the possible errors caused by unauthorized changes in multi-user environments.

In recent years, researchers identified the need to relate types and occurrences of spreadsheet errors with
the quality of the spreadsheets. Intuitively, a higher incidence of spreadsheet errors suggests that the overall
quality of spreadsheet is low. O’Beirne presented an overview of information quality and data quality within
the context of spreadsheets [13]. The author presented a comprehensive list of information quality attributes
in the context of spreadsheet programs. In addition, the author presented checks and control procedures for
spreadsheet information and quality processes.

Further refinement in spreadsheet quality research provided a set of domain specific metrics, used to
measure concrete spreadsheet characteristic [14]. The presented quality model for spreadsheets is based on

ZDILAR MODEL CHECKING ACCESS CONTROL PROTOCOL…

JIOS, VOL. 49, NO. 1 (2025), PP. 39-52 41

the widely accepted ISO/IEC 9126 international standard for software product quality [15]. Authors provided
a comprehensive analysis of ISO/IEC 9126 standard and mapped relevant quality attributes to spreadsheets.

2.2. Automated detection of spreadsheet errors
An automated method to infer data types from a spreadsheet was presented by Erwig and Burnett [16]. The
proposed method for inferring types from spreadsheets is based on the concrete notion of units instead of the
abstract concept of types. Authors used header information given by spreadsheets to derive units. In
continuation of the presented concept around units, Ahamd et al. developed a type system for statically
detecting spreadsheet errors [17]. The authors named the proposed model “unit checking” and presented a
collection of rules that help identify weaknesses in spreadsheets that are likely to be errors. This model also
relies on the concept of the header that defines common units for grouped cells. The working prototype based
on the proposed model was developed for a specific version of Microsoft Excel spreadsheet application using
the UCheck tool [18]. Authors validated performance of the UCheck tool in an experiment conducted with
high school teachers [19]. Results of this experiment indicated that the tool effectively supports users in error
correction.

High incidents of spreadsheet errors have led to a series of commercial software packages. Nixon and
O’Hara provided structured assessments of several commercial auditing tools [20]. The test was designed to
identify the success of software tools in detecting different types of errors, to identify how the software tools
assist the auditor and to determine the usefulness of the tools. The assessment conducted by Nixon and O’Hara
included the built-in auditing tool in Microsoft Excel spreadsheet [20]. Excel’s built-in formula auditing tool
supports visualization of spreadsheet formulas and error checking generated as result of formula evaluation.

In addition to research related to automated error detection, important to note is the work of Abraham
and Erwig related to automation of spreadsheet testing [21]. The authors followed the original concept of
mutation testing for general purpose programming languages and developed mutation operators for
spreadsheets that allow generation of test cases.

Spreadsheets allow users to arrange data and metadata freely in a human readable format. To extract
their content with automated tools, data practitioners need to perform manual inspections and data
preparations. Mondrian system assists users with detection of multiregion layout templates in spreadsheets
[36]. Mondrian comprises an automated approach to detect multiple data regions and an algorithm to
compute layout similarity and identify templates with potential spreadsheet errors.

Recent spreadsheet research is focused on the application of large language models to improve
spreadsheets quality. A team of researchers from Microsoft Corporation developed the FLAME language model
for spreadsheet formulae [22]. FLAME uses the Microsoft Excel specific formula tokenizer and other
techniques to achieve competitive performance with a substantially smaller model (60 million parameters)
and training dataset, compared to other large language models such as Codex. Researchers used a training
dataset of 972 million formulas extracted from a corpus of 1,8 million Excel workbooks. FLAME was evaluated
on three different tasks for Excel formulas: last-mile repair, autocompletion and syntax reconstruction. The
presented FLAME language model outperformed larger language models, such as Codex-Davinci (175 billion
parameters), Codex-Cushman (12 billion parameters), and CodeT5 (220 million parameters), in 6 out of 10
experimental settings [22].

2.3. Access control for spreadsheets
Access control and authorization are key components of information technology systems in multi-user
environments. Korman et al. evaluated existing access control models in the context of different business
scenarios [23]. They also provided a unified metamodel capable of expressing access policies for all evaluated
models. In [6] we have conducted an evaluation of common access control models, as well as their suitability
for spreadsheet use in multi-user environments. Below is a summary of ABAC (Attribute Based Access Control)
model advantages for spreadsheet applications, while detailed evaluation is provided in [6]:

• The ABAC model is based on dynamic attributes, where object attributes fit to the proposed model
of spreadsheet resources and corresponding attributes.

• A hierarchy of spreadsheet resources can be modelled with ABAC conditions and access rules
determinations. This property prevents conflicts in access resolutions and simplifies prototype
implementation.

• Deployment opportunities for ABAC with spreadsheets are flexible and allow early prototype
implementation as a corrective access control system. This minimizes impact on users and generally
accepted spreadsheet user interface.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

42 JIOS, VOL. 49, NO. 1 (2025), PP. 39-52

• Complexity of the ABAC model for spreadsheets depends on the number of spreadsheet resource
attributes.

• The dynamic nature of modern cloud-powered spreadsheets and extensions to spreadsheet formula
language fits nicely to ABAC’s dynamic attribute concept. Potential new functionalities and modules
added in cloud-powered spreadsheet can be integrated within existing ABAC concepts.

The National Institute of Standards and Technology (NIST) published a guideline with definitions for the
ABAC model [24]. The guideline provides definitions and considerations for using ABAC to improve
information sharing and design of systems, while maintaining control of that information. The concepts and
terminology for ABAC presented in that document have been instrumental for the design and verification of
ABAC4S protocol presented in this paper.

3. Research Methodology
The research methodology in this paper follows the Design Science Research approach [35]. We started our
research journey with comprehensive literature review to understand existing knowledge base. We followed
a focused approach on work related to taxonomy of spreadsheet errors and automated methods applied to
detection and prevention of spreadsheet errors as described in Section 2.
Based on the existing knowledge base and literature review conducted, we identified research opportunities
to address unauthorized spreadsheet changes and errors in multi-user environments. Aligned with the Design
Science Research approach and requirements to control user interaction with spreadsheets in multi-user
environments, we formulated our first research goal:

• RG1 – Develop formal description of access control protocol capable of controlling user’s interaction
with spreadsheets in multi-user environments.

In search of the appropriate access control protocol, we further investigated the concept of spreadsheets
represented as collection of resources [6]. The first research goal is the basis for the second research goal, in
that it provides specification of the access control protocol that can be formally verified. The next step in our
research is to evaluate access control properties with a model checking tool, which leads to our second
research goal:

• RG2 – Evaluate correctness property of the proposed access control protocol with model checking
approach.

To address the second research goal further, we used NuSMV model checker to verify correctness
property of the proposed access control protocol [25]. The selection of the NuSMV model checker has been
primarily driven by the richness of supported SMV language and its capability to specify hierarchical SMV
modules that correspond to the natural hierarchy of spreadsheet resources.
Even though presented research methodology is structured around two formulated research goals, we
followed iterative research through experimentation and simulation to refine outcomes of the conducted
research. Initial results of the model verification and provided counterexamples were instrumental for access
protocol improvements and protocol rules redesign. Appendices, if included, follow the main text. Each
appendix should be lettered, e.g., "Appendix A''. To properly format appendix title, use Heading Unnumbered
style from the styles menu.

4. ABAC4S
ABAC4S protocol is designed to control unauthorized activities on spreadsheets in multi-user environments.
The core idea of the proposed protocol revolves around spreadsheet representation as a collection of resources
[6]. In modern cloud-based spreadsheets, resources are building blocks manipulated with a native spreadsheet
formula language or custom computational modules constructed with external programming languages.
Spreadsheet resources and their attributes are bound by ABAC4S rules and allow granular control of resource
states during a spreadsheet’s lifecycle. The ABAC4S protocol specification consists of five distinct parts [27]:

1. The Service to be provided by the protocol
2. The Assumptions about the environment in which the protocol is executed
3. The Vocabulary of data flows used to implement the protocol
4. The Encoding (format) of each data flows in the vocabulary
5. The Procedure rules guarding the consistency of data flows and correctness of Service to be provided

by the protocol

ZDILAR MODEL CHECKING ACCESS CONTROL PROTOCOL…

JIOS, VOL. 49, NO. 1 (2025), PP. 39-52 43

4.1. ABAC4S Protocol Service Specification
The ABAC4S protocol is defined on the conceptual level of modern cloud-based spreadsheets and is agnostic
form specific commercial implementations of spreadsheets. In addition, ABAC4S protocol specifications
provided in this paper are based on set-oriented data structures and data flows suitable for translation to
model checking tools and verification of correctness for protocol rules.

4.2. Assumptions about ABAC4S Protocol Environment
The environment in which the protocol is executed consists of the ABAC4S conceptual model and four generic
user roles typically found in multi-user environments: developer, tester, analyst and manager. The ABAC4S
protocol is not restricted to only 4 specified users and can be easily extended to unlimited number of user
roles depending on specific deployment needs. Four generic user roles are selected to limit the complexity of
the model and prevent state space explosion during model checking. The ABAC4S protocol definition in this
paper focuses on accurate and complete specification of data flows and procedure rules, while implementation
for protocol execution on commercial spreadsheets is left for specific deployment scenarios.

4.3. ABAC4S Protocol Vocabulary
The spreadsheet conceptual model is visually presented in Figures 1 and 2, followed with the model of
ABAC4S access rules for spreadsheets presented in Figure 3. Detailed description of spreadsheet conceptual
model is provided in original paper [6].

Figure 1. Metamodel of spreadsheet resources and associated attributes [6].

Spreadsheet

Spreadsheet_Attrs

Add-in

Add-in_Attrs

Worksheet

Worksheet_Attrs

1

1..*

1 0..*

NamedObject

NamedObject_Attrs

1

0..*

VisualObject

VisualObject_Attrs

Table

Table_Attrs

Cell

Cell_Attrs

LabelCell

LabelCell_Attrs

ValueCell

ValueCell_Attrs

InputData

InputData_Attrs

Formula

Formula_Attrs

1

1

1

1

0..*

0..*

1..*

0..*

1 0..*

1

0..*

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

44 JIOS, VOL. 49, NO. 1 (2025), PP. 39-52

Figure 2. Spreadsheet formula metamodel [6].

Figure 3. ABAC4S access rules for spreadsheets [6].

Spreadsheet stages during lifecycle phases are modelled with finite sequence of state transitions as follows:

𝑆0
∆𝑆0(𝑀𝑈)
→ 𝑆1

∆𝑆1(𝑀𝑈)
→ 𝑆2

∆𝑆2(𝑀𝑈)
→ , … , 𝑆𝑒. (1)

where 𝑆0 is the initial state of the spreadsheet (“first creation”), 𝑆𝑒 is the final state of spreadsheet (“end of
lifecycle”), ∆𝑆𝑗(𝑀𝑈) are transitions between spreadsheet states caused by modifications 𝑀 of user 𝑈 on
spreadsheet resources 𝑆𝑅.

Formula

Formula_Attrs

Expression

Expression_Attrs

Function

Function_Attrs

1

1

0..1

*

ParentExpression

SubExpression

Operator

Operator_Attrs

Literal

Literal_Attrs

NamedObject

NamedObject_Attrs

Reference

Reference_Attrs

SingleReference

SingleReference_Attrs

RangeReference

RangeReference_Attrs

NamedReference

NamedReference_Attrs

1 Access Rule1..*

SpreadsheetResource

SpreadsheetResource_Attrs

AccessMode
1

Subject

Subject_Attrs

Environment

Enviornment_Attrs

1

Access Control

Policy 1

Defines EvaluatesTo

0..* 1..*1..*

*

SubRule

ParentRule

0..1

Preventive

ValueType: Permits | Prohibits

Detective

ValueType: Valid | Non-valid

ZDILAR MODEL CHECKING ACCESS CONTROL PROTOCOL…

JIOS, VOL. 49, NO. 1 (2025), PP. 39-52 45

𝑈 ∈ [𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑟, 𝑡𝑒𝑠𝑡𝑒𝑟, 𝑎𝑛𝑎𝑙𝑦𝑠𝑡,𝑚𝑎𝑛𝑎𝑔𝑒𝑟]. (2)

Modifications 𝑀 are determined by comparing affected spreadsheet resource at states 𝑆𝑗+1 and 𝑆𝑗. Transitions
∆𝑆𝑗(𝑀𝑈) are modeled as triplets with the following structure:

∆𝑆𝑗(𝑀𝑈) = (𝑈,𝑀, 𝑆𝑅𝑗). (3)

In the proposed ABAC4S protocol vocabulary, access rules are modelled as quadruples with the following
structure:

(𝑈, 𝐴, 𝑆𝑅, 𝐸). (4)

A is a set of actions that user might perform on spreadsheet resource represented with following enumerated
list:

𝐴 ∈ [𝐶𝑅𝐸𝐴𝑇𝐸, 𝑅𝐸𝐴𝐷,𝑈𝑃𝐷𝐴𝑇𝐸, 𝐷𝐸𝐿𝐸𝑇𝐸]. (5)

These actions are usually denoted with the CRUD acronym. The proposed ABAC4S protocol is not limited to
four CRUD actions, and if needed in specific deployment scenarios, the number of actions could be reduced
or extended.

𝑆𝑅 represents a set of spreadsheet resources and corresponding resource attributes on which user 𝑈 can
perform action 𝐴.

𝐸 are dynamic environmental conditions, independent of the users and the spreadsheet resources that
may be used as attributes at decision time to influence an access decision. Examples of environmental
conditions include time, location, threat level, or temperature [6].

4.4. ABAC4S Protocol Encoding
For the ABAC4S protocol definition presented herein, we denoted spreadsheet transitions and access rules as
abstract set-oriented data structures. This will allow us to express procedure rules with a specific order of
evaluation between sets and model hierarchies between spreadsheet resources with set compositions. Abstract
data structures presented in the protocol definition can be transformed into programming language data
structures or encoded to other formats like XML (eXtensible Markup Language) or JSON (JavaScript Object
Notation) messages during specific implementation scenarios.

4.5. ABAC4S Protocol Rules
The procedure rules for the ABAC4S protocol are defined as follows:

Rule 1 – Priority of Actions
Actions assigned to users are evaluated in the following order:

𝐷𝐸𝐿𝐸𝑇𝐸 > 𝐶𝑅𝐸𝐴𝑇𝐸 > 𝑈𝑃𝐷𝐴𝑇𝐸 > 𝑅𝐸𝐴𝐷. (6)

Delete action has the highest priority. For example, if the access rule permits the user to delete a specific
spreadsheet resource, the user is also allowed to create, update, and read the corresponding spreadsheet
resource.

Rule 2 – Access Rule Inheritance
All spreadsheet’s resources inherit access rules applicable to their parents.

Rule 3 – Spreadsheet Valid State
Spreadsheet is in valid state 𝑆𝑗+1, iff Rule 1 (Priority of actions) and Rule 2 (Access Rule Inheritance) are
satisfied for all affected spreadsheet resources during spreadsheet state transition from 𝑆𝑗 to 𝑆𝑗+1.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

46 JIOS, VOL. 49, NO. 1 (2025), PP. 39-52

5. Model Checking
Model checking is a model-based verification procedure designed to automatically verify properties of finite
state systems [26], [28]. The core principle behind a model checking procedure is exhaustive exploration of
states to verify whether a given system model satisfies certain properties.

Transition state machines are used in model checking to represent the behavior of the system. A common
method for representing transition state machines are Kripke structures. A Kripke structure 𝑀 is represented
as an ordered sequence of four objects:

 𝑀 = (𝑆, 𝐼, 𝑅, 𝐿). (7)

𝑆: finite set of states
𝐼: set of initial states 𝐼 ⊆ 𝑆
𝑅: transition relation 𝑅 ⊆ 𝑆 × 𝑆
𝐿: interpretation function 𝐿: 𝑆 → 2𝐴𝑃

For each state 𝑠 ⊆ 𝑆 there is a possible successor state 𝑠′ ⊆ 𝑆 specified with transition relation 𝑅. The
interpretation function 𝐿 labels each state with Atomic Propositions (𝐴𝑃) which are Boolean variables and
the evaluations of expressions in that state [26]. A finite path 𝜋 from some state 𝑠 𝜖 𝑆 is a sequence of states
𝜋 = 𝑠0, 𝑠1, … , 𝑠𝑛 such that 𝑠0 = 𝑠 and 𝑅(𝑠𝑖 , 𝑠𝑖+1) holds for all 0 ≤ 𝑖 < 𝑛 [26].

Emerson and Clarke introduced model checking [29] and Computational Tree Logic (CTL) as a
combination of linear temporal logic and branching-time logic [30]. In model checking, temporal logic is used
to express system specifications (properties) denoted as 𝜙. CTL combines path quantifiers and temporal
operators to describe events associated with single computation path.

CTL path quantifiers are as follows:
• 𝑨 – for All paths from a certain state on
• 𝑬 – there Exists at least one single path from a certain state

CTL temporal operators are as follows:
• 𝑿 𝜙 – 𝜙 holds neXt time
• 𝑭 𝜙 – 𝜙 holds sometime in the Future
• 𝑮 𝜙 – 𝜙 holds Globally in the future
• 𝑝 𝑼 𝜙 – 𝜙 holds Until 𝜙 holds

CTL allows modeling complex behavior of the systems, where temporal operator must always be
preceded by a path quantifier. Figure 4, adapted from [31] visually represents the meaning of CTL path and
temporal operators.

Finally p Globally p neXt p p Until q

(a) AF p

(b) AG p (c) AX p (d) A p U q

Finally p Globally p neXt p p Until q

(e) EF p (f) EG p (g) EX p (h) E p U q

Figure 4. CTL path and temporal operators [31].

ZDILAR MODEL CHECKING ACCESS CONTROL PROTOCOL…

JIOS, VOL. 49, NO. 1 (2025), PP. 39-52 47

In practical model checking applications, system model 𝑀 is described semantically with a Kripke structure
and the specifications (properties) are described with formulae 𝜙 in the applicable form of temporal logic.
The decision procedure conducted by a model checker tool decides whether 𝑀 ⊨ 𝜙. Operator ⊨ meaning is
“specification 𝜙 is satisfied by structure 𝑀“.

6. Model Checking the ABAC4S Protocol
We performed model checking of the proposed ABAC4S protocol for spreadsheets with the NuSMV symbolic
model checker [25]. Original SMV model checking tool has been developed at the Carnegie Mellon University
[32]. NuSMV is a modern variant of original SMV symbolic model checker with compatible SMV language
syntax and advanced architecture that allows textual construction of hierarchical models and verification of
very large number of states [33].

The system model is a transition system with a set of states and transition relations that specifies the
behavior of the system. In SMV language, a system is defined as a module, beginning with the keyword
MODULE. The module consists of an encapsulated collection of declarations (such as VAR, INIT, ASSIGN, etc.)
that depend on the nature of the analyzed problem and specific parameters. A module’s state variables
declaration begins with the keyword VAR. In general, model checker tools are limited to only few data types
and the SMV language allows for Boolean values, enumeration of constants, or other modules for constructing
hierarchical models. The set of initial states can be specified with simple logical statements or conjunctions
of equations associated with the initial state of the system. The transition relation of a module starts with the
keyword ASSIGN and may be limited to single statement or complex set of equations. An assignment
statement is structured as the next step evaluation, where the right-hand side allows the construction of
complex expressions built with Boolean operators, integer arithmetic and case constructs with conditions.

The main challenge during the modeling of the spreadsheet conceptual model with the SMV language
has been the abstraction of the provided model (Figures 1 and 2) with suitable SMV constructs. We
represented each spreadsheet resource with a corresponding SMV module. The hierarchy of SMV modules
follows the natural hierarchy of spreadsheet resources defined in the spreadsheet conceptual model (Figures
1 and 2).

Figure 5. Hierarchy of spreadsheet resources as SMV language modules.

In addition, we wanted to explore all possible access role assignments and evaluate ABAC4S protocol for all
combinations of four defined user roles and CRUD actions. In such a scenario, correct protocol behavior should
detect potential conflicts and defined priority of actions and access inheritance rules should ensure correct
resolution of detected conflicts in the consecutive model state. Below is the hierarchical model of spreadsheet
resources specified in SMV.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

48 JIOS, VOL. 49, NO. 1 (2025), PP. 39-52

MODULE spreadsheet_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

add_in:add_in_t();

named_object:named_object_t();

worksheet:worksheet_t();

MODULE add_in_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

MODULE named_object_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

MODULE worksheet_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

table:table_t();

cell:cell_t();

MODULE table_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

MODULE cell_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

formula:formula_t();

MODULE formula_t()

VAR

role:{developer,tester,analyst,manager};

a:{create,read,update,delete};

MODULE main

VAR

spreadsheet:spreadsheet_t();

As listed in the above specifications, we utilized the capability of SMV language and build hierarchical
modules that correspond to the natural hierarchy of spreadsheet resources. The above modules represent all
possible state transitions ∆𝑆𝑗(𝑀𝑈) for each spreadsheet resource, assigned users and CRUD actions. To prevent
state space explosion, we abstracted and simplified each spreadsheet resource to a bare minimum. For
example, an additional two attributes on module spreadsheet_t() can be added with an enumerated list
of constants, and a next case assignment for added attributes sharing the same structure with simplified model
specification.

MODULE spreadsheet_t()

VAR

attributes:{spreadsheet_attribute1,spreadsheet_attribute2};

role:{developer,tester,manager};

a:{create,read,update,delete};

add_in:add_in_t();

named_object:named_object_t();

worksheet:worksheet_t();

Transitions to new states are modeled in SMV with next-case statements within the ASSIGN language
construct. ABAC4S protocol rules for priority of actions and access rule inheritance are specified with a

ZDILAR MODEL CHECKING ACCESS CONTROL PROTOCOL…

JIOS, VOL. 49, NO. 1 (2025), PP. 39-52 49

complex conjunction statement from relevant spreadsheet resource properties. As visually represented in
Figure 5, there are six conjunction statements (𝜙𝑠𝑛, 𝜙𝑠𝑤, 𝜙𝑠𝑎, 𝜙𝑤𝑡 , 𝜙𝑤𝑐 , 𝜙𝑐𝑓) that correspond with the
hierarchical representation of spreadsheet resources. In order to correctly specify both protocol rules for
priority of actions and access rule inheritance, the correct transition to the next state for the hierarchically
lowest spreadsheet resource (formula) should be evaluated as a composition of all statements on the path to
the root spreadsheet resource (𝜙𝑐𝑓, 𝜙𝑤𝑐 , 𝜙𝑠𝑤). Due to complexity of specifications and limited space in this
publication, a fragment of SMV code for 𝜙𝑠𝑤 next-case conjunction statement that specify logic for priority of
actions and access inheritance protocol rules is listed below. The complete SMV protocol specification can be
fetched from author’s GitHub repository at [34].

next(spreadsheet.worksheet.a) :=

case

spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=read) & (spreadsheet.worksheet.a in \

update,create,delete}): read;

(spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=update) & (spreadsheet.worksheet.a in \

read,create,delete}): update;

(spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=delete) & (spreadsheet.worksheet.a in \

read,create,update}): delete;

(spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.a=create) & (spreadsheet.worksheet.a in \

read,update,delete}): create;

TRUE : spreadsheet.worksheet.a;

esac;

After finalization of model construction and formal specification of the spreadsheet conceptual model and
ABAC4S protocol rules, we conducted model checking with the NuSMV model checker. We utilized NuSMV
in interactive mode, and executed CTL temporal logic property checks in NuSMV built-in shell.

CTL temporal logic specification with the following structure has been used to verify correctness of
protocol rules for priority of actions and access inheritance:

𝐴𝐺 (𝑝 → 𝐴𝐹 𝑞). (8)

 The CTL temporal logic specification above should be interpreted as “for all execution paths globally, when
condition 𝑝 occurs it is always followed by condition 𝑞”. If we apply the above generic CTL specification i.e.
for the table spreadsheet resource, the specific CTL syntax is as follows:

check_ctlspec -p "AG \

((spreadsheet.role=spreadsheet.worksheet.role) & \

(spreadsheet.worksheet.role= \ spreadsheet.worksheet.table.role) & \

(spreadsheet.a=read) & (spreadsheet.worksheet.a=read) & \

(spreadsheet.worksheet.table.a in {update,create,delete}) \

-> AF spreadsheet.worksheet.table.a=read)"

As a result of the above CTL temporal logic specification check, the NuSMV model checker confirms that the
above specification is satisfied by given model:

NuSMV >

-- specification AG (((((spreadsheet.role = spreadsheet.worksheet.role &

spreadsheet.worksheet.role = spreadsheet.worksheet.table.role) & spreadsheet.a =

read) & spreadsheet.worksheet.a = read) & spreadsheet.worksheet.table.a in

(update union create) union delete) -> AF spreadsheet.worksheet.table.a = read)

is true

NuSMV >

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

50 JIOS, VOL. 49, NO. 1 (2025), PP. 39-52

NuSMV model checker evaluates the above CTL specification to true, thus formally verifying correct conflict
resolution and correct behavior of two protocol rules in case of a table spreadsheet resource. Appropriate CTL
specifications for other spreadsheet resources follow the same generic structure, however conjunction
statements are growing in complexity for hierarchically lower spreadsheet resources due to longer evaluation
path to the root spreadsheet resource.

7. Discussion
Spreadsheet related research is a rich knowledge base with great scientific contributions. Many authors
addressed the need to control spreadsheet errors as described in Section 2.2. Results of our research focused
on unauthorized spreadsheet changes and errors in multi-user environments could usefully be combined with
unit errors detection in spreadsheet [18], other commercial spreadsheet auditing tools [20] and modern large
language models to improve spreadsheet quality [22]. Additional strength of the proposed ABAC4S protocol
is result of our user-centric approach followed during ABAC4S protocol development and specification. This
approach permits organizations to retain investment in their spreadsheets. The negative side of our approach
is the requirement to document organizational dynamics and user roles in the format suitable for ABAC4S
protocol.

To address our first research goal, we developed the novel ABAC4S protocol specifications based on
spreadsheet representation as collection of resources. Defined protocol addresses the need identified to control
user’s interaction with spreadsheets on granular level of spreadsheet resources. We utilized set-oriented data
structures and data flows for modeling transitions between spreadsheet states.

To address our second research goal, we converted defined ABAC4S protocol specifications to SMV
language and conducted model checking to verify correctness of the protocol rules. During model
construction, we used abstraction and refinement of model characteristics to reduce model complexity and
prevent state space explosion during verification with model checking tools. We designed modules to
represent all possible state transitions for each spreadsheet resource with associated users and actions as
described in Section 4.3. Thus, we ensured that the model covers all possible realistic scenarios where users
in multi-user environments might have roles of various complexities. We overcome various challenges with
model abstraction and state space explosion associated with the model checking tools. Even though we
reduced the number of allowed actions and number of user roles to four, the model checking tool must explore
167 (more than 268 million) possible states. To illustrate the importance of appropriate model abstraction and
its impact to the state space explosion, if we increased the number of modeled actions and user roles to five,
possible explorable state would grow to 257. This small increase in the model complexity resulted in a more
than 22 times larger model state space.

8. Conclusion
In this study, we presented results of research structured around model checking of novel ABAC4S protocol
for spreadsheets. To our best knowledge, application of the model checking technique in verification of
spreadsheet related research problems brings new perspective in spreadsheet research. We provided modeling
guidelines and insights into how to convert ABAC4S protocol specifications to the language accepted by the
model checking tool. Model checking confirms correctness of the defined ABAC4S protocol rules and
appropriate resolution in case a conflict of access rights is detected. We will explore opportunities to further
automate generation of machine-readable user’s roles and implement developed ABAC4S protocol in various
multi-user environments.

References
[1] C. Scaffidi, M.Shaw, and B. A. Myers, "Estimating the numbers of end users and end users

programmers", In Proc. of VL/HCC '05, pp. 207-214, 2005.
[2] L. Bradley and K. McDaid, “Using Bayesian Statistical Methods to Determine the Level of Error

in Large Spreadsheets”, Proceedings of the International Conference on Software Engineering,
pp. 351–354., 2009.

[3] T. Reschenhofer and F. Matthes, “A Framework for the Identification of Spreadsheet Usage
Patterns”, Proceedings of the European Conference on Information Systems, 2015.

ZDILAR MODEL CHECKING ACCESS CONTROL PROTOCOL…

JIOS, VOL. 49, NO. 1 (2025), PP. 39-52 51

[4] K. Rajalingham, D. Chadwick, B. Knight, and D. Edwards, “Quality Control in Spreadsheets: A
Software Engineering-Based Approach to Spreadsheet Development,” Proc. 33rd Hawaii Int’l
Conf. System Sciences, pp. 1-9, 2000.

[5] P. O’Beirne, F. Hermans, T. Cheng, M. P. Campbell, European Spreadsheet Risk Interest Group,
“https://eusprig.org/research-info/horror-stories/”, [Accessed: Feb. 23, 2025].

[6] M. Zdilar, “Attribute Based Access Control Metamodel for Spreadsheet Programs”, 35th
International Scientific Conference CECIIS 2024. Varaždin: University of Zagreb, Faculty of
Organization and Informatics, pp. 409-416., 2024.

[7] P. Brown, J. Gould, “An experimental study of people creating spreadsheets”, ACM Transactions
on Office Information Systems 5, pp.258–272, 1987.

[8] W. J. Doherty, W. Pope, “Computing as a tool for human augmentation”, IBM Tech Rep. RC-
11622, 1986.

[9] F. Galletta, D. Abraham, M. El Louadi, W. Leske, Y. Pollalis and J. Sampler, “An empirical study
of spreadsheet error-finding performance”, Accounting, Management & Information Technology
Vol. 3 No. 2, pp. 79–95, 1993.

[10] R. Panko and R. Halverson, “Spreadsheets on trial: a survey of research on spreadsheet risks”,
Proceedings of the 29th Annual Hawaii International Conference on Systems Sciences, pp. 326–
335, 1996.

[11] S. G. Powell, K. R. Baker and B. Lawson, “A critical review of the literature on spreadsheet
errors”, Decision Support Systems, pp. 128-138, 2008.

[12] K. Rajalingham, D. Chadwick, B. Knight, “Classification of spreadsheet errors”, Proceedings of
the European Spreadsheet Risks Interest Group Annual Conference, Greenwich, England, pp. 23-
34, 2000.

[13] P. O’Beirne, “In Pursuit of Spreadsheet Excellence”, Proceedings of EuSpRIG, pp. 171-185, 2008.
[14] J. Cunha, J. Fernandes, C. Peixoto and J. Saraiva, “A Quality model for Spreadsheets”,

Proceedings of the 8th International Conference on the Quality of Information and
Communications Technology, pp. 231-236, 2012.

[15] ISO(2001), “ISO/IEC 9126-1: Software engineering-product quality-part 1: Quality model,”
Geneva, Switzerland, 2001.

[16] M. Erwig and M. M. Burnett, “Adding apples and oranges”, In Proc. Of PADL '02, pp. 173-191,
2002.

[17] Y. Ahmad, T. Antoniu, S. Goldwater, and S. Krishnamurthi, “A type system for statically
detecting spreadsheet errors”, In Proc. of ASE '03, pp. 174-183, 2003.

[18] R. Abraham and M. Erwig. “Ucheck: A spreadsheet type checker for end users. Journal of Visual
Languages and Computing”, Vol. 18, pp. 71-95, 2007.

[19] R. Abraham, M. Erwig, and S. Andrew, “A type system based on enduser vocabulary”, In Proc. of
VL/HCC, pp. 215-222, 2007.

[20] D. Nixon, M. O’Hara, “Spreadsheet Auditing Software”, In Proc. Of EuSpRIG, 2000.
[21] R. Abraham and M. Erwig, “Mutation Operators for Spreadsheets”, IEEE Transactions on

Software Engineering”, Vol. 35 No. 10, 2009.
[22] H. Joshi, A. Ebenezer, J. Cambronero, S. Gulwani, A. Kanade, V. Lee, ... & G. Verbruggen,

“FLAME: A small language model for spreadsheet formulas”, arXiv preprint arXiv:2301.13779,
2023.

[23] M. Korman, R. Lagerström, M. Ekstedt, “Modeling enterprise authorization: a unified metamodel
and initial validation.” Complex Systems Informatics and Modeling Quarterly, (7), 1-24, 2016.

[24] C. T. Hu, “Attribute based access control (ABAC) definition and considerations.”, NIST, 2014.
[25] A. Cimati, E. Clarke, F. Giunchiglia, M. Roveri, “NuSMV: A new symbolic model verifier”,

Computer Aided Verification: 11th International Conference, CAV’99 Trento, Italy, July 6–10,
1999 Proceedings 11 (pp. 495-499). Springer Berlin Heidelberg, 1999.

[26] E. M. Clarke, O. Grumberg, D. Peled, “Model Checking”, MIT Press, 2000.
[27] J. G. Hoizmann, “Design and Validation of Computer Protocols”, Prentice Hall, 1991.

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

52 JIOS, VOL. 49, NO. 1 (2025), PP. 39-52

[28] C. Baier, J. P. Katoen, “Principles of Model Checking”, MIT Press, 2008.
[29] E. M. Clarke, E. A. Emerson, “Design and synthesis of synchronization skeletons using branching

time temporal logic”, Workshop on Logic of Programs, ser. Lecture Notes in Computer Science,
vol. 131, pp. 52–71., 1981.

[30] E. A. Emerson, E. M. Clarke, “Characterizing correctness properties of parallel programs using
fixpoints,” In Proceedings of the 7th Colloquium on Automata, Languages and Programming, pp.
169–181., 1980.

[31] T. Reinbacher, “Model checking and static analysis of Intel MCS-51 Assembly Code”, Wien,
2012.

[32] K. McMillan, “Symbolic Model Checking”, Kluwer Academic Publishers, 1993.
[33] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen, “Systems and

software verification: model-checking techniques and tools”, Springer Science & Business Media,
2013.

[34] M. Zdilar, “https://github.com/mirogit/abac-spreadsheets”, GitHub repository, 2025.
[35] A. R. Hevner, S.T. March, J. Park, S. Ram, “Design Science-Design Science in Information

Systems Research”, MIS Quarterly 28, pp.75-105, 2004.
[36] G. Vitagliano, L. Reisener, L. Jiang, M. Hameed, F. Neumann, “Mondrian: Spreadsheet layout

detection”, In Proceedings of the 2022 International Conference on Management of Data, pp.
2361-2364., 2022.

