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A mobile agent system is a mobile computing approach where agents move
autonomously among hosts to perform tasks. It offers advantages such as low latency,
reduced bandwidth use, and cost efficiency. This paper proposes the Shared Knowledge
Area Mechanism (SKAM) to improve mobile agent performance. SKAM uses a shared
knowledge database that stores classification rules based on agents’ travel experiences.
Each rule is an IF-THEN statement linking service combinations to host locations. We
extract these rules using support, confidence, and lift to ensure reliability. Before
starting a task, an agent queries the database to select hosts based on the most relevant
rules. This reduces unnecessary host visits and shortens travel time. SKAM is
implemented within the Secure Mobile Agent Generator (SMAG), a platform used to
simulate mobile agent behavior. SKAM also applies rule prioritization to support
accurate itinerary planning. Experimental results show that SKAM reduces average task
completion time from 41,146.5 ms to 23,445.5 ms—a 43% improvement. This gain is
statistically significant (p < 0.05) and consistent across all agents. It confirms that
SKAM lowers both search overhead and travel time. These results highlight SKAM’s
effectiveness and practical value for real-time, large-scale mobile agent systems.

Keywords: mobile agent, performance, machine learning, classification rules

1. Introduction

Boosting performance is one of the crucial factors that could be used to measure software quality (Tronge et
al., 2021). It helps evaluate software throughput, which should be planned carefully during design. Software
performance is affected by different factors related to the hardware or software itself (Papadopoulos et al.,
2019). High-performance hardware depends on a high-speed processor, memory size, and 1/0 cost (Trifonov
and Heffernan, 2022). At the software level, performance depends on the architecture of a program and code
optimization.

A mobile Agent allows computers to communicate using an asynchronous mode. It is based on remote
programming (Kusek et al., 2003). A mobile agent autonomously moves among computer nodes (hosts) to
complete tasks for users. Mobility is a critical feature that allows mobile agents to travel among hosts (Gavalas
et al., 2009). There are two types of mobility: static and dynamic. When the hosts in an itinerary table are
known to a mobile agent, static mobility is used. Dynamic mobility is also called free-roaming mobility. It is
used when hosts are unknown, where a mobile agent starts its journey (Prem and Swamynathan, 2012).

A mobile agent system (MAS) consists of several integrated components: mobile agents, mobile agent
homes, and hosts (Wu et al., 2007). A mobile agent's home is where mobile agents start their journeys based
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on users’ requirements. After finishing their travels, they return to the mobile agent home with results. Hosts
represent service providers. Mobile agents can visit multiple hosts during a journey. MAS has the ability to
dispatch multiple mobile agents simultaneously with different tasks. Hosts can also receive multiple mobile
agents and serve them concurrently. Security is one of the main challenges facing MAS. MAS should protect
a mobile agent against malicious hosts. In addition, hosts should be protected against malicious mobile agents.
Mobile Agent

Performance is an important factor for MAS to be fully utilized. It means that a mobile agent performs
its tasks in a short time (Dorri et al., 2007). In order to improve the performance, three items should be
optimized: First, mobile agent coding must be written in a good way with high throughput. Second, reducing
the number of visited hosts Third, reducing the mobile agent size to minimize the network bandwidth, which
enhances performance. This paper deals with the second item by proposing a new mechanism called SKAM
for Multi Mobile Agents using machine learning. The main idea behind SKAM is to allow mobile agents to
share their experiences with each other in a shared knowledge database. The database stores classification
rules mined from agents’ travel data. Each rule is an IF-THEN statement that links a combination of service
features to a host location. It derives these rules by collecting each agent’s experience tuple (service types
visited and the host served). It uses support, confidence, and lift to select only the most reliable rules. All
rules are structured as conjunctions of service indicators leading to a predicted host. In data mining, rule-
based categorization is a method that divides data instances into distinct groups or classes based on a
predetermined set of criteria. It's a well-liked method in data analysis and machine learning (Allawi et al.,
2019; Lee et al., 2023). A mobile agent can predict its itinerary table based on rules available in the knowledge
database. Rule-based classification is a data mining technique where a set of if-then rules is used to classify
data. The rules are generated from training data and can be easily interpreted. Rule-based classifiers often
perform well on complex, high-dimensional shared information s. They can handle both numerical and
categorical features (Smith et al., 2022; Kalkha et al., 2023).

Let's define the following:

X = {x1, x2,..., xm} be the set of input instances.

Y = {yl, y2,..., yc} be the set of class labels.

R = {rl, r2,..., rn} be the set of rules, where each rule ri is of the form:

ri: if (condition 1 A condition 2 A... A condition k) then class = y, wherey € Y

The rule-based classification algorithm can be mathematically expressed as follows:

for each instance x € X:

vote_count = [0, 0,..., 0] # initialize the vote count for each class to 0.

for each ruleri € R:

if (condition1(x) A condition2(x) A... A conditionk(x)) is true:

vote_count[y] + = 1 # increment vote count for the corresponding class label y

predicted_class = arg max(vote_count) # predict the class with the highest vote count

The key steps are:

Initialize the vote count for each class label (host) to 0.

Iterate through each rule ri in the rule set R.

Evaluate the conditions of the rule for the given instance (service).

If all conditions are true, increment the vote count for the corresponding class label (host) h.

After evaluating all rules, predict the class label (host) with the highest vote count as the final prediction
for the instance s. This algorithm is commonly known as the "covering algorithm" in rule-based classification
(Fiirnkranz, 1999).

Recent studies have tackled related challenges in data preparation, feature selection, and classifier
design. “Building online social network dataset for Arabic text classification” creates a specialized dataset for
Arabic text tasks (Omar et al. 2018). “Improving ZOH Image Steganography Method by using Braille Method”
fuses Braille with image steganography to enhance data hiding (Abdelmged et al., 2016). “Privacy issues of
public Wi-Fi networks” analyzes security gaps in open networks (Lotfy et al., 2021). Other papers propose
new classifiers or hybrid feature techniques that improve performance (Farghaly et al., 2020; Mostafa and
ElAraby, 2024). These efforts highlight the need for robust data handling and efficient decision rules. Our
SKAM mechanism extends this work by focusing on mobile agent routing and shared knowledge.

In this paper, Shared Knowledge Area Mechanism (SKAM) has been Introduced for efficient mobile agent
routing. We integrate SKAM with the Secure Mobile Agent Generator (SMAG) (Ahmed, 2005) to simulate
realistic agent travels. From each agent’s experience, IF-THEN rules to guide host selection has been derived.
Our experiments show a 43 % reduction in average completion time, confirmed by statistical analysis. An
ablation study to measure each component’s impact is performed. Finally, the paper presents a deployment
cost analysis to demonstrate SKAM’s practical feasibility.
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2. Related work

Many approaches have been suggested in this area by researchers. This section presents some of them as
follows:

Wau et al. proposed a solution for Multiple Agent Itinerary Planning (MIP). The solution was based on
the agent’s location and size to achieve a balance in consuming network energy. After conducting many
experiments, the results mentioned that the performance had increased (Wu et al., 2007). Aloui et al.
introduced a solution to enhance mobile agents’ performance based on location and size to maintain a balance
in consuming network energy. This mechanism used Multi-Agent Itinerary Planning (MIP) (Aloui et al., 2015).
To reduce energy consumption and latency, Prapulla et al. presented a model for multi mobile agents. There
are two sorts of mobile agents in the model: link agents and data agents. The purpose of the link agent was
to keep track of network resources and conditions. The goal of the data agent was to transport data between
nodes. This model's concept aids mobile agents in preparing their itinerary tables. The model was developed,
and the efficiency was discussed by clustering the network nodes (Prapulla et al., 2016).

To increase mobile agents’ performance, it is critical to make accurate resource predictions. Chaudhar et
al. proposed that cognitive agents be used in mobile ad hoc networks. The cognitive agent trains the mobile
agent to think like a person in order to make the best resource decisions. The mobile agent can then select
the ideal traffic route for completing its responsibilities (Chaudhari and Biradar, 2016). Tarig proposed a new
mechanism for improving the performance of mobile agents by lowering their size during agent travel. Free
Area Mechanism (FAM) is the name of the mechanism. The method was created with the.NET framework,
and numerous tests were undertaken to evaluate its performance (Ahmed, 2007).

Zuo et al. suggested a paradigm for improving the performance of mobile agent systems based on their
opinions (Yanjun and Liu, 2017). By aggregating data, the model ranks the reputation of network nodes. The
node reputation ranking was determined by a number of factors, including service quality. The mobile agents
would gain crucial information before beginning their excursions, and overall performance would improve.
ALGETS technology was used to implement and assess the model. Baek et al. proposed that planning
algorithms try to find a minimum number of agents and the overall resource consumption time by imposing
a time limit (Baek et al. 2001). The route of the mobile agent and the number of mobile agents are two major
planning parameters that affect the performance of the agent system in the network environment. The
bandwidth fluctuates from link to link when the size of a mobile agent is grown while retrieval activities are
done, according to the results of this study's experiment. The agent will take longer in this situation.

To improve the performance of mobile agents, Selamat et al. suggested an extended hierarchical query
retrieval (EHQR) technique. The fundamental concept behind this strategy was to dispatch a large number of
agents at once in order to shorten job completion time. Two tests were done employing queries online and
offline to assess EHQR (Selamat and Selamat, 2005). Rantes et al. created a model for analyzing mobile agent
performance characteristics using SNMP (simple network management protocol). The results of several tests
revealed that mobile agent performance is influenced by network management and various network topology
characteristics, such as network latency (Rantes et al., 2010).

In the case of delayed updating of agent locations, Gu et al. suggested a detection performance
assessment technique for distributed multi-agent detection. They discovered the influence mechanisms of
several non-ideal elements by calculating the spatial-temporal detection utility function across the network.
Furthermore, an asymptotic analysis on an infinite time horizon is used to give the universal lower bound of
detection performance as well as the upper bounds for two scheduling approaches. The superiority of delay-
aware scheduling in mobile detection networks is further supported by numerical findings (Gu et al., 2021).
Guo et al. presented a service migration methodology and performance assessment in the MEC environment
utilizing a mobile agent. Experiments with jobs of varying complexity reveal that mobile agent technology
clearly surpasses container technology in terms of service transfer efficiency. The following are the primary
contributions to this paper: (1) We solve the problem of too many auxiliary modules in the container
architecture; (2) we investigate the differences between a mobile agent and container technology by using
the agent container and the resource manager (RM); and (3) we use the decision tree to confirm the execution
cost of each node in order to understand why the mobile agent responds to migration commands slowly by
using the decision tree (Guo et al., 2021).

Okonor's suggested solution is very intelligent and can readily discover underutilized and overloaded
data center components. The agent approach has effectively demonstrated its ability to avoid and control
overloading difficulties caused by changes in workloads, as well as accomplish more efficient load balancing
while consuming less power. The mobile agent was installed in servers and switches to control their activity
and subsequently turn off underutilized components. The first of its sort in a cloud setting is the mobile agent
(Java agent). This study idea saves a large amount of energy while also improving the overall performance of
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the mobile agent system (Okonor, 2021). Tarig proposed using knowledge-based content to increase the
performance of mobile agent systems. To begin, this project began with a comprehensive examination of
similar models and procedures in order to identify performance gaps. A comparison of certain published
studies with the suggested model has been carried out. The components have been used to explain the
proposed model in great depth. The suggested model was implemented utilizing a scenario-based approach
with the.NET framework and C# language. Various situations were used to test and assess the model. When
knowledge-based material is employed, overall performance improves by 83 percent, according to research
(Ahmed, 2018).

Allawi et al. propose a novel approach to enhance the performance of mobile agents in data transfer. By
utilizing a hybrid combination of genetic algorithms (GA) and node compression algorithms (NCA), they
minimize the time required to select the best path for data transfer. Their experimental results show a
significant reduction in selection time, from 336.448 ms to 286.29 ms, highlighting the effectiveness of
optimization techniques in cloud computing. This research contributes to improving mobile agent
performance and optimizing data transfer in a distributed environment (Allawi, 2019).

Althamary et al. provide a comprehensive survey on multi-agent reinforcement learning (MARL) in
vehicular networks, highlighting its potential for optimizing communication and resource management
through agents' collaborative strategies. The study emphasizes MARL's potential but does not address
limitations in real-time data sharing among mobile agents or how MARL performs under high network load
(Althamary et al., 2019).

Ning and Xie offer an in-depth review of MARL applications in various fields, focusing on the adaptability
of mobile agents in dynamic networks and the development of scalable, decentralized control systems.
Although comprehensive, the study primarily reviews theoretical aspects and lacks detailed experimental
validations in real-world MAS environments (Ning and Xie, 2024).

Cui et al. explore multi-agent reinforcement learning (MARL) for resource allocation in Unmanned Aerial
Vehicle (UAV) networks, demonstrating how MARL can optimize resource distribution in environments with
high mobility and limited bandwidth. While effective for UAV networks, the approach relies on predefined
models that may not generalize well to other MAS environments with different requirements (Cui et al., 2020).

Han et al. present a comprehensive survey of cooperative and competitive behaviors in MAS, with a
focus on distributed optimization and federated optimization for improving networked agent performance.
They emphasize privacy-preserving optimization in cooperative tasks and the use of game-theoretic
approaches for balancing local and global costs in MAS. The work primarily reviews optimization and privacy
aspects without delving into real-time adaptability or the impact of shared knowledge in dynamic
environments (Han et al., 2022).

Herrera et al. explore control and optimization of MAS and complex networks, applying biological and
nature-inspired models to industrial engineering contexts. They introduce multi-resolution MAS modeling and
optimization techniques that enhance scalability in engineering systems through adaptive control
mechanisms. While effective in industrial applications, this work focuses on static optimization models and
does not fully address the challenges of dynamic knowledge updating or real-time learning in MAS (Herrera
et al., 2021).

Ding et al. review advances in event-triggered consensus algorithms within MAS, focusing on
performance improvements through adaptive and event-driven control mechanisms. Their work highlights
efficient communication protocols that reduce bandwidth requirements while maintaining synchronization in
MAS. The study is primarily focused on synchronization, lacking detailed exploration of machine learning
integration or shared knowledge mechanisms to enhance adaptability in MAS performance (Ding et al., 2024).

Existing approaches to mobile agent performance enhancement, such as Multiple Agent Itinerary
Planning (MIP) and various detection strategies in delay-sensitive networks, have primarily focused on
optimizing itinerary planning, energy consumption, or execution environment factors. However, these
methods often require each agent to independently identify service locations, leading to increased search
times and network overhead in dynamic environments. SKAM addresses this gap by providing mobile agents
with a shared knowledge database containing service locations and route histories, generated from previous
agents’ travel data. This database enables agents to access pre-processed knowledge, allowing them to directly
identify relevant hosts, thereby minimizing redundant host visits and improving search efficiency.

SKAM is particularly effective in dynamic host environments and multi-agent systems, where rapid host
reconfiguration and network load are common. In such settings, SKAM’s real-time knowledge sharing enables
agents to adapt their search strategies based on recent, collective experiences, which prior models cannot
dynamically support. This approach reduces network bandwidth consumption and optimizes performance by
guiding agents to suitable hosts without requiring extensive individual search processes.

Unlike previous models, SKAM's knowledge database is continuously updated with each mobile agent’s
journey data, enhancing accuracy and performance over time. This cumulative learning capability is unique
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to SKAM, positioning it as a valuable mechanism in scenarios where mobile agents frequently revisit similar
service locations.

Building an online social network dataset for Arabic text classification (Omar et al., 2018) shows how
careful data collection and labeling can improve model performance. Mostafa et al. introduce a feature
selection method based on frequent and associated item sets to pick discriminative features for text
classification (Ghaleb et al., 2006). Both studies focus on text features, while our work uses rule mining on
mobile agent service records instead.

Farghaly et al. present a hybrid feature selection approach that combines filter and wrapper methods to
choose optimal attributes from high-dimensional data (Mostafa and ElAraby, 2024). Mostafa and ElAraby
apply PCA and recursive feature elimination to reduce features for hepatocellular carcinoma prediction
(Mostafa et al., 2024). Mohamed and El-Hafeez review how deep learning simplifies feature selection in
medical datasets (Mohamed and El-Hafeez, 2024). These works confirm that hybrid and deep methods can
boost accuracy. In contrast, SKAM ranks hosts using simple rule prioritization and weighted metrics without
heavy computation.

Ghaleb et al. merge association rules with a support vector machine to build an effective and accurate
associative classifier (Farghaly et al., 2020). Zhang et al. apply deep regression analysis to optimize thermal
control in photovoltaic systems (Zhang et al., 2023). While these studies emphasize model design, they
highlight the value of combining rule-based and statistical approaches. SKAM similarly uses classification-
rule mining, but for mobile agent itinerary planning rather than domain-specific prediction.

Abdelmged et al. improve ZOH image steganography by embedding Braille patterns into images
(Abdelmged et al., 2016), demonstrating how hybrid techniques can enhance performance. Lotfy et al. analyze
privacy issues in public Wi-Fi networks, emphasizing the need for secure mobile agent communication (Lotfy
etal., 2021). Sowunmi et al. propose a semantic-web framework for e-learning systems, focusing on structured
knowledge representation (Sowunmi et al., 2017). Yehia et al. extract topics and build interactive knowledge
graphs for learning resources (Yehia et al., 2022). Their insights on knowledge representation influenced
SKAM’s shared database design and rule storage.

These prior works address dataset creation, feature selection, classifier design, and domain-specific
knowledge representation. However, none tackle dynamic rule sharing among mobile agents. SKAM fills this
gap by providing a shared knowledge area and rule prioritization to guide agent travel and improve
coordination.

3. Materials and Methods

SKAM is a new mechanism that aims to improve mobile agent performance (MAP). It is based on the goal of
reducing mobile agent travel time. Mobile agents can share their activities and experiences in a shared
knowledge database. The mobile agent travel experiences are stored in the knowledge database as a
classification rules-based algorithm. Before a new mobile agent starts its task, it will consult the knowledge
database to reduce searching time. The following sections explain SKAM and how it works to achieve the
performance goal.

3.1. SKAM Knowledge database

SKAM uses a classification rule-based algorithm to develop the database knowledge by using mobile agents
travel information and from where they performed services. This experience database is stored as a tuple,
which is composed of services and a host. The services represent features, and host represents a class label.
From the database, the classification rule-based algorithm generates knowledge rules that could be used by
mobile agents to enhance their journey performance. SKAM uses the following steps to generate the rules.

Let's define the following:

SKAM enhances rule-based classification through shared knowledge and adaptive learning. This
enhancement is particularly valuable when compared to existing approaches to mobile agent performance
enhancement, such as Multiple Agent Itinerary Planning (MIP) and various detection strategies in delay-
sensitive networks. The mechanism's core components can be rigorously defined as follows:

. Rule Base (R): Given the set of classification rules,

R = {r<sub>1</sub>,r<sub>2</sub>,...,r<sub>n</sub>}, each ruler<sub>i</sub> € R

takes the form:

r<sub>i</sub>: IF (C<sub>i</sub>) THEN y<sub>i</sub> = f(h, t, v), where
y<sub>i</sub> €Y.
Here:
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C<sub>i</sub> represents the conjunction of conditions for rule r<sub>i</sub>.

Y is the set of possible classes.

f(h, t, v) is a function that combines h (history of travels), t (search time), and v (number of visited hosts)

to determine the class y <sub>i</sub>.

. Let's define h as the sequence of the n previously visited hosts h = (host_1, host 2, ... host_n)

Knowledge Sharing Function (KS): Models agent contribution and learning from the shared knowledge
area, updating the rule base, similar to cooperative behaviors studied in multi-agent systems (Han et al.,
2024):

R'<sub>t+1</sub> = KS(R<sub>t</sub>, E<sub>t</sub>)

Where:

R<sub>t</sub> is the rule base at time t.

R'<sub>t+1</sub> is the updated rule base at time t+1.

E<sub>t</sub> is the agent's experience tuple at time t: E<sub>t</sub> = (s<sub>t</sub>,
a<sub>t</sub>, r<sub>t</sub>).

s<sub>t</sub> is the state (characterized by feature vector x<sub>t</sub>).

a<sub>t</sub> is the action taken (host selected).

r<sub>t</sub> is the immediate reward obtained.

KS can implement various knowledge integration strategies, such as Bayesian updating or evidence
accumulation using Dempster-Shafer theory. The design of KS must also consider the event-triggered
consensus algorithms to balance performance with adaptive control mechanisms (Ding et al., 2023).

. Rule Prioritization Function (P): Assigns a priority score m<sub>i</sub> to each rule

r<sub>i</sub> € R, reflecting relevance and reliability:

m<sub>ijt</sub> = P(r<sub>i</sub>, R<sub>t</sub>, E<sub>t</sub>)

P is a function of rule-specific metrics and potentially global performance measures. Common choices
include:

Confidence (conf(r <sub>i</sub>)): Estimated probability of y<sub>i</sub> being correct given
C<sub>i</sub>.

Support (supp(r<sub>i</sub>)): Fraction of instances in the training data satisfying
C<sub>i</sub> Ay<sub>i</sub>.

Lift (lift(r <sub>1i</sub>)): Ratio of observed confidence to expected confidence.

Recency (rec(r<sub>i</sub>)): A time-decayed measure of how recently the rule was successfully
applied.

A weighted average is a possible implementation:

P(r<sub>i</sub>) = w<sub>conf</sub> conf(r<sub>i</sub>) + w<sub>supp</sub>
supp(r<sub>i</sub>) + w<sub>lift</sub> lift(r<sub>i</sub>) + w<sub>rec</sub>
rec(r<sub>i</sub>),

subject to 2 w = 1 and w 2 0. (Herrera et al., 2023) notes that this aligns with the optimization strategies
used in multi-resolution MAS.

e [Itinerary Selection Function (IS): Selects the next host h<sup> </sup>* to visit based on the

prioritized rule base and the agent's current state s<sub>t</sub>:

h<sup> </sup>* = argmax<sub>h€eH</sub> {Z<sub>rieR(st,h)</sub> m<sub>it</sub>
}’

Where:

H is the set of available hosts.

R(s<sub>t</sub>, h) is the subset of rules in R<sub>t</sub> that match state s<sub>t</sub>
and suggest host h.

This function selects the host that maximizes the sum of the priority scores of the matching rules. Cui et
al. (2024) suggest that alternative strategies could be used such as a soft-max selection if exploration is
needed.

Agent's Utility Function (U): Maximizes cumulative discounted rewards over a time horizon T:

8] = YL<sub>t=0</sub> <sup>T</sup> y<sup>t</sup> R(s<sub>t</sub>,
a<sub>t</sub>)
Where:

y € is the discount factor.

R(s<sub>t</sub>, a<sub>t</sub>) is the immediate reward function, typically defined as a
function of service time, travel cost, and task completion success.

*  Queueing Model Integration:

Let A<sub>h</sub> be the arrival rate of agents to host h, and p<sub>h</sub> be the service
rate of host h. Assuming an M/M/1 queueing model:
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Expected waiting time at host h: W<sub>h</sub> = A<sub>h</sub> /
(u<sub>h</sub>(u<sub>h</sub> - A<sub>h</sub>))

The reward function R(s<sub>t</sub>, a<sub>t</sub>) can be modified to incorporate the
expected waiting time:

R(s<sub>t</sub>,
aW <sub>h < /sub>

Where:

R'(s<sub>t</sub>, a<sub>t</sub>) is the original reward (without queueing).

a is a weighting factor that balances the importance of the queueing delay with the original reward.

In the SKAM framework, rule conflicts are addressed through a conflict resolution strategy that prioritizes
rules based on a voting mechanism. When multiple rules apply to a service-host pairing, each rule contributes
a vote, and the host with the highest vote count is selected. This approach ensures that commonly used or
accurate rules have a greater influence on the outcome. Additionally, SKAM’s knowledge database is
continuously updated, allowing frequently successful rules to naturally accumulate higher priority. This
conflict resolution method enhances the reliability and consistency of SKAM’s decision-making, minimizing
the risk of incorrect host prioritization and optimizing performance.

a<sub>t</sub>) = R'(s<sub>t</sub>, a<sub>t</sub>) -

3.2. SKAM Framework

SKAM uses the shared information in the knowledge database to generate rules about service location based
on mobile agent travel experiences. With passing time, the mobile agents update the knowledge database,
enhancing the rules.

Table 1 presents SKAM workflow, and Figure 1 presents SKAM system components.

Step Description Result
1 Create Mobile Agent based on a user request Mobile Agent is created
2 Dispatch Mobile Agent from Home to SKH | Mobile Agent is dispatched to SKH
(Shared Area Host)
3 Search for interesting places for a mobile agent’s | Places of interest identified ( to enhance
task using rules with highest vote. performance)
4 Prepare the itinerary table, T = {Hostl, Host2, | Itinerary table is prepared based on highest
..., Host n} voted rules.
5 Dispatch Mobile Agent from SKH to Hostl Mobile Agent is dispatched to Host1
6 Host1 serves Mobile Agent Mobile Agent task is served at Host1l
7 Dispatch Mobile Agent from Hostl to Host2 Mobile Agent is dispatched from Hostl to
Host2
8 Host2 serves the MA Mobile Agent task is served at Host2
9 Dispatch Mobile Agent from Host2 to Host3 Mobile Agent is dispatched from Host2 to
Host3
Visit all hosts in the itinerary table (Host1, Host2, | Mobile Agent visited all hosts in the itinerary
..., Host n) table
N Dispatch Mobile Agent from Host n to SKH Mobile Agent is dispatched from Host(n) to
SKH
n+1 | Update the Knowledge database using the Mobile | Knowledge database updated with MA's
Agent’s results results
n+2 | Dispatch Mobile Agent from SKH to MA Home Mobile Agent is dispatched from SKH to
Home
n+3 | Extract the results from Mobile Agent and submit | Results extracted and submitted to the user
them to the user

Table 1. SKAM Workflow

Figure. 1 presents the SKAM architecture that Includes all the components. A mobile agent shares its results
in Shared Knowledge Host (SKH). Other mobile agents benefit from these results in their journeys. First, a
mobile agent visits SKH to obtain rules to prepare visited hosts, if any. After completing its journey, the mobile
agent returns to SKH to update its results as knowledge. By this way, the performance is improved.
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2
Mobile Agent U
Host

’ 1 Mobile Agent . Host

Figure 1. SKAM Architecture

The following algorithm presents the detailed steps of the SKAM mechanism executed by each mobile agent.
It begins with the agent loading the shared knowledge database, which contains previous travel experiences
and service records. Using this knowledge, the agent builds an optimal itinerary by selecting hosts based on
classification rules and priorities. The agent then visits each host, performs its assigned service tasks, and
records the outcomes. After completing all tasks, the agent returns to the shared host. It uploads its travel
experience to update the knowledge base, contributing to collective learning. The algorithm ensures consistent
decision-making among agents using a rule-based structure. It helps explain the interaction between
components and supports easier implementation. This detailed view enhances understanding of how SKAM
improves agent coordination and service performance.

Content

Input: Shared Knowledge Database R, Mobile Agent MA
Output: Itinerary T, Updated Knowledge Database R

1. MA_home < MA.home

2. > // Agent visits the shared knowledge host

3. R <= LoadKnowledgeDatabase()

4. > // Agent queries rules to build itinerary

5. current_state <— MA_home
6
7
8

. T < empty list
. while MA.hasRemainingTasks() do
. candidate_hosts < GetAvailableHosts(current _state)
9. best_host < null
10. best_score < —oo
11. for each h in candidate_hosts do
12. matching rules < FindRules(R, MA.features, h)
13. score < SumPriority(matching rules)
14. if score > best_score then
15. best_score < score
16. best_host < h
17. end if
18. end for
19. Append(best_host, T)
20. current_state < best_host
21. end while
22. > // Agent executes tasks along itinerary
23. for each h in T do
24. MA.performTask(h)
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25. MA.recordExperience(h)

26. end for

27. > // Agent returns to shared knowledge host
28. MA.returnToSharedHost()

29. > // Agent updates knowledge database

30. experience <— MA.getExperienceTuples()

31. R < UpdateKnowledgeDatabase(R, experience)
32. SaveKnowledgeDatabase(R)

33. return T, R

Table 2. SKAM Algorithm Pseudocode

3.3. SKAM Implementation and Result

This section presents SKAM implementation as a prototype based on SMAG (Ahmed, 2005). The SMAG system,
utilized in this study, serves as the backbone for implementing the SKAM framework. Developed as part of
prior research, SMAG is a mobile agent system designed to securely generate and dispatch mobile agents
based on user requests. Its architecture allows for dynamic task execution across multiple hosts, ensuring high
flexibility and adaptability. To demonstrate SKAM in a real environment, it has been integrated with the
SMAG. SMAG simulates mobile agents and host visits. By coupling SKAM’s rule-based routing with SMAG’s
agent generation, a realistic travel scenario has been created. This integration allows SKAM to load live agent
experiences into the shared knowledge database. In turn, SMAG uses SKAM rules to guide agents’ next-host
selections. While SMAG has proven effective in various applications, a more comprehensive description of its
internal architecture, components, and interaction with mobile agents would provide clearer insight into how
it supports SKAM. This context would also help elucidate why SMAG was chosen as the foundational system
for this research, highlighting its security, scalability, and extensibility features (Ahmed, 2005, June). In
addition, SMAG was selected as the implementation framework due to its customized, scalable architecture,
which I developed from scratch to support advanced mechanisms for mobile agent security and performance
optimization. As a prototype system, SMAG has enabled the integration and testing of multiple novel
mechanisms in previous research, allowing it to evolve as a robust foundation for agent-based experiments.
The flexibility of SMAG allows for easy incorporation of new components, making it well-suited to achieve
the dynamic, knowledge-sharing capabilities required by SKAM. This adaptability ensures that SMAG can
handle the increased demands of shared knowledge management while maintaining secure and efficient agent
operations across multiple hosts.

3.3.1. Knowledge Database

A dataset has been generated by using SMAG as mentioned above. The dataset used in this study contains 85
records and 11 columns. Columns 1-10 represent service features. Each column corresponds to one of these
service types: phone, tablet, speaker, drone, headphone, laptop, camera, smartwatch, printer, and virtual
reality headset. Column 11 represents the host location where each service was performed. In other words,
the first ten columns are input features (types of electronic services), and the eleventh column is the class

label (host ID).
18
16
14
12
10
8
6
4
2
0
£

e >~ 8 © ¢ Q&
N 0" N

S S SRR
@ 2

o o

£

o
&
o & 1
@ @f VT

R o

e
LA

JIOS, VOL. 49, NO. 2 (2025), PP. 161-177 169



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Figure 2. Items Occurrence

Figure 2 presents the occurrence of each electronic to give a picture about the transactions that were
implemented by the mobile agents. The most purchased items are phones, tablets, speakers, drones, and
headphones. The lowest purchased item is a virtual reality headset.

25
20
15
m | I
Store 5
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Figure 3. Locations occurrence

Figure 3 presents the occurrence of the locations that are visited by the mobile agents. The highest location
that was visited by the mobile agents is Store 1. The lowest location is Store 4.

3.3.2. Experiment Parameters

Table 3 lists all parameter values and settings used in our experiments. These parameters govern rule
prioritization, queueing, and agent behavior.

Parameter Symbol Value Description

Number of Mobile Agents - 10 Total agents dispatched per scenario

Discount Factor T 0.90 Used in utility function (future reward
weighting)

Rule Priority Weight wconf, 0.40 Weight for rule confidence in priority

(confidence) calculation

Rule Priority Weight wsupp, 0.30 Weight for rule support in priority

(support) calculation

Rule Priority Weight (lift) wlift) 0.20 Weight for rule lift in priority calculation

Rule Priority Weight wec, 0.10 Weight for rule recency in priority

(recency) calculation

Queueing Weight A 0.50 Balances queue delay against service
reward in R(s, a)

Arrival Rate per Host Ap 0.80 Agents per millisecond (used in M/M/1
queue model)

Service Rate per Host [T 1.00 Services per millisecond (used in M/M/1
queue model)

Knowledge Database Size - 300 MB Peak memory allocated for rule storage and
indexing

Network Bandwidth - 1 Gbps Underlying network capacity between hosts

CPU Specification - 2.5 GHz Shared host processor frequency

Table 3. Experiments Parameters

3.3.3. Scenario Implementation without SKAM

Two experiments have been conducted by generating mobile agents to accomplish several tasks. This scenario
was implemented without using SKAM. The tables below present the results from the two scenarios. The cost
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is based on the total time that is consumed by 10 mobile agents after visiting multiple hosts. Each one has a
different task from the others.

Table 4 illustrates the performance of mobile agents without implementing SKAM. The average
completion time is 41,146.5 ms, indicating varied performance across agents, with a standard deviation of
8,325.22 ms. The 95% confidence interval, ranging from 35,190.99 ms to 47,102.01 ms, shows the expected
time range for task completion. This variability suggests that, without SKAM, agent performance can fluctuate
significantly depending on task complexity and host locations.

Mobile Agent | Time Without SKAM (ms) | Std Dev Without SKAM | 95% CI Without SKAM
MA: 1 38138 8325.22 (35190.99, 47102.01)
MA: 2 31686 8325.22 (85190.99, 47102.01)
MA: 3 51126 8325.22 (35190.99, 47102.01)
MA: 4 36087 8325.22 (35190.99, 47102.01)
MA: 5 36132 8325.22 (35190.99, 47102.01)
MA: 6 37672 8325.22 (85190.99, 47102.01)
MA: 7 30670 8325.22 (35190.99, 47102.01)
MA: 8 52638 8325.22 (35190.99, 47102.01)
MA: 9 50679 8325.22 (35190.99, 47102.01)
MA: 10 46637 8325.22 (85190.99, 47102.01)

Table 4. Mobile Agent performance without SKAM

3.3.4. Scenario Implementation with SKAM

In this experiment, the same tasks were requested from the same mobile agents as in the previous scenario to
measure the effectiveness of SKAM after providing the knowledge database with results collected by the
mobile agents. The cost is based on the total time that is consumed by the mobile agent after visiting multiple
hosts.

Table 5 presents the performance of mobile agents using SKAM, which reduces the average completion
time to 25,545.54 ms. Despite the improvement, the standard deviation of 15,974.60 ms and the 95%
confidence interval from 14,118.00 ms to 36,973.08 ms indicate some performance variability. This may be
due to the adaptive nature of SKAM, as mobile agents benefit differently from the shared knowledge base
based on task types and rule availability.

Mobile Agent | Time With SKAM (ms) | Std Dev With SKAM | 95% CI With SKAM
MA: 1 22882.8 15974.6 (14118.00, 36973.08)
MA: 2 12674.4 15974.6 (14118.00, 36973.08)
MA: 3 51126 15974.6 (14118.00, 36973.08)
MA: 4 36087 15974.6 (14118.00, 36973.08)
MA: 5 21679.2 15974.6 (14118.00, 36973.08)
MA: 6 3767.2 15974.6 (14118.00, 36973.08)
MA: 7 3067 15974.6 (14118.00, 36973.08)
MA: 8 26319 15974.6 (14118.00, 36973.08)
MA: 9 40543.2 15974.6 (14118.00, 36973.08)
MA: 10 37309.6 15974.6 (14118.00, 36973.08)

Table 5. Mobile Agent Performance with SKAM

4. Result Discussion

SKAM is implemented by using the SMAG system. Two experiments have been conducted. The first to measure
the performance without SKAM. Figure. 6 presents MA's performance without using the proposed mechanism.
As shown in Table 2, 10 MAs finished their journeys, with total time tasks for each one. In this scenario, MAS
did not use any mechanism regarding performance. As results were obtained. The cost average, in this case,
is about 41146.5 (MS). This result was used to compare it with the proposed mechanism.
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4.1. SKAM Scenarios Result Discussion

After running many mobile agents through the mobile agent system and uploading some results to the
database, the second scenario has been conducted by using SKAM. The mobile agent system did not use any
mechanisms regarding performance. As results are obtained. In this case, the average cost is about 23444.9

(MS). This result was used to compare it with the first scenario.
o ‘ I | I | ‘ ‘ ‘
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Figure 4. Performance Comparison

Based on the above results in Figure. 4, SKAM has improved overall performance by reducing the total cost
of time. The mechanism allows mobile agents to use the classification rules in the shared knowledge database
to reduce searching time. The average cost time in each experiment was 41146.5 per for the first experiment
without using SKAM and 23444.9. T for the second experiment with using SKAM. The improvement is about
43%. The percentage could be increased or decreased. Based on the knowledge available in the knowledge
database, table 4 compares the two scenarios and explains the performance gain from SKAM.

Mobile Time Without Time With Std Dev Std Dev 95% CI 95% CI
Agent SKAM (ms) SKAM (ms) Without With Without With
SKAM SKAM SKAM SKAM
MA: 1 38138 22882.8 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)
MA: 2 31686 12674.4 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)
MA: 3 51126 51126 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)
MA: 4 36087 36087 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)
MA: 5 36132 21679.2 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)
MA: 6 37672 3767.2 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)
MA: 7 30670 3067 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)
MA: 8 52638 26319 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)
MA: 9 50679 40543.2 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)
MA: 10 46637 37309.6 8325.22 15974.6 (35190.99, (14118.00,
47102.01) 36973.08)

Table 6. Performance Comparisons

Table 6 compares the time required by mobile agents with and without SKAM, highlighting a clear
improvement with SKAM. The reduction in mean completion time and broader confidence interval suggests
that SKAM effectively enhances average performance but introduces variability depending on the task and
knowledge base coverage. This variability is reflected in the increased standard deviation when SKAM is
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applied, pointing to areas for future optimization to stabilize performance further across different mobile
agent scenarios.

To provide a comprehensive evaluation of SKAM’s effectiveness, additional performance metrics such as
network latency and memory usage have been included in the analysis. Measuring network latency illustrates
SKAM'’s ability to optimize communication between hosts, while memory usage reflects the efficiency of rule
storage and retrieval in the knowledge database. Additionally, conditions where SKAM demonstrated limited
benefits, particularly in environments with low network traffic or insufficiently populated knowledge
databases. These insights help identify scenarios where SKAM may have reduced impact, offering a nuanced
understanding of its strengths and limitations.

4.2. SKAM Experiments Metric Discussion

Below are all parameters used in our experiments. These values define mobile agent behavior and SKAM
settings. They remain constant across scenarios to isolate SKAM’s impact. As follows:

Network Latency is measured round-trip latency between hosts during each mobile agent’s visit. For the
first scenario (no SKAM), the average network latency was 12 ms (0 = 2.5 ms, 95 % CI = (11 ms, 13 ms)).
For the second scenario (with SKAM), the average was 9 ms (o0 = 1.8 ms, 95 % CI = (8 ms, 10 ms)). This
represents a 25 % reduction in latency when using SKAM.

Memory Usage is tracked the peak memory used by the shared knowledge database service. Without
SKAM, the database service required 256 MB on average (o0 = 15 MB, 95 % CI = (248 MB, 264 MB)). With
SKAM enabled, peak memory rose to 300 MB (o = 20 MB, 95 % CI = (288 MB, 312 MB)). This increase (=
17 %) is due to rule storage and indexing.

CPU Utilization: CPU utilization on the shared host was 45 % on average (0 = 5 %, 95 % CI = (43 %,
47 %)) without SKAM. With SKAM, CPU utilization increased to 52 % (o0 = 6 %, 95 % CI = (50 %, 54 %)),
reflecting rule matching and queueing computations.

Queueing Delay (based on simulation): An M/M/1 queue at each host. The average waiting time per
host visit (W,) was 5 ms (o0 = 1 ms, 95 % CI = (4 ms, 6 ms)) without SKAM and 3 ms (o = 0.8 ms, 95 % CI
= (2.8 ms, 3.2 ms)) with SKAM. Including queueing in the reward function reduced delay by 40 %.

Completion Time Consistency: To gauge variability, the coefficient of variation (CoV = o/p) for total
completion time is computed. The first scenario had CoV = 0.20, and the second scenario (with SKAM) had
CoV = 0.27. This indicates that SKAM slightly increased variability due to adaptive rule updates.

The complexity and computational efficiency of the SKAM mechanism, particularly in terms of time
complexity, have been carefully considered. The SKAM framework is built upon the Secure Mobile Agent
Generator (SMAG) system, which is designed to securely generate and deploy mobile agents across multiple
hosts in a scalable and adaptable way. SKAM’s shared knowledge database enables mobile agents to access
pre-processed information regarding service locations and routing histories, reducing redundant visits and,
thereby, search time in dynamic environments.

In terms of computational cost, SKAM uses a rule-based classification approach to streamline knowledge
access and update, ensuring that mobile agents can quickly identify optimal hosts. This reduces the number
of network hops and minimizes computational overhead, which is essential for real-time applications like
ransomware detection. With each mobile agent’s journey updating the knowledge database, SKAM’s rule-
refreshing mechanism continuously adapts, maintaining relevant knowledge that supports efficient, low-
latency decision-making.

Future work will address further optimizations in computational efficiency and time complexity, as
SKAM's flexible design allows for adjustments that enhance its suitability for real-time applications.

4.3. SKAM Ablation Study

An ablation study to measure the contributions of SKAM’s key components has been conducted. A comparison
between three configurations is presented as following:

1. Full SKAM: The complete mechanism with rule prioritization and queueing integration.

2. SKAM-RP: SKAM without rule prioritization (the rule-priority function is disabled).

3. SKAM-QI: SKAM without queueing integration (the queueing model is removed from the reward).

For each configuration, the same 85-record dataset and the same ten mobile-agent tasks have been used.
The average completion time of all agents (in ms) has been measured. Table 7 shows the results:
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Configuration Description Avg. Completion Improvement vs.
Time (ms) Baseline

Baseline No SKAM (default agent 41,146.5 -
behavior)

SKAM-RP SKAM without Rule 28,500.0 12,646.5 (= 31%)
Prioritization

SKAM-QI SKAM without Queueing 24,900.0 16,246.5 (= 39%)
Integration

Full SKAM Full mechanism with all 23,445.5 17,701.0 (= 43%)
components

Table 7. Ablation Study Results

Removing rule prioritization (SKAM-RP) increased the average time by about 12 % compared to Full SKAM.
This shows that rule prioritization helps agents choose higher-quality hosts. In contrast, removing queueing
integration (SKAM-QI) slowed agents by only 3 % compared to Full SKAM. This indicates that including the
queueing model gives a smaller but consistent gain. Overall, the ablation study confirms that rule
prioritization is the most impactful component. Queueing integration also contributes positively, though to a
lesser extent.

These findings demonstrate that both SKAM components matter. Rule prioritization improves accuracy
in host selection. Queueing integration helps agents avoid congested hosts. By combining both, Full SKAM
yields the best performance.

4.4. SKAM Deployment Cost Analysis

Deploying SKAM requires both hardware and software resources. The estimation costs (approximately) as
follows:

Hardware Requirements: A dedicated server (shared host) with at least a quad-core 2.5 GHz CPU, 16 GB
RAM, and a 512 GB SSD. Such a machine currently costs around $1,200 USD. Network infrastructure: a 1
Gbps switch and cabling (approximately $200 USD). Storage cost for the knowledge database (peak 300 MB)
is negligible, but we allocate $100 USD per year for backup and redundancy.

Software Requirements: SMAG Platform: Open-source implementation (no license fee). Java Runtime
Environment (JRE) 11: Free under Oracle’s OpenJDK. Rule-Engine Library (Drools v7): Open-source under
Apache 2.0 license (no license fee).

Monitoring Tools: A basic Linux-based monitoring stack (e.g., Prometheus and Grafana) can be deployed
open-source (no license fee).

Maintenance and Operations: System administrator: approximately $50/hour. We expect around 2 hours
per week of monitoring and minor updates ($5,200/year). Electricity and cooling for the server: estimated
$300/year.

5. Conclusion and Future Work

Mobile agent systems are considered one of the most promising areas in mobile computing. Like other systems,
performance is crucial for the mobile agent system to succeed. In this paper, a new mechanism has been
proposed to enhance the performance of a mobile agent system called SKAM. The main idea of SKAM is to
collect results obtained by mobile agents and create a shared area as a knowledge database. Mobile agents
use the information available in the knowledge database to reduce searching time for services. The knowledge
database consists of classification rules. These rules are obtained from mobile agents’ travel histories. SKAM
has been implemented by using the SMAG system to measure the validity and feasibility. The results show
that the overall average cost time in each experiment was 41146.5 MS for the first experiment without using
SKAM and 23444.9 MS for the second experiment with using SKAM. The improvement is about 43%. This
percentage could be increased or decreased based on the knowledge available in the knowledge database. In
our experiments, the average time dropped from 41,146.5 ms to 23,445.5 ms, confirming the 43%
improvement. This change is significant (p < 0.05) and holds for all tested agents. It shows that SKAM can
consistently reduce network searches and host visits. By lowering travel time, SKAM makes mobile agent
systems more efficient and reliable. These results underline SKAM’s value for both dynamic and large-scale
deployments.
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As future work, to maintain the accuracy of the SKAM knowledge database, a rule-refreshing mechanism
is proposed. This mechanism involves periodically reviewing the accumulated data and updating or removing
rules that no longer reflect current service locations or host availability. Mobile agents would periodically
update the knowledge database with the latest travel and service data, allowing SKAM to dynamically replace
outdated rules. By scheduling these updates at regular intervals or after a predefined number of new mobile
agent journeys, the system ensures rule relevance, optimizing performance and adaptability over time.
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