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objective. The four categories include: SJF-CA, SJF-ELA, SJF-PM, and SJF-RA. The
developed SJF-ML algorithms by the author perform pattern recognition of the tasks
that are to be computed, to improve decision-making during task computations in the
cloud. These sixteen SJF-ML algorithms include: SJF-ADAB, SJF-BAY, SJF-DT, SJF-
KNN, SJF-LAS, SJF-LDA, SJF-LGB, SJF-LN, SJF-MLP, SJF-NAV, SJF-PLY, SJF-RDG, SJF-
RF, SJF-RBST, SJF-SVM, and SJF-XGB. Performance Metrics: Cost, Time, Energy, and
LB are utilized to compare the developed algorithms with baseline SJF, along with
comparing them within their respective SJF-ML categories. Dataset: The real-time
Google Big Data Task (BDT) dataset, comprising tasks ranging from one hundred to one
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thousand across nineteen files, was computed using the SJF-ML and SJF algorithms.
Experiment: Open-source CloudSim simulator with VM counts of 20, 40, 60, 80, and
100 were utilized to compute the BDTs, outputting results across the considered
metrics. Results: The algorithms SJF-XGB and SJF-LN provided the best results, with
SJF-DT, SJF-LAS, and SJF-LDA providing poor results. Findings: Hybridization of the
cloud's scheduling algorithms with ML provides improved intelligence and
performance, resulting in the evolution of the cloud.

Keywords: Cloud-Computing, Hybrid-Algorithm, Machine-Learning, Scheduling, SJF

1. Introduction

1.1. Problem Formulation

Cloud development is profound in today's world, where several users are inclined towards using it, rather
than using alternative platforms for computing purposes (Chaudhary et al. and Chung et al., 2025). On the
one hand, its computing power is impressive; however, the cloud encounters several limitations in handling
its resources, where current scheduling methods struggle without any intelligence mechanism to handle Big
Data Tasks (BDTs) (Chaudhary et al., 2025). Without any modern intelligence mechanism to deal with these
uncertain BDTs, the current scheduling methods of the cloud will always output results whose highest
threshold is limited (Kathole et al., 2025). This puts a pause on evolving the cloud, which is contrary to the
current modern evolution trend observed in several systems through modern Machine Learning (ML)
mechanisms. With the technological advancements and results obtained with ML techniques, the scheduling
algorithms of the cloud need to be provided with its intelligence to cope up its performance-related gaps and
ensure its performance is elevated, thereby providing an evolution to the cloud as compared with the classical
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cloud systems (Kathole et al. and Liu, 2025). With the need for BDT computations in the modern day, the
cloud faces decision-making challenges too, with its classical scheduling methods, which function without ML
intelligence (Sanjalawe et al., Sonia et al., and Ye et al., 2025). Without any integration of ML methods, these
current scheduling algorithms fail to withstand these challenging BDTs, leading to higher cost and time
consumption (Ali et al. and Almurshed et al., 2024). Additionally, the existing cloud's scheduling methods do
not possess a pattern recognition facility which includes detection of the irregularities in BDTs, trends, and
classification of incoming BDTs which are to be computed, predicting execution times of BDTs, leading to an
improper Load Balancing (LB) mechanism in the cloud, which often increases energy consumption (Alsubaei
et al., 2024; Bartakke et al., 2024; and Hayyolalam et al., 2024). Hence, the author has focused on these issues
to hybridize with the cloud's ideal performing Shortest Job First (SJF) scheduling algorithm with the vast
range of ML category of algorithms to provide an improved version of scheduling policies. In this paper, the
author presents sixteen SJF-ML scheduling methods across four ML categories by using the preemptive SJF
scheduling mechanism of selecting the BDT with the least computing time among the rest and using ML
intelligence to allocate the cloud's resources to compute the BDTs. Here, the hybridization process includes
combining the approaches of SJF scheduling with the ML technique to improve the scheduling approach.
These SJF-ML algorithms give the cloud a fair chance to make better decisions with the BDTs, output better
results, and ultimately lead to its evolution through a systematic and balanced BDT computation. Lastly, the
author has also proposed a second-level hybridization in this research paper by combining the best-performing
algorithms in the first level from each SJF-ML category to form a second-level hybridization to further improve
cloud performance as a part of future research direction.

Figure 1 shows the Venn diagram of combining SJF with ML intelligence to develop the SJF-ML
algorithms for improving its performance and providing a next-level cloud-evolved computing environment.

Shortest Job
First

» Machine Learning

+ Easy to impl nt * Pattern Recognising

* Starvation Possibility

| Intelligence providing

* Fails with
Unpredictable Tasks

* Predictible Power

* Performance
improving

* Ignores Energy
Consumption

Figure 1. Individual characteristics SJF and ML algorithms for Cloud Evolution.

Figure 1 shows that the individual characteristics provided by the SJF scheduling algorithm are combined
with those of ML algorithms to provide a hybridized stronger approach for better scheduling results.

1.2. Proposed Solution

The author proposes an experimental-based research work that includes hybridizing the best-performing cloud
scheduling algorithm, Shortest Job First (SJF) in its preemptive form, with ML categories of algorithms to
develop algorithms across four different ML algorithm categories, termed SJF-ML, to ensure higher
performance is obtained and the cloud evolves through ML intelligence. Through this evolution, the proposed
SJF-ML algorithms by the author ensure that a better Quality of Service (QoS) is provided to end users.

The author presents the following SJF-ML algorithm categories:

e  Shortest Job First - Classification Algorithm (SJF-CA) Category: The classical SJF is combined
with ML's Classification Algorithms (CA) to develop the SJF-CA category of algorithms.

e Shortest Job First - Ensemble Learning Algorithm (SJF-ELA) Category: The classical SJF is
combined with ML's Ensemble Learning Algorithms (ELA) to develop the SJF-ELA category of
algorithms.

. Shortest Job First - Probabilistic Model (SJF-PM) Category: The classical SJF is combined with
ML's Probabilistic Model (PM) Algorithms to develop the SJF-PM category of algorithms.

e  Shortest Job First - Regression Algorithm (SJF-RA) Category: The classical SJF is combined with
ML's Regression Algorithms (RA) to develop the SJF-RA category of algorithms.

The author has explored the above four SJF-ML categories to combine the algorithms from each ML

category with SJF in preemptive mode, which are suitable for scheduling mechanisms in the cloud
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environment in their own unique way or working, leading to the development of sixteen SJF-ML hybrid
algorithms as follows:

e  SJF-CA Algorithms: The SJF is combined with four ML CAs algorithms to define the SJF-CA
category. These include: Decision Tree (DT), which is ideal for rule-based VM allocation decisions
at run-time; K-Nearest-Neighbors (KNN), which adapts to the dynamic workload of the BDTs using
grouping techniques; Linear Discriminant Analysis (LDA), which is optimal for task prioritization
with reduced dimensionality for the BDTs; and Support Vector Machine (SVM), which is effective
for handling the non-linearity of the BDTs distributions (Talwani, S. et al. 2022 and Mo, Y. et al.
2015). These algorithms are hybridized with SJF to develop SJF-DT, SJF-KNN, SJF-LDA, and SJF-
SVM hybrid SJF-CA scheduling algorithms, respectively.

e  SJF-ELA Algorithms: The SJF is combined with four ML ELAs algorithms to define the SJF-ELA
category. These include: AdaBoost (AB), which is effective in reducing the biasness of BDT
computing time predictions; Light Gradient Boosting Machine (LGB), which has a high-speed
memory efficient scheduling for the BDTs; Random Forrest (RF), which is useful with volatile
workloads; and Extreme Gradient Boosting (XGB), which is highly useful for skewed BDT
distributions (Liu, Z. 2025). These algorithms are hybridized with SJF to develop SJF-AB, SJF-LGB,
SJF-RF, and SJF-XGB hybrid SJF-ELA scheduling algorithms, respectively.

e  SJF-PM Algorithms: The SJF is combined with two PMs, including Bayesian Network (BAY), which
uses probabilistic models to handle dependencies in the BDT scheduling process, and Naive Bayes
(NAV), which is lightweight in its nature and uses real-time probability for scheduling short-term
BDTs (Chauhan, N. et al. 2022). These algorithms are combined with SJF to develop SJF-BAY and
SJF-NAV hybrid SJF-PM scheduling algorithms, respectively.

. SJF-RA Algorithms: The six RAs, including Lasso (LAS) which is helpful in the high-dimensional
and challenging BDTS, Linear (LN) which provides ideal real-time prediction for short BDTs, Multi-
Layer Perceptron Neural Network (MLP) which captures the non-linearities useful for LB,
Polynomial (PLY) which models the learning mechanism through its curvilinear BDT trends, Ridge
(RDG) which takes care of multi-collinear VM features, and Robust (RBST) which ensures that no
outlier BDTs are observed (Huymajer, M. et al. 2024). These algorithms are combined with SJF to
develop SJF-LAS, SJF-LN, SJF-MLP, SJF-PLY, SJF-RDG, and SJF-RBST, respectively under the SJF-
RA category.

Figure 2 represents the SJF-ML algorithms across the four categories.

SJF-CA SJF-ELA
Hybrid Category Hybrid Category

SJF-ML
Hybrid Algorithms

SIF-PM SIF-RA
Hybrid Category Hybrid Category

Figure 2. Proposed SJF-ML Algorithms.
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2. Literature Review

2.1. Survey of Existing Work

This section includes the LR, where several authors have explored and provided various hybrid techniques
using the SJF with other intelligent and prominent methods to focus on cloud limitations and its challenges.
The authors of this paper have proposed an Al-enhanced framework that integrates deep workload prediction
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and RL with SJF and traditional queueing theory to optimize results in the cloud environment (Chaudhary et
al., 2025). This study presents a lightweight sampling fine-grained GPU scheduling method that uses suspend-
resume mechanisms to reduce energy wastage in cloud systems (Chung et al., 2025). This work includes a
detailed review of scheduling resources, which consists of a thorough explanation of scheduling techniques
from the past decades and offering gaps from current research (Kathole et al., 2025). The ML's EL algorithms
are overviewed to provide a clear pathway for their practical implementation in the cloud (Liu, 2025). This
paper includes a review based on Al-based hybrid models, where the work analyses the need for energy-
efficient systems for scheduling jobs along with providing future directions (Sanjalawe et al., 2025). The LB
techniques are discussed in this research paper, where their significance in ML implementations is provided
for multiple computing platforms (Sonia et al., 2025). The author of this research paper has focused on
minimizing cloud performance parameters, such as cost and energy, by considering the sustainability of LB
in the cloud (Verma, 2025). The Asynchronous Control-based Aggregation Transport Protocol (AC-ATP) rule
is provided for reducing the deadlines in scheduling techniques by reducing the time performance metrics (Ye
et al.,, 2025). A multiple-level fuzzy approach is integrated into the Internet of Things (IoT) platform to
improve the operational efficiencies experienced by scheduling jobs in the healthcare domain (Ali et al.,
2024). The authors have provided a framework named Enhanced Optimized-Greedy Nominator Heuristic (EO-
GNH) for Al placement in computing sectors to improve time and resource allocation (Almurshed et al., 2024).
The K-means technique is hybridized with Heterogeneous Earliest End Time (HEFT), providing a dual ML
framework for task scheduling and improvements in results (Alsubaei et al., 2024). Zero-trust hybrid strategies
have been provided by the authors to provide a structured evaluation framework for the cloud environment
for selecting the best solutions and offering guidance on cost-effectiveness and implementation (Bartakke et
al., 2024). The authors have presented a Chaos theoretical model hybridized with the Black Widow
Optimization algorithm (CBWO) to focus on LB issues in cloud environments (Hayyolalam et al., 2024). A
priority-based method in the cloud using DRL named PH-DRL is presented for better scheduling of jobs and
improved time metrics (He et al., 2024). The authors have presented a scheduling technique for a fog-
computing environment to improve QoS (Hosseini et al., 2024). A comparative evaluation of RAs is performed
where seventeen RAs are studied in contrast with conventional methods (Huymajer et al.,, 2024). ML
techniques focused on cloud optimization for better decision-making (Kanchetti et al., 2024).

This research work hybridized SJF with priority and deployed the Enhanced Shortest Job First with
Priority (ESJFP) algorithm to improve classical SJF with task complexities having ML capabilities and improve
resource and time metrics (Laha et al., 2024). A multi-objective flexible job-shop scheduling problem
(MOFJSP) scheduler is presented in this paper to imbibe graphs with modern prominent methods for complex
problem solutions (Li et al., 2024). A Graph-based Denoising Diffusion Probabilistic Model (G-DDPM) is
presented for time-series forecasting, where the method works with PMs to reduce energy metrics (Miraki et
al., 2024). The LB issues are handled using the presented Modified Parallel Particle Swarm Optimization
(MPPSO) method for task scheduling, reducing the time parameters in the cloud (Pradhan et al., 2024). The
author has implemented ML algorithms like DT, RF, and KNN to provide solutions related to posture
classification, achieving better accuracy and Interpretability (Rahimi et al., 2024). The SJF is hybridized with
a Multi-Level Memory-Based Framework (SJF-MMFB) for enhanced cloud scheduling by incorporating multi-
queues addressing starvation Issues and improving fairness in cloud systems (Rekha et al., 2024). Hybrid ML
models are implemented for cryptocurrency predictions and handling real-time predictions with achieved
profitability (Salehi et al., 2024). Big data Integrated cloud systems are used to improve decision-making and
operational performance for the ERP systems (Saraswat et al., 2024). The challenges associated with the cloud
are focused on ML techniques to improve LB, the system's efficiency, and decision-making (Zende et al., 2024).
The authors have proposed a dual-objective algorithm to improve results concerning the scheduling domain
(Asghari et al., 2023). Post validations across twelve scenarios, the presented algorithm provides better results
when compared to the other state-of-the-art algorithms. The author has used the SVM scheme in the two-
cloud platform to reduce computing and communication overheads (Hu et al., 2023). Modern statistical
models are utilized to investigate the cloud performance in this work (Kumar et al., 2024). This work surveys
task scheduling methods and compares them with various performance parameters for optimal task
management (Nayak et al., 2023). This work demonstrates the use of ML to improve real-time scheduling
algorithms for cluster environments, optimizing task scheduling for dynamic environments (Zhang et al.,
2023). This work explores how ML impacts energy optimization, dynamic load balancing, task scheduling,
and security in cloud computing, improving resource allocation, security, and VM migration (Kumar et al.,
2022). The EAs are utilized for the prediction of diseases in cocoa crops, offering early and accurate
predictions based on climatic parameters, and benefiting farmers with proactive disease management
(Olofintuyi et al., 2022).

This work evaluates hybrid scheduling and allocation algorithms in cloud computing, showing that
combining SJF with RR results in the best response time, while SJF with a novel length-wise allocation (LwA)
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provides the least CPU utilization (Sahkhar et al., 2022). The author has combined two optimization methods
to strengthen the prominent cloud performance parameters and enhance the task scheduling process in the
cloud (Verma, 2022). The authors have examined the use of RR and SJF algorithms for improving efficiency
in cloud environments, suggesting an approach for optimal scheduling and resource allocation (Kumar et al.,
2021). A detailed comparison is made with SJF and Longest Job First (LJF) with ML-based scheduling
approaches using CloudSim, showing SJF’s efficiency while highlighting ML’s potential for further
optimization in dynamic environments (Murad et al., 2021). This work reviews studies on ML in cloud
security, identifying SVM as key and emphasizing hybrid methods for threat detection using metrics like True
Positive Rate (Nassif et al., 2021). The authors propose hybrid SJF-Min-Min Best Fit (MMBF) and SJF-Extreme
Learning Machine (ELM) scheduling models using Particle Swarm Optimization (PSO), optimizing job hosting
and minimizing starvation in dynamic cloud settings (Rekha et al., 2021). This work combines SJF-MMBF
with ELM energy-aware scheduling, addressing energy and security challenges (S Rekha et al., 2021).

This paper introduces a scheduling method for enhancing the task allocation process in cloud
environments (Tanha, M. et al., 2021). The authors have designed an Enhanced SJF (ESJF) for stable task
management by introducing ESJF with time-slicing between shortest and longest jobs, outperforming SJF in
unstable environments by reducing starvation and delays (Younis et al., 2021). This work enhances VM
scheduling using SJF-MMBF and SJF-ELM models with PSO, improving performance in high-load, dynamic
cloud environments (Rekha et al., 2020). This work uses DRL and Long Short-Term Memory (LSTM) for
scheduling, outperforming SJF, RR, and PSO by reducing CPU/RAM usage and task delays on real-world cloud
workloads (Rjoub et al., 2020). A SJF-MMBF method is applied for efficient VM scheduling, combining SJF
and MMBF with the Queue-Length MaxWeight policy to prevent starvation and improve job throughput (Guo
et al., 2019). This work includes DRL used with LSTM to reduce CPU and RAM usage, outperforming SJF, RR,
and PSO in big data task scheduling (Rjoub et al., 2019). CAs are discussed in this paper to ensure that better
cloud system performance is achieved (Samie et al., 2019). A Q-learning-based method integrated with the
heterogeneous earliest finish time (HEFT) is deployed to reduce makespan and response time, outperforming
traditional scheduling algorithms in efficiency (Tong et al., 2019). This work compares heuristic SJF-MMBF
with reinforcement-learning-based SJF-RL, showing SJF-RL excels in minimizing job delay and preventing
starvation (Guo et al., 2018). This work includes an SRDQ algorithm combining SJF and RR with an adjustable
time quantum to reduce time and avoid long task starvation (Elmougy et al., 2017).

The above-mentioned contributions from the researchers all around the globe who have presented their
hybrid methodologies involving SJF. This work helped the author to understand how the classical and
traditional SJF scheduling algorithms have been used with the modern ML methods. The next sub-section of
the LR dives deeper into understanding the contributions of these authors and how they helped the author of
this paper to contribute to improving cloud performance through hybridizations.

2.2. LR concerning Technical Overview

This sub-section includes the LR concerning Technical Overview, where Important aspects of author
contributions are studied and represented in terms of the algorithm presented, its features, along with the
enhancements it offers and limitations it possesses, presented in detail in Table 1.

2?5' Algorithm Features Enhancements Limitations
Al-enhanced Dual-layer neural . . High training time,

(1 framework network Adaptive scheduling overhead

[2] Lightweight Job migration, Boosts efficiency, Potential migration
sampling sampling fairness overhead

(3] Meta-.heurlstlc Catfsgorlzatlon, Identifies research gaps .Lacks novel .
algorithms review implementation

(4] Ensemble Combines multiple Increases robustness, Computationally
Learning learners accuracy intensive

(5] Al-based hybrid Al decision-making Improves energy, fault Complex adaptation
models cloud handling to real-time

. Real-time workload Optimizes resource . .
[6] | LB techniques adaptation distribution Hybrid LB in cloud
[91 | AC-ATP protocol Aggreggtlon and Reduces trafflc., . Straggler delays
congestion accelerates training
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Enhances healthcare

Relies on expert

[10] | Fuzzy Approach IoT integration predictions Jabelling
111 | Eo-GNH Optlmlz.ed placement, | Boosts edge-cloud Scaling complexity
parallelism performance
[12] | K-means, HEFT Task pr1.0r1ty Improves LB Tuning required for K-
scheduling values
Zero-Trust Identity/context Fine-grained access, Legacy system
[13] i ; L.
Framework verification real-time policies updates needed
Chaos theory, task Needs parameter
[14] | CBWO distribution Reduces energy usage tuning
[15] | PH-DRL DRL-based hybrid Balances performance leltEd. -
scheduler generalizability
Regression Comparative feature Enhances prediction, . .
[17] Models study tuning strategies Risk of overfitting
[18] General ML Data retrieval, Boosts decision-making, Infrastructure
methods automation scalability reliability
s I Lacks real-time
[19] | ESJFP Prioritizes tasks Reduces wait time adaptability
[20] | MO-GARL Combines GAT with Gengrahzable solutions ComPute-heavy
RL obtained training
[21] | G-DDPM Graph learning Enhances accuracy Resource-intensive
[22] | MPPSO PSO for scheduling Reduces delays, boosts Large—sc:?lle setting
throughput complexity
[23] | DT, RF, KNN Time-frequency Transparent feature Inconsistent accuracy
influence
[24] SJF-MMFB with Integrates PSO, SJF Balance.:s load, prevents Ove.rhead in large
PSO starvation environments
[25] | ML methods Apphed to. cryp to Combines fuzzy logic Some models over-fit
price prediction and ML
Big data with Integration of big . Lack of real-world
[26] Cloud data in ERPs Cost-effective case studies
[27] | ML methods ML for LB Impr.oves cloud . Resource-demanding
efficiency, security
Privacy-preserving Resilience to malicious - .
[29] | SVM ML behaviour Encryption complexity
[30] | Statistical Models | Survey of cloud apps Insight into cloud app No qua}lltatlve
preferences analysis
Scheduling Scheduling Methods - . Context-sensitive
[31] methods Analysis Optimize scheduling performance
[32] | FCFS, SJF Predictive ML Accurate burst time L1m1ted. to real-time
forecasts constraints
(33] | ML methods Predictive ML Al improves szflaency, H}Jman expertise is
and automation still needed
[34] Ensen}ble Time-series ngh-ac.curacy Regpn;speaﬁc data
Learning forecasting limitations
SJF, FCFS, RR, Various scheduling Best response time with .
[35] LwA algorithms SJF+RR Neglects other metrics
[36] | RR, SJF Pre-emptive RR, SJF Minimizes waiting time High waiting time
SJF, LJF for .
[37] | SJF, LJF Scheduling Increases throughput Starvation observed
[38] | SVM Cloud security threats | Improve accuracy High training time
PSO, SJF, MMBF, Hybrid queue . e
[39] ELM scheduling Prevents starvation Scalability issues
. . - Complex hybrid
[40] | SJF, MMBF, ELM Hybrid scheduling Improves efficiency
approach
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[42] | ESJF Time-slice strategy Reduces waiting times Increaset'i scheduling
complexity
[43] PSO, SJF, MMBEF, Prevents starvation Optimized scheduling Computational
ELM performance overhead
[44] RL, DQN, RNN- LSTM Reduces CPU/RAM High computational
LSTM usage expense
SJF with QMW . Complexity in
[45] | MMBF, SJF Scheduling Improves fairness resource scheduling
[46] | DRL, LSTM Prefhct VM Reduces resource Flomplex .
assignment for tasks consumption implementation
[47] Clasmf}catlon ML techniques for IoT Improves data Scalability concerns
Techniques management
Combines Q-learning High computational
[48] | QL-HEFT and HEFT Improves makespan overhead
[49] | SIF-MMBF Hybrid SJF with RL Adapts to dynamic Adds cor'nputatlonal
workloads complexity
[50] | SRDQ Hybrid SJF and RR Balances SJF and RR glogfée"“y in fine-

Table 1. Literature Review concerning Technical Overview.

The conducted LR helped the author to identify the gaps and place the foundations for this research.

2.3. Gaps

The following gaps were identified from the above conducted LR:

e  Existing studies have not fully developed hybrid scheduling methods that integrate a diverse range
of ML algorithms beyond currently explored techniques, restricting cloud evolution.

e  Current approaches lack the integration of BDT computations within ML-enhanced SJF, despite
their need in the modern computing world.

e A comprehensive comparison between SJF and its improved versions is missing, particularly in
assessing the entire spectrum of cloud performance metrics.

e  Existing methods lead to increased energy consumption and expenses despite improved results.

e  Contributing to a second level of hybridization using the best obtained multiple algorithms is absent
in the same research contribution.

The identified gaps helped the author to develop the SJF-ML algorithms and make suitable contributions

for evolving the cloud, further represented in section 3.

3. Contributions

The following includes the author's contributions from this research work:

e  The SJF method has been enhanced through hybridization with four distinct and diverse categories
of ML algorithms, resulting in the development of sixteen SJF-ML algorithms.

e  Real-time BDTs were employed to evaluate the performance of the developed SJF-ML algorithms
with baseline SJF, ensuring their applicability to evolve cloud environments.

e A comprehensive analysis was conducted to compare the SJF with hybridized SJF-ML methods,
considering a broad spectrum of cloud performance metrics, including cost, time, energy, and LB.

e  From the best-performing algorithm in each ML category, an architecture consisting of a second-
level hybridization approach is provided to further refine scheduling efficiency and contrast its
effectiveness against other SJF-ML variants.

e The proposed SJF-ML methodologies aim to enhance cloud performance, improve QoS, and
contribute to more efficient, scalable scheduling solutions in high-demand computing
environments.

The above contributions are made through this unbiased research work through extensive experiments

in an open-source simulator where several real-time cloud components are deployed and BDTs are computed
using all the developed SJF-ML algorithms.
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4. Dataset, Experimental Setup and Performance Metrics

4.1. Dataset

Google's BDT was utilized by the classical SJF method along with the developed sixteen SJF-ML hybrid
algorithms across four categories for computing. This dataset consists of nineteen input files across task
lengths from one hundred tasks to one thousand tasks, each task having AT and CT as the significant features
for the BDT. These features are fed to the SJF-ML algorithms to improve the cloud's scheduling decisions. The
author has provided data analysis for the input BDTs in the form of descriptive statistics for these BDTs,
including Mean (p), Median (MDN), and Standard Deviation (o) for a better understanding of the BDTs used.
Table 2 includes the descriptive statistics for the BDTs.

Descriptive Statistics BDT-AT (s) BGT-CT (s)
Sr. No. BDT Length u MDN o 1l MDN o
1 100 543.1000 | 549.5000 | 273.6093 135.10 91.00 167.42
2 150 557.8733 | 587.0000 | 253.7945 147.87 97.00 185.55
3 200 573.3700 | 585.5000 | 275.2022 136.10 87.00 178.60
4 250 536.9560 537.5000 254.4490 119.91 89.00 152.95
5 300 545.1067 552.0000 265.7443 138.42 89.00 182.21
6 350 551.8571 527.0000 | 262.9433 135.05 95.00 162.92
7 400 552.8725 564.5000 263.0676 129.67 95.00 150.59
8 450 549.8956 560.5000 261.5785 123.83 91.00 151.95
9 500 556.3660 560.5000 258.0876 130.00 93.00 153.38
10 550 538.8127 527.5000 272.4410 130.29 93.00 168.00
11 600 542.4350 | 538.5000 | 258.2551 137.24 93.00 175.03
12 650 544.5800 549.5000 257.2584 136.16 93.00 168.88
13 700 550.8814 550.0000 255.6384 124.99 93.00 150.30
14 750 551.6360 545.5000 251.5622 136.07 93.00 171.25
15 800 560.9663 567.0000 256.9907 123.70 91.00 149.87
16 850 547.2741 537.5000 | 261.1188 125.12 91.00 149.47
17 900 542.2711 538.0000 256.2634 133.39 93.00 161.45
18 950 543.3053 544.5000 260.4067 124.61 94.00 150.46
19 1000 552.9770 552.5000 248.5605 129.66 93.00 162.63
AVG | 549.6072 | 551.2895 | 260.3669 | 131.4305 | 92.3158 | 162.7847

Table 2. Descriptive Statistics for the BDTs.

Table 2 shows that the descriptive statistics of the ATs possess a considerable amount of variability, making
it difficult to predict the SJF and develop SJF-ML algorithms to be computed. On the other hand, the
descriptive statistics of the BDA-CTs showcase a slight amount of stability with lower fluctuations, providing
a fair chance to all the algorithms for computing. At a higher task length, both times showcase balanced
behavior, suggesting there will be a steady execution with higher loads. These tasks were input into a real-
time computing environment to the SJF and SJF-ML algorithms across several VM-based experimental
scenarios to ensure unbiased results are obtained.

4.2. Working of SJF-ML hybrid algorithms

The SJF and ML algorithms integrate with each other to make the crucial scheduling decisions at runtime.
The SJF-ML scheduling algorithms executed the BDTs based on the feature of BDT-CTs. The working
mechanism includes loading the challenging BDTs in the cloud queue, followed by the feature extraction with
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the label defined by the BDT-CTs. Further, the BDTs are split into 80 % training and 20 % testing sets and fed
to each of the presented sixteen SJF-ML algorithms for training and testing in all the experimental scenarios.
Later, the BDTs are sorted considering CTs and scheduled with the ideal available VM at runtime. Figure 3
represents the general block diagram of the working of all the SJF-ML algorithms.

Initialization of Performance Metrics

Cost rate: $0.003 per unit BDT-CT | | Time factor: 0.1 per unit BDT-CT | | Energy rate: 0.003 pJ per unit BDT-CT |

Energy rate; 0.0003 uJ per unit waiting time ‘ | Network delay: 5 seconds |

| Define five VM configurations: 20, 40, 60, 80, 100 VMs ‘

!

For Each Input Dataset:
Load the Big Data Tasks (BDTs) into Cloud Queue.

!

Feature Extraction:
Extract BDT-CT feature for BDTs. Define Label as BDT-CT

I

Data Splitting and Scaling:
Split BDT features and labels into training (80%) and testing (20%) sets

I

Machine Learning (ML) Model Training:
Apply appropriate ML model under SJF-CA, STF-ELA, SJF-PM and SIF-RA hybrid category.

|

BDTs Sorting::
Sort the BDTs considering their BDT-CTs

I

Scheduling all BDTs with SJF scheduling mechanism:
Assign tasks to least-loaded VM at arrival time.
Track start time, waiting time, and update VM states.

!

Performance Metrics Calculations:
Calculate Cost, Time, Energy and LB

Figure 3. Block diagram of Working of the SJF-ML Algorithms.

5. Experimental Setup and Performance Metrics, and Architecture of Experiment

5.1. Experiment Setup and Performance Metrics

The experiment was set up in the open-source CloudSim environment where the classical SJF and sixteen
developed SJF-ML hybrid algorithms across four SJF-ML categories were Incorporated In this simulation
environment. The experiment simulates computing the BDTs in a multiple-VM environment. The performance
metrics considered for the study are: cost ($), time (seconds 's'), energy (microJules 'wJ'), and LB. LB here is
defined as a measurement that uses the coefficient of variation, considering workloads across all the VMs
post-scheduling all the tasks, considering a certain scenario. All the SJF-ML algorithms provide dynamic LB,
unlike the existing SJF, through enhancements of predictive intelligence mechanisms. The ML component
during the scheduling process allocates VMs by considering their queue lengths, resource utilization patterns,
and estimation of BDT-CTs, which is significant for SJF. Through continuous real-time feedback against
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fluctuating workloads, the SJF-ML ensures a stable distribution of all BDTs evenly among the considered VMs.
The computing cost rate was set to $0.003 per unit BDT-CT. The Execution Time Factor was set to 0.1 per
unit BDT-CT. The Energy Consumption Rate and Idle Energy Consumption Rate were set to 0.003uJ per unit
BDT-CT and 0.0005pJ per unit waiting time. With the possibility of errors and faults in the network, a constant
network delay of 5s is considered. The experiment was conducted in five scenarios with the VM count as: 1:
20 VMs; 2:40 VMs; 3:60 VMs; 4:80 VMs, and 5:100 VMs. The main reason to choose these four metrics is that
they cover the entire spectrum of parameters for the cloud. Time and Cost play a major role in scheduling in
the cloud and are critical for judging and comparing algorithms. Energy ensures the cloud's resources are
consumed optimally without having to sacrifice time and cost to do so. Lastly, each cloud resource needs to
be utilized to the fullest, and an uneven workload allotment ensures high time, cost, and energy for the ones
most used. Hence, LB as a metric is calculated in the form of a coefficient of variance which provides a balance
to ensure appropriate energy is consumed with Ideal cost and time metrics. Together, these metrics form an
Ideal comparative framework for the classical SJF to be compared with the developed SJF-ML hybrid
algorithms. If a certain algorithm provides ideal results across all four metrics, then other metrics also
significant to the cloud will be optimal.

5.2. Architecture of the Experiment

This sub-section provides the experiment's architecture with the deployed SJF-ML hybrid scheduling
algorithms. The experiment was conducted where the BDTs were submitted for computing from the user
environment to the cloud environment. Upon reaching the cloud's platform, the BDTs are added to the cloud
queue, where they wait until their ATs are reached. This queue represents a storage from which the SJF-ML
algorithm will choose the BDT for execution. This BDT's size acts like a main feature for the SJF-ML algorithms
to select the tasks from the queue, considering its least CT. Here, the developed SJF-ML algorithms deployed
will ensure appropriate pattern recognition through eradicating irregularities of the BDTs, classifying them
according to their trends, thereby provide an intelligence mechanism before submitting the BDTs to the cloud
VMs. From its initial submission until getting selected and assigned to being computed and finally getting
completed and closed, a BDT undergoes several stages in its lifetime. Post all completion of BDT computations,
the results are computed and provided to the user for the considered metrics. Figure 4 represents the
architecture of the experiment with the deployment of SJF-ML hybrid scheduling algorithms.

User Environment
Input Task Dataset: Google's Big Data Tasks (BDTs)

| 100BDT:( |150BDTz | | 200 BDT:z 400 BDT:z

| 250 BDT:=

300 BDT: | |35|l BDT:

450 BDTz | | 500 BDT:=

550 BDT: |

| 600 BDTs | | 650 BDT= | (700 BDT= 800BDT: | | 850 BDTs | | %00 BDT= | (950 BDT=

| 750 BDT=

|ll)00 BDT:)

Cloud Environment BDTs submitted for computing

[ Cloud Queue: BDT T, BDT T,, BDT T, ... BDT T, ]

Tasks selected on basis of shortest computing time l

BDT Life-Cycle SJF-ML Hybrid Scheduling Algorithm

Shortest Job First (SJF)
in Pre-emptive Mode

<;::> i

Machine Learning

| Algorithm
Completed j+—{In Progress

Results provided with better Cost, Time, Energy and
Load Balancing using $TF-ML Hybrid Algorithms

Scenario-wise Virtual Machine (VM) Deployed
VMs =10 VMs =40 VMs =60 VMs =80 VMs =100

HE 550 0|25 Q| EE & EE 2
EE QB 2R B EE B EE 2

Figure 4. Architecture of the Experiment with SJF-ML Algorithms.
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6. Results and Discussions

This section includes the results and discussions for the experiment conducted, presented in four sub-sections:
6.1, 6.2, 6.3, and 6.4, including cost, time, energy, and LB results compared in terms of average (AVG) and
improvement percentage (IMPR %) compared against SJF AVG values. The performance rank of a certain
algorithm is represented with a circled number, representing its performance rank within its respective SJF-
ML hybrid category. Additionally, a green-circled asterisk is represented for the best performance, considering
all SJF-ML algorithms and the SJF algorithm.

6.1. Cost Results

Table 3 includes the Cost Results for the developed SJF-ML hybrid algorithms compared to SJF.

Cost ($) Results VM Counts AVG IMPR%
Category Algorithm 20 40 60 80 100 vs SJF
Classical SJF 3138.54 840.47 399.99 240.77 164.47 956.85 -

SJF-DT® 5188.89 1280.00 569.58 328.71 212.67 1515.97 -58.4334
SJF-CAs SJF-KNN® | 5028.80 | 1249.88 | 557.97 | 318.10 | 207.78 | 1472.51 | -53.8914
vs SJF SJF-LDA® 3704.52 977.66 458.97 | 272.85 | 184.36 | 1119.67 | -17.0163
SJF-SVM® 3754.84 972.62 447.66 260.50 172.02 1121.53 -17.2106
SJF-AB® 4952.65 1236.87 557.00 318.68 | 209.15 1454.87 -52.0479
SJF-ELAs | SJF-LGB® 3704.52 977.66 458.97 | 272.85 | 184.36 | 1119.67 | -17.0163
vs SJF SJF-RF® 3149.31 843.07 401.09 | 241.36 | 164.83 959.93 -0.3219
SJF-XGB® 3138.55 840.46 399.99 240.77 164.47 956.85 0.0000
SJF-PMs SJF-BAY® 4532.35 1116.82 522.63 292.29 195.22 1331.86 -39.1921
vs SJF SJE-NAV® 4980.60 1240.91 555.99 317.71 207.68 1460.58 -52.6446
SJF-LAS® 5069.30 | 1285.20 | 577.98 | 329.59 | 214.76 | 1495.37 | -56.2805
SJF-LNO®O 3138.52 840.46 399.99 240.77 164.47 956.84 0.0010
SJF-RAs SJF-MLP® 3150.74 843.71 402.86 241.69 165.11 960.82 -0.4149
vs SJF SJF-PLY® 3138.56 840.47 399.99 240.77 164.47 956.85 0.0000
SJF-RDG® | 3142.46 841.42 400.39 | 240.99 | 164.60 957.97 -0.1171
SJF-ROB® 3138.55 840.46 399.99 240.77 164.47 956.85 0.0000

Table 3. Cost Results for SJF-ML hybrid algorithms compared to SJF algorithm.

Table 3 shows the following cost comparison of the SJF-ML hybrid algorithms compared to the SJF algorithm:
. SJF-CA vs SJF: SJF > SJF-LDA > SJF-SVM > SJF-KNN > SJF-DT
. SJF-ELA vs SJF: [SJF = SJF-XGB] > SJF-RF > SJF-LGB > SJF-AB
. SJF-PM vs SJF: SJF > SJF-BAY > SJF-NAV
. SJF-RA vs SJF: SJF-LN® > SJF > [SJF-PLY = SJF-ROB] > SJF-RDG > SJF-MLP > SJF-LAS
Figure 5 shows Cost IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm.
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Figure 5. Cost IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm.

JIOS, VOL. 49, NO. 2 (2025), PP. 193-211

203



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

The cost results convey the SJF-LDA of the SJF-CA category, SJF-XGB of the SJF-ELA category, SJF-BAY of
the SJF-PM category, and SJF-LN of the SJF-RA provide the best performance within their respective
categories. Additionally, the SJF-LN hybrid algorithm of the SJF-RA category provides the best cost results
across all the SJF-ML developed hybrid algorithms, along with the SJF algorithm.

6.2. Time Results

Table 4 includes the time comparison of SJF with presented SJF-ML Hybrid Algorithms.

Time (s) Results VM Counts AVG IMPR%
Category Algorithm 20 40 60 80 100 vs SJF
Classical SJFO® 104.62 28.02 13.33 8.03 5.48 31.90 -

SJF-DT® 172.96 42.67 18.99 10.96 7.09 50.53 -36.8692
SJF-CAs SJF-KNN® 167.63 41.66 18.60 10.60 6.93 49.08 -35.0041
vs SJF SJF-LDA® 123.48 32.59 15.30 9.09 6.15 37.32 -14.5230
SJF-SVM® 125.16 32.42 14.92 8.68 5.73 37.38 -14.6602
SJF-AB® 165.09 41.23 18.57 10.62 6.97 48.50 -34.2268
SJF-ELAs | SJF-LGB® 123.48 32.59 15.30 9.09 6.15 37.32 -14.5230
vs SJF SJF-RF® 104.98 28.10 13.37 8.05 5.49 32.00 -0.3125
SJF-XGBO® 104.62 28.02 13.33 8.03 5.48 31.90 0.0000
SJF-PMs SJF-BAY® 166.02 41.36 18.53 10.59 6.92 48.68 -34.47
vs SJF SJF-NAV® 182.62 45.5 19.64 11.54 7.47 53.35 -40.2062
SJF-LAS® 168.98 42.84 19.27 10.99 7.16 49.85 -36.0080
SJF-LNO®O® 104.62 28.02 13.33 8.03 5.48 31.90 0.0000
SJF-RAs SJF-MLP® 105.02 28.12 13.43 8.06 5.50 32.03 -0.4059
vs SJF SJF-PLY®O® 104.62 28.02 13.33 8.03 5.48 31.90 0.0000
SJF-RDG® 104.75 28.05 13.35 8.03 5.49 31.93 -0.0940
SJF-RBSTO® 104.62 28.02 13.33 8.03 5.48 31.90 0.0000

Table 4. Time comparison of SJF with presented SJF-ML Hybrid Algorithms.

Table 4 shows the following time comparison of the SJF-ML hybrid algorithms compared to the SJF algorithm:

LAS
Figure 6 shows Time IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm.

SJF-CA vs SJF: SJF® > SJF-LDA > SJF-SVM > SJF-KNN > SJF-DT

SJF-ELA vs SJF: [SJF® = SJF-XGB®] > SJF-RF > SJF-LGB > SJF-AD
SJF-PM vs SJF: SJF® > SJF-BAY > SJF-NAV
SJF-RA vs SJF: [SJF® = SJF-LN® = SJF-PLY® = SJF-RBST®] > SJF-RDG > SJF-MLP > SJF-

50

-100

-150

IMPR %

-200

-250

300

Time IMPR % Graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm

-36.8692

SIF-DT SJF-KNN SJF-LDA SIF-SVM SIJF-AB SIF-LGB SJF-RF SJF-XGB SJF-BAY SIF-NAV SIF-LAS SJF-LN SJF-MLP SJF-PLY SJF-RDG SIF-ROB

-34.2268

-14.523 -0.3125 0

34.47

40.2062

-36.008

SJF-ML Hybrid Algorithms

0

-0.4059

0 -0.094 1]

Figure 6. Time IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm.

204

JIOS, VOL. 49, NO. 2 (2025), PP. 193-211



LAHANDE

THE EVOLUTION OF CLOUD THROUGH SJF-ML...

The time results convey the SJF-LDA of the SJF-CA category, SJF-XGB of the SJF-ELA category, SJF-BAY of
the SJF-PM category, and SJF-LN, SJF-PLY, and SJF-RBST algorithms of the SJF-RA provide the best
performance within their respective categories. Additionally, the existing SJF algorithm, SJF-XGB of the SJF-
SJF-ELA category, and SJF-LN, SJF-PLY, and SJF-RBST hybrid algorithms of the SJF-RA category provide the
best time results across all the SJF-ML developed hybrid algorithms, along with the SJF algorithm.

6.3. Energy Results

Table 5 includes the energy comparison of SJF with presented SJF-ML Hybrid Algorithms.

Energy (uJ) Results VM Counts AVG IMPR%
Category Algorithm 20 40 60 80 100 vs SJF
Classical | SJF 835.24 296.15 | 170.71 | 118.17 | 89.84 | 302.02 -

SJF-DT® 1176.96 | 369.41 | 198.98 | 132.82 | 97.87 | 395.21 | -30.8556
SJF-CAs | SJF-KNN® 1150.28 | 364.39 | 197.04 | 131.05 | 97.06 | 387.96 | -28.4551
vs SJF SJF-LDA® 929.57 319.02 | 180.54 | 123.51 | 93.16 | 329.16 -8.9862
SJF-SVM®© 845.06 271.73 | 147.69 98.23 72.52 | 287.05 4.9566
SJF-AB® 1137.59 | 362.22 | 196.88 | 131.15 | 97.29 | 385.03 | -27.4849
SJF-ELAs | SJF-LGB® 929.57 319.02 | 180.54 | 123.51 | 93.16 | 329.16 -8.9862
vs SJF SJF-RF® 836.71 296.42 | 170.79 | 118.18 | 89.84 | 302.39 -0.1225
SJF-XGB® 835.24 296.15 | 170.71 | 118.17 | 89.84 | 302.02 0.0000
SJF-PMs | SJF-BAY® 1050.87 | 326.60 | 179.01 | 120.51 | 88.31 | 353.06 | -16.8995
vs SJF SJF-NAV® 1142.25 | 362.89 | 196.71 | 130.99 | 97.04 | 385.98 | -27.7995
SJF-LAS® 1157.03 | 370.27 | 200.38 | 132,97 | 98.22 | 391.77 | -29.7166
SJF-LN® 835.23 296.15 | 170.71 | 118.17 | 89.84 | 302.02 0.0000
SJF-RAs | SJF-MLP® 838.32 297.24 | 171.87 | 118.54 | 90.18 | 303.23 -0.4006
vs SJF SJF-PLY® 835.24 296.15 | 170.71 | 118.17 | 89.84 | 302.02 0.0000
SJF-RDG® 835.89 296.31 | 170.78 118.2 89.86 | 302.21 -0.0629
SJF-RBST® 835.24 296.15 | 170.71 | 118.17 | 89.84 | 302.02 0.0000

Table 5. Energy comparison of SJF with presented SJF-ML Hybrid Algorithms.

Table 5 shows the following energy comparison of SJF-ML hybrid algorithms compared to the SJF algorithm:

SJF-CA vs SJF: SJF-SVM® > SJF > SJF-LDA > SJF-KNN > SJF-DT
SJF-ELA vs SJF: [SJF = SJF-XGB] > SJF-RF > SJF-LGB > SJF-AB
SJE-PM vs SJF: SJF > SJF-BAY > SJF-NAV

SJF-RA vs SJF: [SJF = SJF-LN = SJF-PLY = SJF-RBST] > SJF-RDG > SJF-MLP > SJF-LAS

Figure 7 shows Energy IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm.
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Figure 7. Energy IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm.
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The energy results convey the SJF-SVM of the SJF-CA category, SJF-XGB of the SJF-ELA category, SJF-BAY
of the SJF-PM category, and SJF-LN, SJF-PLY, and SJF-RBST hybrid algorithms of the SJF-RA provide the best
performance within their respective categories. Additionally, the SJF-SVM hybrid algorithm of the SJF-CA
category provides the best energy results across all the SJF-ML developed hybrid algorithms, along with the
SJF algorithm.

6.4. LB Results

Table 6 includes the LB comparison of SJF with presented SJF-ML Hybrid Algorithms.

LB Results VM Counts AVG IMPR%
Category Algorithm 20 40 60 80 100 vs SJF
Classical SJF 2.30 4.56 6.50 8.40 9.99 6.35 -

SJF-DT® 1.48 3.08 4.8 6.31 7.83 4.70 25.9843

SJF-CAs SJF-KNN® 1.18 3.23 4.91 6.51 7.99 4.76 25.0394
vs SJF SJF-LDA® 2.21 4.5 6.51 8.48 10.16 6.37 0.3150
SJF-SVM®© 0.23 0.75 1.24 1.62 1.14 1.00 84.2520

SJF-AB® 1.65 3.51 5.25 6.78 8.19 5.08 20.0000

SJF-ELAs SJF-LGB® 2.21 4.5 6.51 8.48 10.16 6.37 0.3150
vs SJF SJF-RF® 2.29 4.54 6.47 8.37 9.96 6.33 0.3150
SJF-XGB® 2.30 4.56 6.50 8.40 9.99 6.35 0.0000

SJF-PMs SJF-BAY® 1.48 3.28 5.03 6.61 8.04 4.89 16.3780
vs SJF SJF-NAV® 1.63 3.54 5.38 7.14 8.84 5.31 22.9921
SJF-LAS® 1.23 2.79 4.44 6.07 7.70 4.45 29.9213

SJF-LN® 2.30 4.56 6.50 8.40 9.99 6.35 0.0000

SJF-RAs SJF-MLP® 2.25 4.49 6.35 8.34 9.84 6.25 1.5748
vs SJF SJF-PLY® 2.30 4.56 6.50 8.40 9.99 6.35 0.0000
SJF-RDG® 2.29 4.54 6.48 8.37 9.95 6.33 0.3150

SJF-RBST® 2.30 4.56 6.50 8.40 9.99 6.35 0.0000

Table 6. LB comparison of SJF with presented SJF-ML Hybrid Algorithms.

Table 6 shows the following LB comparison of the SJF-ML hybrid algorithms compared to the SJF algorithm:
SJF-CA vs SJF: SJF-SVM® > SJF-DT > SJF-KNN > SJF > SJF-LDA

SJF-ELA vs SJF: SJF-AB > SJF-RF > [SJF =~ SJF-XGB] > SJF-LGB

SJF-PM vs SJF: SJF-BAY > SJF-NAV > SJF

SJF-RA vs SJF: SJF-LAS > SJF-MLP > SJF-RDG > [SJF = SJF-LN = SJF-PLY = SJF-RBST]

Figure 8 shows LB IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm.
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Figure 8. LB IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm.
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The LB results convey the SJF-SVM of the SJF-CA category, SJF-AB of the SJF-ELA category, SJF-BAY of the
SJF-PM category, and SJF-LAS of the SJF-RA provide the best performance within their respective categories.
Additionally, the SJF-SVM hybrid algorithm of the SJF-CA category provides the best LB results across all the
SJF-ML developed hybrid algorithms, along with the SJF algorithm.

7. Cumulative Results and Implications

This section includes filtering the better-performing SJF-ML hybrid algorithms obtained post the experiment
along with their implications. Table 7 includes the comparative matrix representing the cumulative
experimental results with performance of algorithms categorized as Best, Good, Average, Poor, or Worst.

Metric Best Good Average Poor Worst
SJF-BAY
SJF SJF-LDA 23'?]1:&% SJF-KNN SJF-DT
Cost SJF-XGB SJF-PLY SJF-SVM SJF-AB SIF-LAS
SJF-LN SJF-RF SIF-RDG SJF-MLP
SJF-ROB
SJF
SJF-XGB SJF-LDA SJF-SVM SJF-KNN
. SJF-RF SJF-LGB
Time SJF-LN SJF-AB SJF-DT
SIF-PLY SJF-BAY SJF-NAV SIF.LAS
SJF-RBST SJF-RDG SJF-MLP
SJF-SVM
SJF SJF SJF-LDA
Ener SJF-XGB SJF-RF SJF-LGB zjllz:gN SJF-DT
8y SJF-LN SJF-BAY SJF-NAV SIF.LAS
SJF-PLY SJF-RDG SJF-MLP
SJF-RBST
SJF-SVM SJF-DT SJE-KNN SJE
SJF-AB SJF-RF SJE SJF-LGB
LB SJF-XGB SJF-LN SJF-LDA
SJF-BAY SJF-NAV
SJF-LAS SJF-MLP SJE SJE-PLY
SJF-RDG SJF-RBST

Table 7. Comparative Matrix representing cumulative results for the experiment.

Table 7 shows that the developed SJF-ML hybrid algorithms, such as existing SJF, SJIF-XGB of the SJF-ELA
category, and SJF-LN of the SJF-RA category, provide the best cost results. The hybrid developed algorithms
SJF-DT of the SJF-CA category and the SJF-LAS of the SJF-RA category are least suitable for the cost and can
be avoided for hybridizations and implementations in the cloud. In terms of time performance metric, the
existing SJF, along with SJF-XGB of the SJF-ELA category, SJF-LN, SJF-PLY, and SJF-RBST algorithms of the
SJF-RA category provide the best results concerning time. Concerning time, the hybrid-developed SJF-DT
algorithm of the SJF-CA category can be avoided for implementation since it provides poor results concerning
time. In terms of energy, SJF-SVM of the SJF-CA category, existing SJF, SJF-XGB of the SJF-ELA category,
and SJF-LN, SJF-PLY, SJF-RBST algorithms of the SJF-RA category provide the best results concerning energy.
Like the time performance metric, the SJF-DT performance metric provides poor results concerning energy.
Lastly, the SJF-SVM of the SJF-CA category, SJF-AB of the SJF-ELA category, SJF-BAY of the SJF-PM category,
and SJF-LAS of the SJF-RA category provide the best results concerning LB. Here, the SJF-LDA of the SJF-CA
category provides poor LB results. All the other developed hybrid algorithms provide either good, average, or
poor performance compared within their SJF-ML categories, along with the SJF algorithm. Among the best
SJF-ML performers, the SJF-XGB and SJF-LN algorithms perform better across maximum parameters, and the
cloud can deploy these SJF-ML hybrid algorithms to ensure better results are obtained against the baseline of
the SJF algorithm. Thus, the integration of ML with SJF provides fruitful results, improving the required cost,
time, energy, and LB-considered performance metrics, and can be used to provide a better decision-making
ability to the cloud to evolve itself from existing versions and provide better QoS.
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8. Conclusion and Future Research Direction

This research paper provided hybrid scheduling methods by combining the currently existing best Shortest
Job First (SJF) scheduling algorithm with sixteen Machine Learning (ML) algorithms. The ML algorithms
within the categories of Classification Algorithms (CA), Ensemble Learning Algorithms (ELA), Probabilistic
Models (PM), and Regression Algorithms (RA) were used to develop SJF-CA, SJF-ELA, SJF-PM, and SJF-RA
as the four different categories of SJF-ML hybrid algorithms. From these sixteen SJF-ML hybrid categories,
SJF-ML hybrid algorithms including SJF-AB, SJF-BAY, SJF-DT, SJF-KNN, SJF-LASSO, SJF-LDA, SJF-LGBM,
SJF-LIN, SJF-MLPNN, SJF-NAVBAY, SJF-POLY, SJF-RDGE, SJF-RF, SJF-ROBST, SJF-SVM, and SJF-XGB are
developed across the four SJF-ML categories. The main aim was to embed the cloud's scheduling process with
ML techniques and improve the scheduling by enhancing the considered performance metrics such as cost,
time, energy, and LB. The existing SJF algorithm was used as a baseline to compare it with all the developed
SJF-ML algorithms across all the mentioned metrics. The real-time Google big data tasks were computed using
all the SJF-ML hybrid algorithms across five different experimental scenarios of VM counts. From the
experiment conducted, it can be conveyed that the SJF-XGB of the SJF-ELA category and the SJF-LN of the
SJF-RA category provided better results across the maximum considered parameters. The cloud can deploy
these variants for scheduling, rather than the SJF algorithm. A major limitation of the presented SJF-ML
hybrid algorithms is the complexity of integration, where the coordination of both algorithms needs to be
carefully executed. An additional limitation is the overhead of time spent in training the SJF-ML algorithms,
which adds to the unwanted latency and energy consumption. The experiment findings conclude that the
development of ML algorithms with scheduling approaches in the cloud provides better results through their
improved decision-making, pattern recognition of BDTs, and overall allocation of resources, therefore
providing a better, enhanced, and evolved version of itself. As a part of future research direction, the author
aims to develop a second-level hybridization where the best performers, SJF-XGB and SJF-LN algorithms, will
be integrated to ensure further improvements can be made for the cloud evolution. This second-level
algorithm will be named SJF-XL, a combination of SJF-XGB and SJF-LN, where the individual first-level hybrid
algorithm characteristics will be used to provide better and enhanced scheduling results to the first-level
evolved cloud. Figure 9 represents the architecture where the SJF-XL second-level hybrid algorithm will be
used by the cloud.

Input Task Dataset: Google's Big Data Tasks (BDTs)

| 100 EDTs | | 150 BDTs | | 200 BDTs | | 250 EDTs | |30ll EDTs | |35l] EDTs | | 400 BDTs | 450 BDTs 500 BEDTs

550 BDTs |

| 600 BDTs 650 BDTs 700 BDTs 750 BDTs 800 BDTs 850 BDTs 900 BDTs 930 BDTs | (1000 BDTs

Cloud Environment BDTs submitted for computing

[ Cloud Queue: BDT Ty, BDT T,, BDT T, ..., BDT T, ]

Tasks selected on basis of shortest computing time l

BDT Life-Cycle SJF-ML second level
Hybridization for Cloud Evolution

e SIF-XL

(STF-XGB + SJF-LN)

Results provided with better Cost, Time, Energy and
Load Balancing using SIF-ML Hybrid Algorithms

Scenario-wise Virtual Machine (VM) Deployed
VMs =20 VMs =40 VMs = 60 VMs = 80 VMs =100
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Figure 9. Second-Level SJF-ML Architecture.
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