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 A mobile agent system is a mobile computing approach where agents move 
autonomously among hosts to perform tasks. It offers advantages such as low latency, 
reduced bandwidth use, and cost efficiency. This paper proposes the Shared Knowledge 
Area Mechanism (SKAM) to improve mobile agent performance. SKAM uses a shared 
knowledge database that stores classification rules based on agents’ travel experiences. 
Each rule is an IF–THEN statement linking service combinations to host locations. We 
extract these rules using support, confidence, and lift to ensure reliability. Before 
starting a task, an agent queries the database to select hosts based on the most relevant 
rules. This reduces unnecessary host visits and shortens travel time. SKAM is 
implemented within the Secure Mobile Agent Generator (SMAG), a platform used to 
simulate mobile agent behavior. SKAM also applies rule prioritization to support 
accurate itinerary planning. Experimental results show that SKAM reduces average task 
completion time from 41,146.5 ms to 23,445.5 ms—a 43% improvement. This gain is 
statistically significant (p < 0.05) and consistent across all agents. It confirms that 
SKAM lowers both search overhead and travel time. These results highlight SKAM’s 
effectiveness and practical value for real-time, large-scale mobile agent systems. 

Keywords: mobile agent, performance, machine learning, classification rules 

1. Introduction  
Boosting performance is one of the crucial factors that could be used to measure software quality [1]. It helps 
evaluate software throughput, which should be planned carefully during design. Software performance is 
affected by different factors related to the hardware or software itself [2]. High-performance hardware 
depends on a high-speed processor, memory size, and I/O cost [3]. At the software level, performance depends 
on the architecture of a program and code optimization. 

A mobile Agent allows computers to communicate using an asynchronous mode. It is based on remote 
programming [4]. A mobile agent autonomously moves among computer nodes (hosts) to complete tasks for 
users. Mobility is a critical feature that allows mobile agents to travel among hosts [5]. There are two types 
of mobility: static and dynamic. When the hosts in an itinerary table are known to a mobile agent, static 
mobility is used. Dynamic mobility is also called free-roaming mobility. It is used when hosts are unknown, 
where a mobile agent starts its journey [6].  

A mobile agent system (MAS) consists of several integrated components: mobile agents, mobile agent 
homes, and hosts [7]. A mobile agent's home is where mobile agents start their journeys based on users’ 
requirements. After finishing their travels, they return to the mobile agent home with results. Hosts represent 
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service providers. Mobile agents can visit multiple hosts during a journey. MAS has the ability to dispatch 
multiple mobile agents simultaneously with different tasks. Hosts can also receive multiple mobile agents and 
serve them concurrently. Security is one of the main challenges facing MAS. MAS should protect a mobile 
agent against malicious hosts. In addition, hosts should be protected against malicious mobile agents. Mobile 
Agent  

Performance is an important factor for MAS to be fully utilized. It means that a mobile agent performs 
its tasks in a short time [8]. In order to improve the performance, three items should be optimized: First, 
mobile agent coding must be written in a good way with high throughput. Second, reducing the number of 
visited hosts Third, reducing the mobile agent size to minimize the network bandwidth, which enhances 
performance. This paper deals with the second item by proposing a new mechanism called SKAM for Multi 
Mobile Agents using machine learning. The main idea behind SKAM is to allow mobile agents to share their 
experiences with each other in a shared knowledge database.  The database stores classification rules mined 
from agents’ travel data. Each rule is an IF–THEN statement that links a combination of service features to a 
host location. It derives these rules by collecting each agent’s experience tuple (service types visited and the 
host served). It uses support, confidence, and lift to select only the most reliable rules. All rules are structured 
as conjunctions of service indicators leading to a predicted host. In data mining, rule-based categorization is 
a method that divides data instances into distinct groups or classes based on a predetermined set of criteria. 
It's a well-liked method in data analysis and machine learning [21] [22]. A mobile agent can predict its 
itinerary table based on rules available in the knowledge database. Rule-based classification is a data mining 
technique where a set of if-then rules is used to classify data. The rules are generated from training data and 
can be easily interpreted. Rule-based classifiers often perform well on complex, high-dimensional shared 
information s. They can handle both numerical and categorical features [23] [24]. 

Let's define the following: 
 X = {x1, x2,..., xm} be the set of input instances. 

Y = {y1, y2,..., yc} be the set of class labels. 
R = {r1, r2,..., rn} be the set of rules, where each rule ri is of the form: 
ri: if (condition 1 ∧ condition 2 ∧... ∧ condition k) then class = y, where y ∈ Y 
The rule-based classification algorithm can be mathematically expressed as follows: 
for each instance x ∈ X: 
vote_count = [0, 0,..., 0] # initialize the vote count for each class to 0. 
for each rule ri ∈ R: 
if (condition1(x) ∧ condition2(x) ∧... ∧ conditionk(x)) is true: 
vote_count[y] += 1 # increment vote count for the corresponding class label y 
predicted_class = arg max(vote_count) # predict the class with the highest vote count 
 
The key steps are: 
Initialize the vote count for each class label (host) to 0. 
Iterate through each rule ri in the rule set R. 
Evaluate the conditions of the rule for the given instance (service). 
If all conditions are true, increment the vote count for the corresponding class label (host) h. 
After evaluating all rules, predict the class label (host) with the highest vote count as the final prediction 

for the instance s. This algorithm is commonly known as the "covering algorithm" in rule-based classification 
[26].  

Recent studies have tackled related challenges in data preparation, feature selection, and classifier 
design. “Building online social network dataset for Arabic text classification” creates a specialized dataset for 
Arabic text tasks [37]. “Improving ZOH Image Steganography Method by using Braille Method” fuses Braille 
with image steganography to enhance data hiding [38]. “Privacy issues of public Wi-Fi networks” analyzes 
security gaps in open networks [39]. Other papers propose new classifiers or hybrid feature techniques that 
improve performance [40], [41]. These efforts highlight the need for robust data handling and efficient 
decision rules. Our SKAM mechanism extends this work by focusing on mobile agent routing and shared 
knowledge. 

In this paper, Shared Knowledge Area Mechanism (SKAM) has been Introduced for efficient mobile agent 
routing. We integrate SKAM with the Secure Mobile Agent Generator (SMAG) [48] to simulate realistic agent 
travels. From each agent’s experience, IF–THEN rules to guide host selection has been derived. Our 
experiments show a 43 % reduction in average completion time, confirmed by statistical analysis. An ablation 
study to measure each component’s impact is performed. Finally, the paper presents a deployment cost 
analysis to demonstrate SKAM’s practical feasibility. 
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2. Related work 
Many approaches have been suggested in this area by researchers. This section presents some of them as 

follows: 
Wu et al. proposed a solution for Multiple Agent Itinerary Planning (MIP). The solution was based on 

the agent’s location and size to achieve a balance in consuming network energy. After conducting many 
experiments, the results mentioned that the performance had increased [7]. Aloui et al. introduced a solution 
to enhance mobile agents’ performance based on location and size to maintain a balance in consuming 
network energy. This mechanism used Multi-Agent Itinerary Planning (MIP) [9]. To reduce energy 
consumption and latency, Prapulla et al. presented a model for multi mobile agents. There are two sorts of 
mobile agents in the model: link agents and data agents. The purpose of the link agent was to keep track of 
network resources and conditions. The goal of the data agent was to transport data between nodes. This 
model's concept aids mobile agents in preparing their itinerary tables. The model was developed, and the 
efficiency was discussed by clustering the network nodes [10]. 

To increase mobile agents’ performance, it is critical to make accurate resource predictions. Chaudhar et 
al. proposed that cognitive agents be used in mobile ad hoc networks. The cognitive agent trains the mobile 
agent to think like a person in order to make the best resource decisions. The mobile agent can then select 
the ideal traffic route for completing its responsibilities [11]. Tarig proposed a new mechanism for improving 
the performance of mobile agents by lowering their size during agent travel. Free Area Mechanism (FAM) is 
the name of the mechanism. The method was created with the.NET framework, and numerous tests were 
undertaken to evaluate its performance [12]. 

Zuo et al. [13] suggested a paradigm for improving the performance of mobile agent systems based on 
their opinions. By aggregating data, the model ranks the reputation of network nodes. The node reputation 
ranking was determined by a number of factors, including service quality. The mobile agents would gain 
crucial information before beginning their excursions, and overall performance would improve. ALGETS 
technology was used to implement and assess the model. Baek et al. [14] proposed that planning algorithms 
try to find a minimum number of agents and the overall resource consumption time by imposing a time limit. 
The route of the mobile agent and the number of mobile agents are two major planning parameters that affect 
the performance of the agent system in the network environment. The bandwidth fluctuates from link to link 
when the size of a mobile agent is grown while retrieval activities are done, according to the results of this 
study's experiment. The agent will take longer in this situation. 

To improve the performance of mobile agents, Selamat et al. suggested an extended hierarchical query 
retrieval (EHQR) technique. The fundamental concept behind this strategy was to dispatch a large number of 
agents at once in order to shorten job completion time. Two tests were done employing queries online and 
offline to assess EHQR [15]. Rantes et al. created a model for analyzing mobile agent performance 
characteristics using SNMP (simple network management protocol). The results of several tests revealed that 
mobile agent performance is influenced by network management and various network topology 
characteristics, such as network latency [16]. 

In the case of delayed updating of agent locations, Gu et al. suggested a detection performance 
assessment technique for distributed multi-agent detection. They discovered the influence mechanisms of 
several non-ideal elements by calculating the spatial-temporal detection utility function across the network. 
Furthermore, an asymptotic analysis on an infinite time horizon is used to give the universal lower bound of 
detection performance as well as the upper bounds for two scheduling approaches. The superiority of delay-
aware scheduling in mobile detection networks is further supported by numerical findings [17]. Guo et al. 
presented a service migration methodology and performance assessment in the MEC environment utilizing a 
mobile agent. Experiments with jobs of varying complexity reveal that mobile agent technology clearly 
surpasses container technology in terms of service transfer efficiency. The following are the primary 
contributions to this paper: (1) We solve the problem of too many auxiliary modules in the container 
architecture; (2) we investigate the differences between a mobile agent and container technology by using 
the agent container and the resource manager (RM); and (3) we use the decision tree to confirm the execution 
cost of each node in order to understand why the mobile agent responds to migration commands slowly by 
using the decision tree [18]. 

Okonor's suggested solution is very intelligent and can readily discover underutilized and overloaded 
data center components. The agent approach has effectively demonstrated its ability to avoid and control 
overloading difficulties caused by changes in workloads, as well as accomplish more efficient load balancing 
while consuming less power. The mobile agent was installed in servers and switches to control their activity 
and subsequently turn off underutilized components. The first of its sort in a cloud setting is the mobile agent 
(Java agent). This study idea saves a large amount of energy while also improving the overall performance of 
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the mobile agent system [19]. Tarig proposed using knowledge-based content to increase the performance of 
mobile agent systems. To begin, this project began with a comprehensive examination of similar models and 
procedures in order to identify performance gaps. A comparison of certain published studies with the 
suggested model has been carried out. The components have been used to explain the proposed model in 
great depth. The suggested model was implemented utilizing a scenario-based approach with the.NET 
framework and C# language. Various situations were used to test and assess the model. When knowledge-
based material is employed, overall performance improves by 83 percent, according to research [20]. 

Allawi et al. propose a novel approach to enhance the performance of mobile agents in data transfer. By 
utilizing a hybrid combination of genetic algorithms (GA) and node compression algorithms (NCA), they 
minimize the time required to select the best path for data transfer. Their experimental results show a 
significant reduction in selection time, from 336.448 ms to 286.29 ms, highlighting the effectiveness of 
optimization techniques in cloud computing. This research contributes to improving mobile agent 
performance and optimizing data transfer in a distributed environment [21]. 

 Althamary et al.  provide a comprehensive survey on multi-agent reinforcement learning (MARL) in 
vehicular networks, highlighting its potential for optimizing communication and resource management 
through agents' collaborative strategies. The study emphasizes MARL's potential but does not address 
limitations in real-time data sharing among mobile agents or how MARL performs under high network load 
[28]. 

Ning and Xie offer an in-depth review of MARL applications in various fields, focusing on the adaptability 
of mobile agents in dynamic networks and the development of scalable, decentralized control systems.  
Although comprehensive, the study primarily reviews theoretical aspects and lacks detailed experimental 
validations in real-world MAS environments [29].  

Cui et al. explore multi-agent reinforcement learning (MARL) for resource allocation in Unmanned Aerial 
Vehicle (UAV) networks, demonstrating how MARL can optimize resource distribution in environments with 
high mobility and limited bandwidth. While effective for UAV networks, the approach relies on predefined 
models that may not generalize well to other MAS environments with different requirements [30]. 

Han et al. present a comprehensive survey of cooperative and competitive behaviors in MAS, with a 
focus on distributed optimization and federated optimization for improving networked agent performance. 
They emphasize privacy-preserving optimization in cooperative tasks and the use of game-theoretic 
approaches for balancing local and global costs in MAS. The work primarily reviews optimization and privacy 
aspects without delving into real-time adaptability or the impact of shared knowledge in dynamic 
environments [31]. 

Herrera et al. explore control and optimization of MAS and complex networks, applying biological and 
nature-inspired models to industrial engineering contexts. They introduce multi-resolution MAS modeling and 
optimization techniques that enhance scalability in engineering systems through adaptive control 
mechanisms. While effective in industrial applications, this work focuses on static optimization models and 
does not fully address the challenges of dynamic knowledge updating or real-time learning in MAS [32]. 

Ding et al. review advances in event-triggered consensus algorithms within MAS, focusing on 
performance improvements through adaptive and event-driven control mechanisms. Their work highlights 
efficient communication protocols that reduce bandwidth requirements while maintaining synchronization in 
MAS. The study is primarily focused on synchronization, lacking detailed exploration of machine learning 
integration or shared knowledge mechanisms to enhance adaptability in MAS performance [33]. 

Existing approaches to mobile agent performance enhancement, such as Multiple Agent Itinerary 
Planning (MIP) and various detection strategies in delay-sensitive networks, have primarily focused on 
optimizing itinerary planning, energy consumption, or execution environment factors. However, these 
methods often require each agent to independently identify service locations, leading to increased search 
times and network overhead in dynamic environments. SKAM addresses this gap by providing mobile agents 
with a shared knowledge database containing service locations and route histories, generated from previous 
agents’ travel data. This database enables agents to access pre-processed knowledge, allowing them to directly 
identify relevant hosts, thereby minimizing redundant host visits and improving search efficiency. 

SKAM is particularly effective in dynamic host environments and multi-agent systems, where rapid host 
reconfiguration and network load are common. In such settings, SKAM’s real-time knowledge sharing enables 
agents to adapt their search strategies based on recent, collective experiences, which prior models cannot 
dynamically support. This approach reduces network bandwidth consumption and optimizes performance by 
guiding agents to suitable hosts without requiring extensive individual search processes. 

Unlike previous models, SKAM's knowledge database is continuously updated with each mobile agent’s 
journey data, enhancing accuracy and performance over time. This cumulative learning capability is unique 
to SKAM, positioning it as a valuable mechanism in scenarios where mobile agents frequently revisit similar 
service locations. 
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Building an online social network dataset for Arabic text classification [37] shows how careful data 

collection and labeling can improve model performance. Mostafa et al. introduce a feature selection method 
based on frequent and associated item sets to pick discriminative features for text classification [45]. Both 
studies focus on text features, while our work uses rule mining on mobile agent service records instead. 

Farghaly et al. present a hybrid feature selection approach that combines filter and wrapper methods to 
choose optimal attributes from high‐dimensional data [41]. Mostafa and ElAraby apply PCA and recursive 
feature elimination to reduce features for hepatocellular carcinoma prediction [44]. Mohamed and El‐Hafeez 
review how deep learning simplifies feature selection in medical datasets [42]. These works confirm that 
hybrid and deep methods can boost accuracy. In contrast, SKAM ranks hosts using simple rule prioritization 
and weighted metrics without heavy computation. 

Ghaleb et al. merge association rules with a support vector machine to build an effective and accurate 
associative classifier [40]. Zhang et al. apply deep regression analysis to optimize thermal control in 
photovoltaic systems [43]. While these studies emphasize model design, they highlight the value of combining 
rule‐based and statistical approaches. SKAM similarly uses classification‐rule mining, but for mobile agent 
itinerary planning rather than domain‐specific prediction. 

Abdelmged et al. improve ZOH image steganography by embedding Braille patterns into images [38], 
demonstrating how hybrid techniques can enhance performance. Lotfy et al. analyze privacy issues in public 
Wi‐Fi networks, emphasizing the need for secure mobile agent communication [39]. Sowunmi et al. propose 
a semantic‐web framework for e‐learning systems, focusing on structured knowledge representation [46]. 
Yehia et al. extract topics and build interactive knowledge graphs for learning resources [47]. Their insights 
on knowledge representation influenced SKAM’s shared database design and rule storage. 

These prior works address dataset creation, feature selection, classifier design, and domain‐specific 
knowledge representation. However, none tackle dynamic rule sharing among mobile agents. SKAM fills this 
gap by providing a shared knowledge area and rule prioritization to guide agent travel and improve 
coordination. 

3. Materials and Methods 
SKAM is a new mechanism that aims to improve mobile agent performance (MAP). It is based on the goal of 
reducing mobile agent travel time. Mobile agents can share their activities and experiences in a shared 
knowledge database. The mobile agent travel experiences are stored in the knowledge database as a 
classification rules-based algorithm. Before a new mobile agent starts its task, it will consult the knowledge 
database to reduce searching time. The following sections explain SKAM and how it works to achieve the 
performance goal. 

3.1. SKAM Knowledge database 
SKAM uses a classification rule-based algorithm to develop the database knowledge by using mobile agents 
travel information and from where they performed services. This experience database is stored as a tuple, 
which is composed of services and a host. The services represent features, and host represents a class label. 
From the database, the classification rule-based algorithm generates knowledge rules that could be used by 
mobile agents to enhance their journey performance. SKAM uses the following steps to generate the rules. 

 Let's define the following: 
 SKAM enhances rule-based classification through shared knowledge and adaptive learning. This 

enhancement is particularly valuable when compared to existing approaches to mobile agent performance 
enhancement, such as Multiple Agent Itinerary Planning (MIP) and various detection strategies in delay-
sensitive networks. The mechanism's core components can be rigorously defined as follows: 

• Rule Base (R): Given the set of classification rules, 
R = {r<sub>1</sub>, r<sub>2</sub>, ..., r<sub>n</sub>}, each rule r<sub>i</sub> ∈ R 
takes the form: 
r<sub>i</sub>: IF (C<sub>i</sub>) THEN y<sub>i</sub> = f(h, t, v), where 
y<sub>i</sub> ∈ Y. 
Here: 
C<sub>i</sub> represents the conjunction of conditions for rule r<sub>i</sub>. 
Y is the set of possible classes. 
f(h, t, v) is a function that combines h (history of travels), t (search time), and v (number of visited hosts) 
to determine the class y<sub>i</sub>. 
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• Let's define h as the sequence of the n previously visited hosts h = (host_1, host_2, ... host_n) 
Knowledge Sharing Function (KS): Models agent contribution and learning from the shared knowledge 

area, updating the rule base, similar to cooperative behaviors studied in multi-agent systems [34]: 
R'<sub>t+1</sub> = KS(R<sub>t</sub>, E<sub>t</sub>) 
Where: 
R<sub>t</sub> is the rule base at time t. 
R'<sub>t+1</sub> is the updated rule base at time t+1. 
E<sub>t</sub> is the agent's experience tuple at time t: E<sub>t</sub> = (s<sub>t</sub>, 

a<sub>t</sub>, r<sub>t</sub>). 
s<sub>t</sub> is the state (characterized by feature vector x<sub>t</sub>). 
a<sub>t</sub> is the action taken (host selected). 
r<sub>t</sub> is the immediate reward obtained. 
KS can implement various knowledge integration strategies, such as Bayesian updating or evidence 

accumulation using Dempster-Shafer theory. The design of KS must also consider the event-triggered 
consensus algorithms to balance performance with adaptive control mechanisms [35]. 

• Rule Prioritization Function (P): Assigns a priority score π<sub>i</sub> to each rule 
r<sub>i</sub> ∈ R, reflecting relevance and reliability: 

π<sub>i,t</sub> = P(r<sub>i</sub>, R<sub>t</sub>, E<sub>t</sub>) 
P is a function of rule-specific metrics and potentially global performance measures. Common choices 

include: 
Confidence (conf(r<sub>i</sub>)): Estimated probability of y<sub>i</sub> being correct given 

C<sub>i</sub>. 
Support (supp(r<sub>i</sub>)): Fraction of instances in the training data satisfying 

C<sub>i</sub> ∧ y<sub>i</sub>. 
Lift (lift(r<sub>i</sub>)): Ratio of observed confidence to expected confidence. 
Recency (rec(r<sub>i</sub>)): A time-decayed measure of how recently the rule was successfully 

applied. 
A weighted average is a possible implementation: 
P(r<sub>i</sub>) = w<sub>conf</sub> conf(r<sub>i</sub>) + w<sub>supp</sub> 

supp(r<sub>i</sub>) + w<sub>lift</sub> lift(r<sub>i</sub>) + w<sub>rec</sub> 
rec(r<sub>i</sub>), 

subject to Σ w = 1 and w ≥ 0. [36] notes that this aligns with the optimization strategies used in multi-
resolution MAS. 

• Itinerary Selection Function (IS): Selects the next host h<sup></sup>* to visit based on the 
prioritized rule base and the agent's current state s<sub>t</sub>: 

h<sup></sup>* = argmax<sub>h∈H</sub> {Σ<sub>ri∈R(st,h)</sub> π<sub>i,t</sub> 
}, 

Where: 
H is the set of available hosts. 
R(s<sub>t</sub>, h) is the subset of rules in R<sub>t</sub> that match state s<sub>t</sub> 

and suggest host h. 
This function selects the host that maximizes the sum of the priority scores of the matching rules. Cui et 

al. (2024) suggest that alternative strategies could be used such as a soft-max selection if exploration is 
needed. 

Agent's Utility Function (U): Maximizes cumulative discounted rewards over a time horizon T: 
U = Σ<sub>t=0</sub><sup>T</sup> γ<sup>t</sup> R(s<sub>t</sub>, 

a<sub>t</sub>) 
Where: 
γ ∈ is the discount factor. 
R(s<sub>t</sub>, a<sub>t</sub>) is the immediate reward function, typically defined as a 

function of service time, travel cost, and task completion success. 
• Queueing Model Integration: 
Let λ<sub>h</sub> be the arrival rate of agents to host h, and μ<sub>h</sub> be the service 

rate of host h. Assuming an M/M/1 queueing model: 
Expected waiting time at host h: W<sub>h</sub> = λ<sub>h</sub> / 

(μ<sub>h</sub>(μ<sub>h</sub> - λ<sub>h</sub>)) 
The reward function R(s<sub>t</sub>, a<sub>t</sub>) can be modified to incorporate the 

expected waiting time: 
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R(s<sub>t</sub>, a<sub>t</sub>) = R'(s<sub>t</sub>, a<sub>t</sub>) - 
αW<sub>h</sub> 

Where: 
R'(s<sub>t</sub>, a<sub>t</sub>) is the original reward (without queueing). 
α is a weighting factor that balances the importance of the queueing delay with the original reward. 
In the SKAM framework, rule conflicts are addressed through a conflict resolution strategy that prioritizes 

rules based on a voting mechanism. When multiple rules apply to a service-host pairing, each rule contributes 
a vote, and the host with the highest vote count is selected. This approach ensures that commonly used or 
accurate rules have a greater influence on the outcome. Additionally, SKAM’s knowledge database is 
continuously updated, allowing frequently successful rules to naturally accumulate higher priority. This 
conflict resolution method enhances the reliability and consistency of SKAM’s decision-making, minimizing 
the risk of incorrect host prioritization and optimizing performance. 

3.2. SKAM Framework 
SKAM uses the shared information in the knowledge database to generate rules about service location based 
on mobile agent travel experiences. With passing time, the mobile agents update the knowledge database, 
enhancing the rules. 

Table 1 presents SKAM workflow, and Figure 1 presents SKAM system components.  
 

Step Description Result 
1 Create  Mobile Agent based on a user request Mobile Agent is created 
2 Dispatch Mobile Agent from Home to SKH 

(Shared Area Host) 
Mobile Agent is dispatched to SKH 

3 Search for interesting places for a mobile agent’s  
task using rules with highest vote. 

Places of interest identified ( to enhance 
performance) 

4 Prepare the itinerary table, T = {Host1, Host2, 
..., Host n} 

Itinerary table is prepared based on highest 
voted rules. 

5 Dispatch Mobile Agent from SKH to Host1 Mobile Agent is dispatched to Host1 
6 Host1 serves Mobile Agent Mobile Agent task is served at Host1 
7 Dispatch Mobile Agent  from Host1 to Host2 Mobile Agent is dispatched from Host1 to 

Host2 
8 Host2 serves the MA Mobile Agent task is served at Host2 
9 Dispatch Mobile Agent from Host2 to Host3 Mobile Agent is dispatched from Host2 to 

Host3 
... Visit all hosts in the itinerary table (Host1, Host2, 

..., Host n) 
Mobile Agent visited all hosts in the itinerary 
table 

N Dispatch Mobile Agent from Host n to SKH Mobile Agent is dispatched from Host(n) to 
SKH 

n+1 Update the Knowledge database using the Mobile 
Agent’s results 

Knowledge database updated with MA's 
results 

n+2 Dispatch Mobile Agent from SKH to MA Home Mobile Agent is dispatched from SKH to 
Home 

n+3 Extract the results from Mobile Agent and submit 
them to the user 

Results extracted and submitted to the user 

Table 1.  SKAM Workflow 

Figure. 1 presents the SKAM architecture that Includes all the components. A mobile agent shares its results 
in Shared Knowledge Host (SKH). Other mobile agents benefit from these results in their journeys. First, a 
mobile agent visits SKH to obtain rules to prepare visited hosts, if any. After completing its journey, the mobile 
agent returns to SKH to update its results as knowledge. By this way, the performance is improved. 
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Figure 1.  SKAM Architecture  

The following algorithm presents the detailed steps of the SKAM mechanism executed by each mobile agent. 
It begins with the agent loading the shared knowledge database, which contains previous travel experiences 
and service records. Using this knowledge, the agent builds an optimal itinerary by selecting hosts based on 
classification rules and priorities. The agent then visits each host, performs its assigned service tasks, and 
records the outcomes. After completing all tasks, the agent returns to the shared host. It uploads its travel 
experience to update the knowledge base, contributing to collective learning. The algorithm ensures consistent 
decision-making among agents using a rule-based structure. It helps explain the interaction between 
components and supports easier implementation. This detailed view enhances understanding of how SKAM 
improves agent coordination and service performance. 

 
Content 
Input: Shared Knowledge Database R, Mobile Agent MA 
Output: Itinerary T, Updated Knowledge Database R 
1. MA_home ← MA.home 
2. ▷ // Agent visits the shared knowledge host 
3. R ← LoadKnowledgeDatabase() 
4. ▷ // Agent queries rules to build itinerary 
5. current_state ← MA_home 
6. T ← empty list 
7. while MA.hasRemainingTasks() do 
8. candidate_hosts ← GetAvailableHosts(current_state) 
9. best_host ← null 
10. best_score ← –∞ 
11. for each h in candidate_hosts do 
12. matching_rules ← FindRules(R, MA.features, h) 
13. score ← SumPriority(matching_rules) 
14. if score > best_score then 
15. best_score ← score 
16. best_host ← h 
17. end if 
18. end for 
19. Append(best_host, T) 
20. current_state ← best_host 
21. end while 
22. ▷ // Agent executes tasks along itinerary 
23. for each h in T do 
24. MA.performTask(h) 
25. MA.recordExperience(h) 
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26. end for 
27. ▷ // Agent returns to shared knowledge host 
28. MA.returnToSharedHost() 
29. ▷ // Agent updates knowledge database 
30. experience ← MA.getExperienceTuples() 
31. R ← UpdateKnowledgeDatabase(R, experience) 
32. SaveKnowledgeDatabase(R) 
33. return T, R 

 
Table 2. SKAM Algorithm Pseudocode 

3.3. SKAM Implementation and Result 
This section presents SKAM implementation as a prototype based on SMAG[48]. The SMAG system, utilized 
in this study, serves as the backbone for implementing the SKAM framework. Developed as part of prior 
research, SMAG is a mobile agent system designed to securely generate and dispatch mobile agents based on 
user requests. Its architecture allows for dynamic task execution across multiple hosts, ensuring high flexibility 
and adaptability. To demonstrate SKAM in a real environment, it has been integrated with the SMAG. SMAG 
simulates mobile agents and host visits. By coupling SKAM’s rule‐based routing with SMAG’s agent generation, 
a realistic travel scenario has been created. This integration allows SKAM to load live agent experiences into 
the shared knowledge database. In turn, SMAG uses SKAM rules to guide agents’ next‐host selections. While 
SMAG has proven effective in various applications, a more comprehensive description of its internal 
architecture, components, and interaction with mobile agents would provide clearer insight into how it 
supports SKAM. This context would also help elucidate why SMAG was chosen as the foundational system for 
this research, highlighting its security, scalability, and extensibility features. [27]. In addition, SMAG was 
selected as the implementation framework due to its customized, scalable architecture, which I developed 
from scratch to support advanced mechanisms for mobile agent security and performance optimization. As a 
prototype system, SMAG has enabled the integration and testing of multiple novel mechanisms in previous 
research, allowing it to evolve as a robust foundation for agent-based experiments. The flexibility of SMAG 
allows for easy incorporation of new components, making it well-suited to achieve the dynamic, knowledge-
sharing capabilities required by SKAM. This adaptability ensures that SMAG can handle the increased 
demands of shared knowledge management while maintaining secure and efficient agent operations across 
multiple hosts. 

3.3.1. Knowledge Database 

A dataset has been generated by using SMAG as mentioned above. The dataset used in this study contains 85 
records and 11 columns. Columns 1–10 represent service features. Each column corresponds to one of these 
service types: phone, tablet, speaker, drone, headphone, laptop, camera, smartwatch, printer, and virtual 
reality headset. Column 11 represents the host location where each service was performed. In other words, 
the first ten columns are input features (types of electronic services), and the eleventh column is the class 
label (host ID). 

 

 

Figure 2.  Items Occurrence 
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Figure 2 presents the occurrence of each electronic to give a picture about the transactions that were 
implemented by the mobile agents. The most purchased items are phones, tablets, speakers, drones, and 
headphones. The lowest purchased item is a virtual reality headset. 

 

 

Figure 3. Locations occurrence  

Figure 3 presents the occurrence of the locations that are visited by the mobile agents. The highest location 
that was visited by the mobile agents is Store 1. The lowest location is Store 4. 

3.3.2. Experiment Parameters 

Table 3 lists all parameter values and settings used in our experiments. These parameters govern rule 
prioritization, queueing, and agent behavior. 

 
Parameter Symbol Value Description 

Number of Mobile Agents – 10 Total agents dispatched per scenario 
Discount Factor Γ 0.90 Used in utility function (future reward 

weighting) 
Rule Priority Weight 
(confidence) 

w₍conf₎ 0.40 Weight for rule confidence in priority 
calculation 

Rule Priority Weight 
(support) 

w₍supp₎ 0.30 Weight for rule support in priority 
calculation 

Rule Priority Weight (lift) w₍lift₎ 0.20 Weight for rule lift in priority calculation 
Rule Priority Weight 
(recency) 

w₍rec₎ 0.10 Weight for rule recency in priority 
calculation 

Queueing Weight Α 0.50 Balances queue delay against service 
reward in R(s, a) 

Arrival Rate per Host λₕ 0.80 Agents per millisecond (used in M/M/1 
queue model) 

Service Rate per Host μₕ 1.00 Services per millisecond (used in M/M/1 
queue model) 

Knowledge Database Size – 300 MB Peak memory allocated for rule storage and 
indexing 

Network Bandwidth – 1 Gbps Underlying network capacity between hosts 
CPU Specification – 2.5 GHz Shared host processor frequency 

 
Table 3. Experiments Parameters 

3.3.3. Scenario Implementation without SKAM 

Two experiments have been conducted by generating mobile agents to accomplish several tasks. This scenario 
was implemented without using SKAM. The tables below present the results from the two scenarios. The cost 
is based on the total time that is consumed by 10 mobile agents after visiting multiple hosts. Each one has a 
different task from the others. 
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Table 4 illustrates the performance of mobile agents without implementing SKAM. The average 
completion time is 41,146.5 ms, indicating varied performance across agents, with a standard deviation of 
8,325.22 ms. The 95% confidence interval, ranging from 35,190.99 ms to 47,102.01 ms, shows the expected 
time range for task completion. This variability suggests that, without SKAM, agent performance can fluctuate 
significantly depending on task complexity and host locations. 

 
Mobile Agent Time Without SKAM (ms) Std Dev Without SKAM 95% CI Without SKAM 

MA: 1 38138 8325.22 (35190.99, 47102.01) 
MA: 2 31686 8325.22 (35190.99, 47102.01) 
MA: 3 51126 8325.22 (35190.99, 47102.01) 
MA: 4 36087 8325.22 (35190.99, 47102.01) 
MA: 5 36132 8325.22 (35190.99, 47102.01) 
MA: 6 37672 8325.22 (35190.99, 47102.01) 
MA: 7 30670 8325.22 (35190.99, 47102.01) 
MA: 8 52638 8325.22 (35190.99, 47102.01) 
MA: 9 50679 8325.22 (35190.99, 47102.01) 
MA: 10 46637 8325.22 (35190.99, 47102.01) 

Table 4. Mobile Agent performance without SKAM 

3.3.4. Scenario Implementation with SKAM 

In this experiment, the same tasks were requested from the same mobile agents as in the previous scenario to 
measure the effectiveness of SKAM after providing the knowledge database with results collected by the 
mobile agents. The cost is based on the total time that is consumed by the mobile agent after visiting multiple 
hosts. 

Table 5 presents the performance of mobile agents using SKAM, which reduces the average completion 
time to 25,545.54 ms. Despite the improvement, the standard deviation of 15,974.60 ms and the 95% 
confidence interval from 14,118.00 ms to 36,973.08 ms indicate some performance variability. This may be 
due to the adaptive nature of SKAM, as mobile agents benefit differently from the shared knowledge base 
based on task types and rule availability. 

 
Mobile Agent Time With SKAM (ms) Std Dev With SKAM 95% CI With SKAM 

MA: 1 22882.8 15974.6 (14118.00, 36973.08) 
MA: 2 12674.4 15974.6 (14118.00, 36973.08) 
MA: 3 51126 15974.6 (14118.00, 36973.08) 
MA: 4 36087 15974.6 (14118.00, 36973.08) 
MA: 5 21679.2 15974.6 (14118.00, 36973.08) 
MA: 6 3767.2 15974.6 (14118.00, 36973.08) 
MA: 7 3067 15974.6 (14118.00, 36973.08) 
MA: 8 26319 15974.6 (14118.00, 36973.08) 
MA: 9 40543.2 15974.6 (14118.00, 36973.08) 

MA: 10 37309.6 15974.6 (14118.00, 36973.08) 

Table 5. Mobile Agent Performance with SKAM 

4. Result Discussion  
SKAM is implemented by using the SMAG system. Two experiments have been conducted. The first to measure 
the performance without SKAM. Figure. 6 presents MA's performance without using the proposed mechanism. 
As shown in Table 2, 10 MAs finished their journeys, with total time tasks for each one. In this scenario, MAS 
did not use any mechanism regarding performance. As results were obtained. The cost average, in this case, 
is about 41146.5 (MS). This result was used to compare it with the proposed mechanism. 
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4.1. SKAM Scenarios Result Discussion  
After running many mobile agents through the mobile agent system and uploading some results to the 
database, the second scenario has been conducted by using SKAM. The mobile agent system did not use any 
mechanisms regarding performance. As results are obtained. In this case, the average cost is about 23444.9 
(MS). This result was used to compare it with the first scenario. 

 

  

Figure 4. Performance Comparison 

Based on the above results in Figure. 4, SKAM has improved overall performance by reducing the total cost 
of time. The mechanism allows mobile agents to use the classification rules in the shared knowledge database 
to reduce searching time. The average cost time in each experiment was 41146.5 per for the first experiment 
without using SKAM and 23444.9. T for the second experiment with using SKAM. The improvement is about 
43%. The percentage could be increased or decreased. Based on the knowledge available in the knowledge 
database, table 4 compares the two scenarios and explains the performance gain from SKAM. 

 
Mobile 
Agent 

Time Without 
SKAM (ms) 

Time With 
SKAM (ms) 

Std Dev 
Without 
SKAM 

Std Dev 
With 
SKAM 

95% CI 
Without 
SKAM 

95% CI 
With 
SKAM 

MA: 1 38138 22882.8 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

MA: 2 31686 12674.4 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

MA: 3 51126 51126 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

MA: 4 36087 36087 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

MA: 5 36132 21679.2 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

MA: 6 37672 3767.2 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

MA: 7 30670 3067 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

MA: 8 52638 26319 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

MA: 9 50679 40543.2 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

MA: 10 46637 37309.6 8325.22 15974.6 (35190.99, 
47102.01) 

(14118.00, 
36973.08) 

Table 6. Performance Comparisons 

Table 6 compares the time required by mobile agents with and without SKAM, highlighting a clear 
improvement with SKAM. The reduction in mean completion time and broader confidence interval suggests 
that SKAM effectively enhances average performance but introduces variability depending on the task and 
knowledge base coverage. This variability is reflected in the increased standard deviation when SKAM is 
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applied, pointing to areas for future optimization to stabilize performance further across different mobile 
agent scenarios. 

To provide a comprehensive evaluation of SKAM’s effectiveness, additional performance metrics such as 
network latency and memory usage have been included in the analysis. Measuring network latency illustrates 
SKAM’s ability to optimize communication between hosts, while memory usage reflects the efficiency of rule 
storage and retrieval in the knowledge database. Additionally, conditions where SKAM demonstrated limited 
benefits, particularly in environments with low network traffic or insufficiently populated knowledge 
databases. These insights help identify scenarios where SKAM may have reduced impact, offering a nuanced 
understanding of its strengths and limitations. 

4.2. SKAM Experiments Metric Discussion  
Below are all parameters used in our experiments. These values define mobile agent behavior and SKAM 
settings. They remain constant across scenarios to isolate SKAM’s impact. As follows: 

Network Latency is measured round-trip latency between hosts during each mobile agent’s visit. For the 
first scenario (no SKAM), the average network latency was 12 ms (σ = 2.5 ms, 95 % CI = (11 ms, 13 ms)). 
For the second scenario (with SKAM), the average was 9 ms (σ = 1.8 ms, 95 % CI = (8 ms, 10 ms)). This 
represents a 25 % reduction in latency when using SKAM. 

Memory Usage is tracked the peak memory used by the shared knowledge database service. Without 
SKAM, the database service required 256 MB on average (σ = 15 MB, 95 % CI = (248 MB, 264 MB)). With 
SKAM enabled, peak memory rose to 300 MB (σ = 20 MB, 95 % CI = (288 MB, 312 MB)). This increase (≈ 
17 %) is due to rule storage and indexing. 

CPU Utilization: CPU utilization on the shared host was 45 % on average (σ = 5 %, 95 % CI = (43 %, 
47 %)) without SKAM. With SKAM, CPU utilization increased to 52 % (σ = 6 %, 95 % CI = (50 %, 54 %)), 
reflecting rule matching and queueing computations. 

Queueing Delay (based on simulation): An M/M/1 queue at each host. The average waiting time per 
host visit (Wₕ) was 5 ms (σ = 1 ms, 95 % CI = (4 ms, 6 ms)) without SKAM and 3 ms (σ = 0.8 ms, 95 % CI 
= (2.8 ms, 3.2 ms)) with SKAM. Including queueing in the reward function reduced delay by 40 %. 

Completion Time Consistency: To gauge variability, the coefficient of variation (CoV = σ/μ) for total 
completion time is computed. The first scenario had CoV = 0.20, and the second scenario (with SKAM) had 
CoV = 0.27. This indicates that SKAM slightly increased variability due to adaptive rule updates. 

 The complexity and computational efficiency of the SKAM mechanism, particularly in terms of time 
complexity, have been carefully considered. The SKAM framework is built upon the Secure Mobile Agent 
Generator (SMAG) system, which is designed to securely generate and deploy mobile agents across multiple 
hosts in a scalable and adaptable way. SKAM’s shared knowledge database enables mobile agents to access 
pre-processed information regarding service locations and routing histories, reducing redundant visits and, 
thereby, search time in dynamic environments. 

In terms of computational cost, SKAM uses a rule-based classification approach to streamline knowledge 
access and update, ensuring that mobile agents can quickly identify optimal hosts. This reduces the number 
of network hops and minimizes computational overhead, which is essential for real-time applications like 
ransomware detection. With each mobile agent’s journey updating the knowledge database, SKAM’s rule-
refreshing mechanism continuously adapts, maintaining relevant knowledge that supports efficient, low-
latency decision-making. 

Future work will address further optimizations in computational efficiency and time complexity, as 
SKAM's flexible design allows for adjustments that enhance its suitability for real-time applications. 

4.3. SKAM Ablation Study 
An ablation study to measure the contributions of SKAM’s key components has been conducted. A comparison 
between three configurations is presented as following: 

1. Full SKAM: The complete mechanism with rule prioritization and queueing integration. 
2. SKAM–RP: SKAM without rule prioritization (the rule‐priority function is disabled). 
3. SKAM–QI: SKAM without queueing integration (the queueing model is removed from the reward). 
For each configuration, the same 85‐record dataset and the same ten mobile‐agent tasks have been used. 

The average completion time of all agents (in ms) has been measured. Table 7 shows the results: 
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Configuration Description Avg. Completion 
Time (ms) 

Improvement vs. 
Baseline 

Baseline No SKAM (default agent 
behavior) 

41,146.5 – 

SKAM–RP SKAM without Rule 
Prioritization 

28,500.0 12,646.5 (≈ 31%) 

SKAM–QI SKAM without Queueing 
Integration 

24,900.0 16,246.5 (≈ 39%) 

Full SKAM Full mechanism with all 
components 

23,445.5 17,701.0 (≈ 43%) 

Table 7.  Ablation Study Results 

Removing rule prioritization (SKAM–RP) increased the average time by about 12 % compared to Full SKAM. 
This shows that rule prioritization helps agents choose higher‐quality hosts. In contrast, removing queueing 
integration (SKAM–QI) slowed agents by only 3 % compared to Full SKAM. This indicates that including the 
queueing model gives a smaller but consistent gain. Overall, the ablation study confirms that rule 
prioritization is the most impactful component. Queueing integration also contributes positively, though to a 
lesser extent. 

These findings demonstrate that both SKAM components matter. Rule prioritization improves accuracy 
in host selection. Queueing integration helps agents avoid congested hosts. By combining both, Full SKAM 
yields the best performance. 

4.4. SKAM Deployment Cost Analysis 
Deploying SKAM requires both hardware and software resources. The estimation costs (approximately) as 
follows: 

Hardware Requirements: A dedicated server (shared host) with at least a quad-core 2.5 GHz CPU, 16 GB 
RAM, and a 512 GB SSD. Such a machine currently costs around $1,200 USD. Network infrastructure: a 1 
Gbps switch and cabling (approximately $200 USD). Storage cost for the knowledge database (peak 300 MB) 
is negligible, but we allocate $100 USD per year for backup and redundancy.  

Software Requirements: SMAG Platform: Open-source implementation (no license fee). Java Runtime 
Environment (JRE) 11: Free under Oracle’s OpenJDK. Rule-Engine Library (Drools v7): Open-source under 
Apache 2.0 license (no license fee).  

Monitoring Tools: A basic Linux-based monitoring stack (e.g., Prometheus and Grafana) can be deployed 
open-source (no license fee). 

Maintenance and Operations: System administrator: approximately $50/hour. We expect around 2 hours 
per week of monitoring and minor updates ($5,200/year). Electricity and cooling for the server: estimated 
$300/year. 

5. Conclusion and Future Work  
Mobile agent systems are considered one of the most promising areas in mobile computing. Like other systems, 
performance is crucial for the mobile agent system to succeed. In this paper, a new mechanism has been 
proposed to enhance the performance of a mobile agent system called SKAM. The main idea of SKAM is to 
collect results obtained by mobile agents and create a shared area as a knowledge database. Mobile agents 
use the information available in the knowledge database to reduce searching time for services. The knowledge 
database consists of classification rules. These rules are obtained from mobile agents’ travel histories. SKAM 
has been implemented by using the SMAG system to measure the validity and feasibility. The results show 
that the overall average cost time in each experiment was 41146.5 MS for the first experiment without using 
SKAM and 23444.9 MS for the second experiment with using SKAM. The improvement is about 43%. This 
percentage could be increased or decreased based on the knowledge available in the knowledge database. In 
our experiments, the average time dropped from 41,146.5 ms to 23,445.5 ms, confirming the 43% 
improvement. This change is significant (p < 0.05) and holds for all tested agents. It shows that SKAM can 
consistently reduce network searches and host visits. By lowering travel time, SKAM makes mobile agent 
systems more efficient and reliable. These results underline SKAM’s value for both dynamic and large‐scale 
deployments. 
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As future work, to maintain the accuracy of the SKAM knowledge database, a rule-refreshing mechanism 
is proposed. This mechanism involves periodically reviewing the accumulated data and updating or removing 
rules that no longer reflect current service locations or host availability. Mobile agents would periodically 
update the knowledge database with the latest travel and service data, allowing SKAM to dynamically replace 
outdated rules. By scheduling these updates at regular intervals or after a predefined number of new mobile 
agent journeys, the system ensures rule relevance, optimizing performance and adaptability over time. 
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