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 Purpose: The author proposes sixteen Shortest Job First - Machine Learning (SJF-ML) 
hybrid algorithms, combining the cloud's SJF scheduling algorithm with four ML 
algorithm categories, with cloud evolution through ML intelligence as the primary 
objective. The four categories include: SJF-CA, SJF-ELA, SJF-PM, and SJF-RA. The 
developed SJF-ML algorithms by the author perform pattern recognition of the tasks 
that are to be computed, to improve decision-making during task computations in the 
cloud. These sixteen SJF-ML algorithms include: SJF-ADAB, SJF-BAY, SJF-DT, SJF-
KNN, SJF-LAS, SJF-LDA, SJF-LGB, SJF-LN, SJF-MLP, SJF-NAV, SJF-PLY, SJF-RDG, SJF-
RF, SJF-RBST, SJF-SVM, and SJF-XGB. Performance Metrics: Cost, Time, Energy, and 
LB are utilized to compare the developed algorithms with baseline SJF, along with 
comparing them within their respective SJF-ML categories. Dataset: The real-time 
Google Big Data Task (BDT) dataset, comprising tasks ranging from one hundred to one 
thousand across nineteen files, was computed using the SJF-ML and SJF algorithms. 
Experiment: Open-source CloudSim simulator with VM counts of 20, 40, 60, 80, and 
100 were utilized to compute the BDTs, outputting results across the considered 
metrics. Results: The algorithms SJF-XGB and SJF-LN provided the best results, with 
SJF-DT, SJF-LAS, and SJF-LDA providing poor results. Findings: Hybridization of the 
cloud's scheduling algorithms with ML provides improved intelligence and 
performance, resulting in the evolution of the cloud. 

Keywords: Cloud-Computing, Hybrid-Algorithm, Machine-Learning, Scheduling, SJF 

1. Introduction  

1.1. Problem Formulation 
Cloud development is profound in today's world, where several users are inclined towards using it, rather 
than using alternative platforms for computing purposes (Chaudhary et al. and Chung et al., 2025). On the 
one hand, its computing power is impressive; however, the cloud encounters several limitations in handling 
its resources, where current scheduling methods struggle without any intelligence mechanism to handle Big 
Data Tasks (BDTs) (Chaudhary et al., 2025). Without any modern intelligence mechanism to deal with these 
uncertain BDTs, the current scheduling methods of the cloud will always output results whose highest 
threshold is limited (Kathole et al., 2025). This puts a pause on evolving the cloud, which is contrary to the 
current modern evolution trend observed in several systems through modern Machine Learning (ML) 
mechanisms. With the technological advancements and results obtained with ML techniques, the scheduling 
algorithms of the cloud need to be provided with its intelligence to cope up its performance-related gaps and 
ensure its performance is elevated, thereby providing an evolution to the cloud as compared with the classical 
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cloud systems (Kathole et al. and Liu, 2025). With the need for BDT computations in the modern day, the 
cloud faces decision-making challenges too, with its classical scheduling methods, which function without ML 
intelligence (Sanjalawe et al., Sonia et al., and Ye et al., 2025). Without any integration of ML methods, these 
current scheduling algorithms fail to withstand these challenging BDTs, leading to higher cost and time 
consumption (Ali et al. and Almurshed et al., 2024). Additionally, the existing cloud's scheduling methods do 
not possess a pattern recognition facility which includes detection of the irregularities in BDTs, trends, and 
classification of incoming BDTs which are to be computed, predicting execution times of BDTs, leading to an 
improper Load Balancing (LB) mechanism in the cloud, which often increases energy consumption (Alsubaei 
et al., 2024; Bartakke et al., 2024; and Hayyolalam et al., 2024). Hence, the author has focused on these issues 
to hybridize with the cloud's ideal performing Shortest Job First (SJF) scheduling algorithm with the vast 
range of ML category of algorithms to provide an improved version of scheduling policies. In this paper, the 
author presents sixteen SJF-ML scheduling methods across four ML categories by using the preemptive SJF 
scheduling mechanism of selecting the BDT with the least computing time among the rest and using ML 
intelligence to allocate the cloud's resources to compute the BDTs. Here, the hybridization process includes 
combining the approaches of SJF scheduling with the ML technique to improve the scheduling approach. 
These SJF-ML algorithms give the cloud a fair chance to make better decisions with the BDTs, output better 
results, and ultimately lead to its evolution through a systematic and balanced BDT computation. Lastly, the 
author has also proposed a second-level hybridization in this research paper by combining the best-performing 
algorithms in the first level from each SJF-ML category to form a second-level hybridization to further improve 
cloud performance as a part of future research direction.  

Figure 1 shows the Venn diagram of combining SJF with ML intelligence to develop the SJF-ML 
algorithms for improving its performance and providing a next-level cloud-evolved computing environment. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Individual characteristics SJF and ML algorithms for Cloud Evolution. 

Figure 1 shows that the individual characteristics provided by the SJF scheduling algorithm are combined 
with those of ML algorithms to provide a hybridized stronger approach for better scheduling results.  

1.2. Proposed Solution 
The author proposes an experimental-based research work that includes hybridizing the best-performing cloud 
scheduling algorithm, Shortest Job First (SJF) in its preemptive form, with ML categories of algorithms to 
develop algorithms across four different ML algorithm categories, termed SJF-ML, to ensure higher 
performance is obtained and the cloud evolves through ML intelligence. Through this evolution, the proposed 
SJF-ML algorithms by the author ensure that a better Quality of Service (QoS) is provided to end users.  

The author presents the following SJF-ML algorithm categories:   
• Shortest Job First - Classification Algorithm (SJF-CA) Category: The classical SJF is combined 

with ML's Classification Algorithms (CA) to develop the SJF-CA category of algorithms.  
• Shortest Job First - Ensemble Learning Algorithm (SJF-ELA) Category: The classical SJF is 

combined with ML's Ensemble Learning Algorithms (ELA) to develop the SJF-ELA category of 
algorithms.  

• Shortest Job First - Probabilistic Model (SJF-PM) Category: The classical SJF is combined with 
ML's Probabilistic Model (PM) Algorithms to develop the SJF-PM category of algorithms.  

• Shortest Job First - Regression Algorithm (SJF-RA) Category: The classical SJF is combined with 
ML's Regression Algorithms (RA) to develop the SJF-RA category of algorithms.  

The author has explored the above four SJF-ML categories to combine the algorithms from each ML 
category with SJF in preemptive mode, which are suitable for scheduling mechanisms in the cloud 
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environment in their own unique way or working, leading to the development of sixteen SJF-ML hybrid 
algorithms as follows: 

• SJF-CA Algorithms: The SJF is combined with four ML CAs algorithms to define the SJF-CA 
category. These include: Decision Tree (DT), which is ideal for rule-based VM allocation decisions 
at run-time; K-Nearest-Neighbors (KNN), which adapts to the dynamic workload of the BDTs using 
grouping techniques; Linear Discriminant Analysis (LDA), which is optimal for task prioritization 
with reduced dimensionality for the BDTs; and Support Vector Machine (SVM), which is effective 
for handling the non-linearity of the BDTs distributions (Talwani, S. et al. 2022 and Mo, Y. et al. 
2015). These algorithms are hybridized with SJF to develop SJF-DT, SJF-KNN, SJF-LDA, and SJF-
SVM hybrid SJF-CA scheduling algorithms, respectively.  

• SJF-ELA Algorithms: The SJF is combined with four ML ELAs algorithms to define the SJF-ELA 
category. These include: AdaBoost (AB), which is effective in reducing the biasness of BDT 
computing time predictions; Light Gradient Boosting Machine (LGB), which has a high-speed 
memory efficient scheduling for the BDTs; Random Forrest (RF), which is useful with volatile 
workloads; and Extreme Gradient Boosting (XGB), which is highly useful for skewed BDT 
distributions (Liu, Z. 2025). These algorithms are hybridized with SJF to develop SJF-AB, SJF-LGB, 
SJF-RF, and SJF-XGB hybrid SJF-ELA scheduling algorithms, respectively. 

• SJF-PM Algorithms: The SJF is combined with two PMs, including Bayesian Network (BAY), which 
uses probabilistic models to handle dependencies in the BDT scheduling process, and Naïve Bayes 
(NAV), which is lightweight in its nature and uses real-time probability for scheduling short-term 
BDTs (Chauhan, N. et al. 2022). These algorithms are combined with SJF to develop SJF-BAY and 
SJF-NAV hybrid SJF-PM scheduling algorithms, respectively. 

• SJF-RA Algorithms: The six RAs, including Lasso (LAS) which is helpful in the high-dimensional 
and challenging BDTS, Linear (LN) which provides ideal real-time prediction for short BDTs, Multi-
Layer Perceptron Neural Network (MLP) which captures the non-linearities useful for LB, 
Polynomial (PLY) which models the learning mechanism through its curvilinear BDT trends, Ridge 
(RDG) which takes care of multi-collinear VM features, and Robust (RBST) which ensures that no 
outlier BDTs are observed (Huymajer, M. et al. 2024). These algorithms are combined with SJF to 
develop SJF-LAS, SJF-LN, SJF-MLP, SJF-PLY, SJF-RDG, and SJF-RBST, respectively under the SJF-
RA category.  

Figure 2 represents the SJF-ML algorithms across the four categories. 
 
 
 

 

 

 

 

 

Figure 2. Proposed SJF-ML Algorithms. 

2. Literature Review 

2.1. Survey of Existing Work 
This section includes the LR, where several authors have explored and provided various hybrid techniques 
using the SJF with other intelligent and prominent methods to focus on cloud limitations and its challenges. 
The authors of this paper have proposed an AI-enhanced framework that integrates deep workload prediction 
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and RL with SJF and traditional queueing theory to optimize results in the cloud environment (Chaudhary et 
al., 2025). This study presents a lightweight sampling fine-grained GPU scheduling method that uses suspend-
resume mechanisms to reduce energy wastage in cloud systems (Chung et al., 2025). This work includes a 
detailed review of scheduling resources, which consists of a thorough explanation of scheduling techniques 
from the past decades and offering gaps from current research (Kathole et al., 2025). The ML's EL algorithms 
are overviewed to provide a clear pathway for their practical implementation in the cloud (Liu, 2025). This 
paper includes a review based on AI-based hybrid models, where the work analyses the need for energy-
efficient systems for scheduling jobs along with providing future directions (Sanjalawe et al., 2025).  The LB 
techniques are discussed in this research paper, where their significance in ML implementations is provided 
for multiple computing platforms (Sonia et al., 2025). The author of this research paper has focused on 
minimizing cloud performance parameters, such as cost and energy, by considering the sustainability of LB 
in the cloud (Verma, 2025). The Asynchronous Control-based Aggregation Transport Protocol (AC-ATP) rule 
is provided for reducing the deadlines in scheduling techniques by reducing the time performance metrics (Ye 
et al., 2025). A multiple-level fuzzy approach is integrated into the Internet of Things (IoT) platform to 
improve the operational efficiencies experienced by scheduling jobs in the healthcare domain (Ali et al., 
2024). The authors have provided a framework named Enhanced Optimized-Greedy Nominator Heuristic (EO-
GNH) for AI placement in computing sectors to improve time and resource allocation (Almurshed et al., 2024). 
The K-means technique is hybridized with Heterogeneous Earliest End Time (HEFT), providing a dual ML 
framework for task scheduling and improvements in results (Alsubaei et al., 2024). Zero-trust hybrid strategies 
have been provided by the authors to provide a structured evaluation framework for the cloud environment 
for selecting the best solutions and offering guidance on cost-effectiveness and implementation (Bartakke et 
al., 2024). The authors have presented a Chaos theoretical model hybridized with the Black Widow 
Optimization algorithm (CBWO) to focus on LB issues in cloud environments (Hayyolalam et al., 2024). A 
priority-based method in the cloud using DRL named PH-DRL is presented for better scheduling of jobs and 
improved time metrics (He et al., 2024). The authors have presented a scheduling technique for a fog-
computing environment to improve QoS (Hosseini et al., 2024). A comparative evaluation of RAs is performed 
where seventeen RAs are studied in contrast with conventional methods (Huymajer et al., 2024). ML 
techniques focused on cloud optimization for better decision-making (Kanchetti et al., 2024).   

This research work hybridized SJF with priority and deployed the Enhanced Shortest Job First with 
Priority (ESJFP) algorithm to improve classical SJF with task complexities having ML capabilities and improve 
resource and time metrics (Laha et al., 2024). A multi-objective flexible job-shop scheduling problem 
(MOFJSP) scheduler is presented in this paper to imbibe graphs with modern prominent methods for complex 
problem solutions (Li et al., 2024). A Graph-based Denoising Diffusion Probabilistic Model (G-DDPM) is 
presented for time-series forecasting, where the method works with PMs to reduce energy metrics (Miraki et 
al., 2024).  The LB issues are handled using the presented Modified Parallel Particle Swarm Optimization 
(MPPSO) method for task scheduling, reducing the time parameters in the cloud (Pradhan et al., 2024). The 
author has implemented ML algorithms like DT, RF, and KNN to provide solutions related to posture 
classification, achieving better accuracy and Interpretability (Rahimi et al., 2024). The SJF is hybridized with 
a Multi-Level Memory-Based Framework (SJF-MMFB) for enhanced cloud scheduling by incorporating multi-
queues addressing starvation Issues and improving fairness in cloud systems (Rekha et al., 2024). Hybrid ML 
models are implemented for cryptocurrency predictions and handling real-time predictions with achieved 
profitability (Salehi et al., 2024). Big data Integrated cloud systems are used to improve decision-making and 
operational performance for the ERP systems (Saraswat et al., 2024). The challenges associated with the cloud 
are focused on ML techniques to improve LB, the system's efficiency, and decision-making (Zende et al., 2024). 
The authors have proposed a dual-objective algorithm to improve results concerning the scheduling domain 
(Asghari et al., 2023). Post validations across twelve scenarios, the presented algorithm provides better results 
when compared to the other state-of-the-art algorithms. The author has used the SVM scheme in the two-
cloud platform to reduce computing and communication overheads (Hu et al., 2023). Modern statistical 
models are utilized to investigate the cloud performance in this work (Kumar et al., 2024).  This work surveys 
task scheduling methods and compares them with various performance parameters for optimal task 
management (Nayak et al., 2023). This work demonstrates the use of ML to improve real-time scheduling 
algorithms for cluster environments, optimizing task scheduling for dynamic environments (Zhang et al., 
2023). This work explores how ML impacts energy optimization, dynamic load balancing, task scheduling, 
and security in cloud computing, improving resource allocation, security, and VM migration (Kumar et al., 
2022). The EAs are utilized for the prediction of diseases in cocoa crops, offering early and accurate 
predictions based on climatic parameters, and benefiting farmers with proactive disease management 
(Olofintuyi et al., 2022).   

This work evaluates hybrid scheduling and allocation algorithms in cloud computing, showing that 
combining SJF with RR results in the best response time, while SJF with a novel length-wise allocation (LwA) 
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provides the least CPU utilization (Sahkhar et al., 2022). The author has combined two optimization methods 
to strengthen the prominent cloud performance parameters and enhance the task scheduling process in the 
cloud (Verma, 2022). The authors have examined the use of RR and SJF algorithms for improving efficiency 
in cloud environments, suggesting an approach for optimal scheduling and resource allocation (Kumar et al., 
2021). A detailed comparison is made with SJF and Longest Job First (LJF) with ML-based scheduling 
approaches using CloudSim, showing SJF’s efficiency while highlighting ML’s potential for further 
optimization in dynamic environments (Murad et al., 2021). This work reviews studies on ML in cloud 
security, identifying SVM as key and emphasizing hybrid methods for threat detection using metrics like True 
Positive Rate (Nassif et al., 2021). The authors propose hybrid SJF-Min-Min Best Fit (MMBF) and SJF-Extreme 
Learning Machine (ELM) scheduling models using Particle Swarm Optimization (PSO), optimizing job hosting 
and minimizing starvation in dynamic cloud settings (Rekha et al., 2021). This work combines SJF-MMBF 
with ELM energy-aware scheduling, addressing energy and security challenges (S Rekha et al., 2021).   

This paper introduces a scheduling method for enhancing the task allocation process in cloud 
environments (Tanha, M. et al., 2021). The authors have designed an Enhanced SJF (ESJF) for stable task 
management by introducing ESJF with time-slicing between shortest and longest jobs, outperforming SJF in 
unstable environments by reducing starvation and delays (Younis et al., 2021). This work enhances VM 
scheduling using SJF-MMBF and SJF-ELM models with PSO, improving performance in high-load, dynamic 
cloud environments (Rekha et al., 2020). This work uses DRL and Long Short-Term Memory (LSTM) for 
scheduling, outperforming SJF, RR, and PSO by reducing CPU/RAM usage and task delays on real-world cloud 
workloads (Rjoub et al., 2020). A SJF-MMBF method is applied for efficient VM scheduling, combining SJF 
and MMBF with the Queue-Length MaxWeight policy to prevent starvation and improve job throughput (Guo 
et al., 2019). This work includes DRL used with LSTM to reduce CPU and RAM usage, outperforming SJF, RR, 
and PSO in big data task scheduling (Rjoub et al., 2019). CAs are discussed in this paper to ensure that better 
cloud system performance is achieved (Samie et al., 2019). A Q-learning-based method integrated with the 
heterogeneous earliest finish time (HEFT) is deployed to reduce makespan and response time, outperforming 
traditional scheduling algorithms in efficiency (Tong et al., 2019). This work compares heuristic SJF-MMBF 
with reinforcement-learning-based SJF-RL, showing SJF-RL excels in minimizing job delay and preventing 
starvation (Guo et al., 2018). This work includes an SRDQ algorithm combining SJF and RR with an adjustable 
time quantum to reduce time and avoid long task starvation (Elmougy et al., 2017).   

The above-mentioned contributions from the researchers all around the globe who have presented their 
hybrid methodologies involving SJF. This work helped the author to understand how the classical and 
traditional SJF scheduling algorithms have been used with the modern ML methods. The next sub-section of 
the LR dives deeper into understanding the contributions of these authors and how they helped the author of 
this paper to contribute to improving cloud performance through hybridizations. 

2.2. LR concerning Technical Overview 
This sub-section includes the LR concerning Technical Overview, where Important aspects of author 
contributions are studied and represented in terms of the algorithm presented, its features, along with the 
enhancements it offers and limitations it possesses, presented in detail in Table 1. 
 

Ref. 
No. Algorithm Features Enhancements Limitations 

[1] AI-enhanced 
framework 

Dual-layer neural 
network Adaptive scheduling High training time, 

overhead 
[2] Lightweight 

sampling 
Job migration, 
sampling 

Boosts efficiency, 
fairness 

Potential migration 
overhead 

[3] Meta-heuristic 
algorithms 

Categorization, 
review Identifies research gaps Lacks novel 

implementation 
[4] Ensemble 

Learning 
Combines multiple 
learners 

Increases robustness, 
accuracy 

Computationally 
intensive 

[5] AI-based hybrid 
models 

AI decision-making 
cloud 

Improves energy, fault 
handling 

Complex adaptation 
to real-time 

[6] LB techniques Real-time workload 
adaptation 

Optimizes resource 
distribution Hybrid LB in cloud  

[9] AC-ATP protocol Aggregation and 
congestion 

Reduces traffic, 
accelerates training Straggler delays 



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES 

 

198 JIOS, VOL. 49, NO. 2 (2025), PP. 193-211 

[10] Fuzzy Approach IoT integration Enhances healthcare 
predictions 

Relies on expert 
labelling 

[11] EO-GNH Optimized placement, 
parallelism 

Boosts edge-cloud 
performance Scaling complexity 

[12] K-means, HEFT Task priority 
scheduling Improves LB Tuning required for K-

values 
[13] Zero-Trust 

Framework 
Identity/context 
verification 

Fine-grained access, 
real-time policies 

Legacy system 
updates needed 

[14] CBWO Chaos theory, task 
distribution Reduces energy usage Needs parameter 

tuning 
[15] PH-DRL DRL-based hybrid 

scheduler Balances performance Limited 
generalizability 

[17] Regression 
Models 

Comparative feature 
study 

Enhances prediction, 
tuning strategies Risk of overfitting 

[18] General ML 
methods 

Data retrieval, 
automation 

Boosts decision-making, 
scalability 

Infrastructure 
reliability 

[19] ESJFP Prioritizes tasks Reduces wait time Lacks real-time 
adaptability 

[20] MO-GARL Combines GAT with 
RL  

Generalizable solutions 
obtained 

Compute-heavy 
training 

[21] G-DDPM Graph learning Enhances accuracy Resource-intensive 

[22] MPPSO PSO for scheduling Reduces delays, boosts 
throughput 

Large-scale setting 
complexity 

[23] DT, RF, KNN Time-frequency  Transparent feature 
influence Inconsistent accuracy 

[24] SJF-MMFB with 
PSO Integrates PSO, SJF Balances load, prevents 

starvation 
Overhead in large 
environments 

[25] ML methods Applied to crypto 
price prediction 

Combines fuzzy logic 
and ML Some models over-fit 

[26] Big data with 
Cloud  

Integration of big 
data in ERPs Cost-effective Lack of real-world 

case studies 
[27] ML methods ML for LB Improves cloud 

efficiency, security Resource-demanding 

[29] SVM Privacy-preserving 
ML 

Resilience to malicious 
behaviour Encryption complexity 

[30] Statistical Models Survey of cloud apps Insight into cloud app 
preferences 

No qualitative 
analysis 

[31] Scheduling 
methods 

Scheduling Methods 
Analysis  Optimize scheduling Context-sensitive 

performance 
[32] FCFS, SJF Predictive ML  Accurate burst time 

forecasts 
Limited to real-time 
constraints 

[33] ML methods Predictive ML AI improves efficiency, 
and automation 

Human expertise is 
still needed 

[34] Ensemble 
Learning Time-series  High-accuracy 

forecasting 
Region-specific data 
limitations 

[35] SJF, FCFS, RR, 
LwA 

Various scheduling 
algorithms 

Best response time with 
SJF+RR Neglects other metrics 

[36] RR, SJF Pre-emptive RR, SJF Minimizes waiting time High waiting time 

[37] SJF, LJF SJF, LJF for 
Scheduling Increases throughput Starvation observed 

[38] SVM Cloud security threats Improve accuracy High training time 

[39] PSO, SJF, MMBF, 
ELM 

Hybrid queue 
scheduling Prevents starvation  Scalability issues 

[40] SJF, MMBF, ELM Hybrid scheduling Improves efficiency Complex hybrid 
approach 
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[42] ESJF Time-slice strategy  Reduces waiting times Increased scheduling 
complexity 

[43] PSO, SJF, MMBF, 
ELM Prevents starvation Optimized scheduling 

performance 
Computational 
overhead 

[44] RL, DQN, RNN-
LSTM LSTM  Reduces CPU/RAM 

usage 
High computational 
expense 

[45] MMBF, SJF SJF with QMW 
Scheduling Improves fairness Complexity in 

resource scheduling 
[46] DRL, LSTM Predict VM 

assignment for tasks 
Reduces resource 
consumption 

Complex 
implementation 

[47] Classification 
Techniques ML techniques for IoT Improves data 

management Scalability concerns 

[48] QL-HEFT Combines Q-learning 
and HEFT  Improves makespan High computational 

overhead 
[49] SJF-MMBF Hybrid SJF with RL  Adapts to dynamic 

workloads 
Adds computational 
complexity 

[50] SRDQ Hybrid SJF and RR  Balances SJF and RR Complexity in fine-
tuning 

Table 1. Literature Review concerning Technical Overview. 

The conducted LR helped the author to identify the gaps and place the foundations for this research. 

2.3. Gaps  
The following gaps were identified from the above conducted LR: 

• Existing studies have not fully developed hybrid scheduling methods that integrate a diverse range 
of ML algorithms beyond currently explored techniques, restricting cloud evolution. 

• Current approaches lack the integration of BDT computations within ML-enhanced SJF, despite 
their need in the modern computing world. 

• A comprehensive comparison between SJF and its improved versions is missing, particularly in 
assessing the entire spectrum of cloud performance metrics. 

• Existing methods lead to increased energy consumption and expenses despite improved results. 
• Contributing to a second level of hybridization using the best obtained multiple algorithms is absent 

in the same research contribution. 
The identified gaps helped the author to develop the SJF-ML algorithms and make suitable contributions 

for evolving the cloud, further represented in section 3.  

3. Contributions 
The following includes the author's contributions from this research work:  

• The SJF method has been enhanced through hybridization with four distinct and diverse categories 
of ML algorithms, resulting in the development of sixteen SJF-ML algorithms. 

• Real-time BDTs were employed to evaluate the performance of the developed SJF-ML algorithms 
with baseline SJF, ensuring their applicability to evolve cloud environments. 

• A comprehensive analysis was conducted to compare the SJF with hybridized SJF-ML methods, 
considering a broad spectrum of cloud performance metrics, including cost, time, energy, and LB. 

• From the best-performing algorithm in each ML category, an architecture consisting of a second-
level hybridization approach is provided to further refine scheduling efficiency and contrast its 
effectiveness against other SJF-ML variants. 

• The proposed SJF-ML methodologies aim to enhance cloud performance, improve QoS, and 
contribute to more efficient, scalable scheduling solutions in high-demand computing 
environments. 

The above contributions are made through this unbiased research work through extensive experiments 
in an open-source simulator where several real-time cloud components are deployed and BDTs are computed 
using all the developed SJF-ML algorithms. 
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4. Dataset, Experimental Setup and Performance Metrics 

4.1. Dataset  
Google's BDT was utilized by the classical SJF method along with the developed sixteen SJF-ML hybrid 
algorithms across four categories for computing. This dataset consists of nineteen input files across task 
lengths from one hundred tasks to one thousand tasks, each task having AT and CT as the significant features 
for the BDT. These features are fed to the SJF-ML algorithms to improve the cloud's scheduling decisions. The 
author has provided data analysis for the input BDTs in the form of descriptive statistics for these BDTs, 
including Mean (μ), Median (MDN), and Standard Deviation (σ) for a better understanding of the BDTs used. 
Table 2 includes the descriptive statistics for the BDTs. 

 
Descriptive Statistics BDT-AT (s) BGT-CT (s) 

Sr. No. BDT Length μ MDN σ μ MDN σ 
1 100 543.1000 549.5000 273.6093 135.10 91.00 167.42 
2 150 557.8733 587.0000 253.7945 147.87 97.00 185.55 
3 200 573.3700 585.5000 275.2022 136.10 87.00 178.60 
4 250 536.9560 537.5000 254.4490 119.91 89.00 152.95 
5 300 545.1067 552.0000 265.7443 138.42 89.00 182.21 
6 350 551.8571 527.0000 262.9433 135.05 95.00 162.92 
7 400 552.8725 564.5000 263.0676 129.67 95.00 150.59 
8 450 549.8956 560.5000 261.5785 123.83 91.00 151.95 
9 500 556.3660 560.5000 258.0876 130.00 93.00 153.38 
10 550 538.8127 527.5000 272.4410 130.29 93.00 168.00 
11 600 542.4350 538.5000 258.2551 137.24 93.00 175.03 
12 650 544.5800 549.5000 257.2584 136.16 93.00 168.88 
13 700 550.8814 550.0000 255.6384 124.99 93.00 150.30 
14 750 551.6360 545.5000 251.5622 136.07 93.00 171.25 
15 800 560.9663 567.0000 256.9907 123.70 91.00 149.87 
16 850 547.2741 537.5000 261.1188 125.12 91.00 149.47 
17 900 542.2711 538.0000 256.2634 133.39 93.00 161.45 
18 950 543.3053 544.5000 260.4067 124.61 94.00 150.46 
19 1000 552.9770 552.5000 248.5605 129.66 93.00 162.63 

AVG 549.6072 551.2895 260.3669 131.4305 92.3158 162.7847 

Table 2. Descriptive Statistics for the BDTs. 

Table 2 shows that the descriptive statistics of the ATs possess a considerable amount of variability, making 
it difficult to predict the SJF and develop SJF-ML algorithms to be computed. On the other hand, the 
descriptive statistics of the BDA-CTs showcase a slight amount of stability with lower fluctuations, providing 
a fair chance to all the algorithms for computing. At a higher task length, both times showcase balanced 
behavior, suggesting there will be a steady execution with higher loads. These tasks were input into a real-
time computing environment to the SJF and SJF-ML algorithms across several VM-based experimental 
scenarios to ensure unbiased results are obtained.   

4.2. Working of SJF-ML hybrid algorithms 
The SJF and ML algorithms integrate with each other to make the crucial scheduling decisions at runtime. 
The SJF-ML scheduling algorithms executed the BDTs based on the feature of BDT-CTs. The working 
mechanism includes loading the challenging BDTs in the cloud queue, followed by the feature extraction with 
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the label defined by the BDT-CTs. Further, the BDTs are split into 80 % training and 20 % testing sets and fed 
to each of the presented sixteen SJF-ML algorithms for training and testing in all the experimental scenarios. 
Later, the BDTs are sorted considering CTs and scheduled with the ideal available VM at runtime. Figure 3 
represents the general block diagram of the working of all the SJF-ML algorithms.   
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Block diagram of Working of the SJF-ML Algorithms. 

5. Experimental Setup and Performance Metrics, and Architecture of Experiment 

5.1. Experiment Setup and Performance Metrics 
The experiment was set up in the open-source CloudSim environment where the classical SJF and sixteen 
developed SJF-ML hybrid algorithms across four SJF-ML categories were Incorporated In this simulation 
environment. The experiment simulates computing the BDTs in a multiple-VM environment. The performance 
metrics considered for the study are: cost ($), time (seconds 's'), energy (microJules 'µJ'), and LB. LB here is 
defined as a measurement that uses the coefficient of variation, considering workloads across all the VMs 
post-scheduling all the tasks, considering a certain scenario. All the SJF-ML algorithms provide dynamic LB, 
unlike the existing SJF, through enhancements of predictive intelligence mechanisms. The ML component 
during the scheduling process allocates VMs by considering their queue lengths, resource utilization patterns, 
and estimation of BDT-CTs, which is significant for SJF. Through continuous real-time feedback against 
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fluctuating workloads, the SJF-ML ensures a stable distribution of all BDTs evenly among the considered VMs.  
The computing cost rate was set to $0.003 per unit BDT-CT. The Execution Time Factor was set to 0.1 per 
unit BDT-CT. The Energy Consumption Rate and Idle Energy Consumption Rate were set to 0.003µJ per unit 
BDT-CT and 0.0005µJ per unit waiting time. With the possibility of errors and faults in the network, a constant 
network delay of 5s is considered. The experiment was conducted in five scenarios with the VM count as: 1: 
20 VMs; 2:40 VMs; 3:60 VMs; 4:80 VMs, and 5:100 VMs. The main reason to choose these four metrics is that 
they cover the entire spectrum of parameters for the cloud. Time and Cost play a major role in scheduling in 
the cloud and are critical for judging and comparing algorithms. Energy ensures the cloud's resources are 
consumed optimally without having to sacrifice time and cost to do so. Lastly, each cloud resource needs to 
be utilized to the fullest, and an uneven workload allotment ensures high time, cost, and energy for the ones 
most used. Hence, LB as a metric is calculated in the form of a coefficient of variance which provides a balance 
to ensure appropriate energy is consumed with Ideal cost and time metrics. Together, these metrics form an 
Ideal comparative framework for the classical SJF to be compared with the developed SJF-ML hybrid 
algorithms. If a certain algorithm provides ideal results across all four metrics, then other metrics also 
significant to the cloud will be optimal. 

5.2. Architecture of the Experiment 
This sub-section provides the experiment's architecture with the deployed SJF-ML hybrid scheduling 
algorithms. The experiment was conducted where the BDTs were submitted for computing from the user 
environment to the cloud environment. Upon reaching the cloud's platform, the BDTs are added to the cloud 
queue, where they wait until their ATs are reached. This queue represents a storage from which the SJF-ML 
algorithm will choose the BDT for execution. This BDT's size acts like a main feature for the SJF-ML algorithms 
to select the tasks from the queue, considering its least CT. Here, the developed SJF-ML algorithms deployed 
will ensure appropriate pattern recognition through eradicating irregularities of the BDTs, classifying them 
according to their trends, thereby provide an intelligence mechanism before submitting the BDTs to the cloud 
VMs. From its initial submission until getting selected and assigned to being computed and finally getting 
completed and closed, a BDT undergoes several stages in its lifetime. Post all completion of BDT computations, 
the results are computed and provided to the user for the considered metrics. Figure 4 represents the 
architecture of the experiment with the deployment of SJF-ML hybrid scheduling algorithms. 

 
Figure 4. Architecture of the Experiment with SJF-ML Algorithms. 
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6. Results and Discussions 
This section includes the results and discussions for the experiment conducted, presented in four sub-sections: 
6.1, 6.2, 6.3, and 6.4, including cost, time, energy, and LB results compared in terms of average (AVG) and 
improvement percentage (IMPR %) compared against SJF AVG values. The performance rank of a certain 
algorithm is represented with a circled number, representing its performance rank within its respective SJF-
ML hybrid category. Additionally, a green-circled asterisk is represented for the best performance, considering 
all SJF-ML algorithms and the SJF algorithm.          

6.1. Cost Results  
Table 3 includes the Cost Results for the developed SJF-ML hybrid algorithms compared to SJF. 
 

Cost ($) Results VM Counts AVG IMPR%  
vs SJF Category Algorithm 20 40 60 80 100 

Classical SJF 3138.54 840.47 399.99 240.77 164.47 956.85 - 

SJF-CAs  
vs SJF 

SJF-DT④ 5188.89 1280.00 569.58 328.71 212.67 1515.97 -58.4334 
SJF-KNN③ 5028.80 1249.88 557.97 318.10 207.78 1472.51 -53.8914 
SJF-LDA① 3704.52 977.66 458.97 272.85 184.36 1119.67 -17.0163 
SJF-SVM② 3754.84 972.62 447.66 260.50 172.02 1121.53 -17.2106 

SJF-ELAs 
vs SJF 

SJF-AB④ 4952.65 1236.87 557.00 318.68 209.15 1454.87 -52.0479 
SJF-LGB③ 3704.52 977.66 458.97 272.85 184.36 1119.67 -17.0163 
SJF-RF② 3149.31 843.07 401.09 241.36 164.83 959.93 -0.3219 
SJF-XGB① 3138.55 840.46 399.99 240.77 164.47 956.85 0.0000 

SJF-PMs 
vs SJF 

SJF-BAY① 4532.35 1116.82 522.63 292.29 195.22 1331.86 -39.1921 
SJF-NAV② 4980.60 1240.91 555.99 317.71 207.68 1460.58 -52.6446 

SJF-RAs 
vs SJF 

SJF-LAS⑤ 5069.30 1285.20 577.98 329.59 214.76 1495.37 -56.2805 
SJF-LN①⊛ 3138.52 840.46 399.99 240.77 164.47 956.84 0.0010 
SJF-MLP④ 3150.74 843.71 402.86 241.69 165.11 960.82 -0.4149 
SJF-PLY② 3138.56 840.47 399.99 240.77 164.47 956.85 0.0000 
SJF-RDG③ 3142.46 841.42 400.39 240.99 164.60 957.97 -0.1171 
SJF-ROB② 3138.55 840.46 399.99 240.77 164.47 956.85 0.0000 

Table 3. Cost Results for SJF-ML hybrid algorithms compared to SJF algorithm. 

Table 3 shows the following cost comparison of the SJF-ML hybrid algorithms compared to the SJF algorithm:  
• SJF-CA vs SJF: SJF > SJF-LDA > SJF-SVM > SJF-KNN > SJF-DT 
• SJF-ELA vs SJF: [SJF ≈ SJF-XGB] > SJF-RF > SJF-LGB > SJF-AB 
• SJF-PM vs SJF: SJF > SJF-BAY > SJF-NAV 
• SJF-RA vs SJF: SJF-LN⊛ > SJF > [SJF-PLY ≈ SJF-ROB] > SJF-RDG > SJF-MLP > SJF-LAS 
Figure 5 shows Cost IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm. 
 

 
Figure 5. Cost IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm. 
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The cost results convey the SJF-LDA of the SJF-CA category, SJF-XGB of the SJF-ELA category, SJF-BAY of 
the SJF-PM category, and SJF-LN of the SJF-RA provide the best performance within their respective 
categories. Additionally, the SJF-LN hybrid algorithm of the SJF-RA category provides the best cost results 
across all the SJF-ML developed hybrid algorithms, along with the SJF algorithm. 

6.2. Time Results  
Table 4 includes the time comparison of SJF with presented SJF-ML Hybrid Algorithms. 

 
Time (s) Results VM Counts AVG IMPR%  

vs SJF Category Algorithm 20 40 60 80 100 
Classical SJF⊛ 104.62 28.02 13.33 8.03 5.48 31.90 - 

SJF-CAs  
vs SJF 

SJF-DT④ 172.96 42.67 18.99 10.96 7.09 50.53 -36.8692 
SJF-KNN③ 167.63 41.66 18.60 10.60 6.93 49.08 -35.0041 
SJF-LDA① 123.48 32.59 15.30 9.09 6.15 37.32 -14.5230 
SJF-SVM② 125.16 32.42 14.92 8.68 5.73 37.38 -14.6602 

SJF-ELAs 
vs SJF 

SJF-AB④ 165.09 41.23 18.57 10.62 6.97 48.50 -34.2268 
SJF-LGB③ 123.48 32.59 15.30 9.09 6.15 37.32 -14.5230 
SJF-RF② 104.98 28.10 13.37 8.05 5.49 32.00 -0.3125 
SJF-XGB①⊛ 104.62 28.02 13.33 8.03 5.48 31.90 0.0000 

SJF-PMs 
vs SJF 

SJF-BAY① 166.02 41.36 18.53 10.59 6.92 48.68 -34.47 
SJF-NAV② 182.62 45.5 19.64 11.54 7.47 53.35 -40.2062 

SJF-RAs 
vs SJF 

SJF-LAS④ 168.98 42.84 19.27 10.99 7.16 49.85 -36.0080 
SJF-LN①⊛ 104.62 28.02 13.33 8.03 5.48 31.90 0.0000 
SJF-MLP③ 105.02 28.12 13.43 8.06 5.50 32.03 -0.4059 
SJF-PLY①⊛ 104.62 28.02 13.33 8.03 5.48 31.90 0.0000 
SJF-RDG② 104.75 28.05 13.35 8.03 5.49 31.93 -0.0940 
SJF-RBST①⊛ 104.62 28.02 13.33 8.03 5.48 31.90 0.0000 

Table 4. Time comparison of SJF with presented SJF-ML Hybrid Algorithms. 

Table 4 shows the following time comparison of the SJF-ML hybrid algorithms compared to the SJF algorithm:  
• SJF-CA vs SJF: SJF⊛ > SJF-LDA > SJF-SVM > SJF-KNN > SJF-DT 
• SJF-ELA vs SJF: [SJF⊛ ≈ SJF-XGB⊛] > SJF-RF > SJF-LGB > SJF-AD 
• SJF-PM vs SJF: SJF⊛ > SJF-BAY > SJF-NAV 
• SJF-RA vs SJF: [SJF⊛ ≈ SJF-LN⊛ ≈ SJF-PLY⊛ ≈ SJF-RBST⊛] > SJF-RDG > SJF-MLP > SJF-

LAS 
Figure 6 shows Time IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm. 
 

 
Figure 6. Time IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm. 
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The time results convey the SJF-LDA of the SJF-CA category, SJF-XGB of the SJF-ELA category, SJF-BAY of 
the SJF-PM category, and SJF-LN, SJF-PLY, and SJF-RBST algorithms of the SJF-RA provide the best 
performance within their respective categories. Additionally, the existing SJF algorithm, SJF-XGB of the SJF-
SJF-ELA category, and SJF-LN, SJF-PLY, and SJF-RBST hybrid algorithms of the SJF-RA category provide the 
best time results across all the SJF-ML developed hybrid algorithms, along with the SJF algorithm. 

6.3. Energy Results  
Table 5 includes the energy comparison of SJF with presented SJF-ML Hybrid Algorithms. 

 
Energy (µJ) Results VM Counts AVG IMPR%  

vs SJF Category Algorithm 20 40 60 80 100 
Classical SJF 835.24 296.15 170.71 118.17 89.84 302.02 - 

SJF-CAs  
vs SJF 

SJF-DT④ 1176.96 369.41 198.98 132.82 97.87 395.21 -30.8556 
SJF-KNN③ 1150.28 364.39 197.04 131.05 97.06 387.96 -28.4551 
SJF-LDA② 929.57 319.02 180.54 123.51 93.16 329.16 -8.9862 
SJF-SVM①⊛ 845.06 271.73 147.69 98.23 72.52 287.05 4.9566 

SJF-ELAs 
vs SJF 

SJF-AB④ 1137.59 362.22 196.88 131.15 97.29 385.03 -27.4849 
SJF-LGB③ 929.57 319.02 180.54 123.51 93.16 329.16 -8.9862 
SJF-RF② 836.71 296.42 170.79 118.18 89.84 302.39 -0.1225 
SJF-XGB① 835.24 296.15 170.71 118.17 89.84 302.02 0.0000 

SJF-PMs 
vs SJF 

SJF-BAY① 1050.87 326.60 179.01 120.51 88.31 353.06 -16.8995 
SJF-NAV② 1142.25 362.89 196.71 130.99 97.04 385.98 -27.7995 

SJF-RAs 
vs SJF 

SJF-LAS④ 1157.03 370.27 200.38 132.97 98.22 391.77 -29.7166 
SJF-LN① 835.23 296.15 170.71 118.17 89.84 302.02 0.0000 
SJF-MLP③ 838.32 297.24 171.87 118.54 90.18 303.23 -0.4006 
SJF-PLY① 835.24 296.15 170.71 118.17 89.84 302.02 0.0000 
SJF-RDG② 835.89 296.31 170.78 118.2 89.86 302.21 -0.0629 
SJF-RBST① 835.24 296.15 170.71 118.17 89.84 302.02 0.0000 

Table 5. Energy comparison of SJF with presented SJF-ML Hybrid Algorithms. 

Table 5 shows the following energy comparison of SJF-ML hybrid algorithms compared to the SJF algorithm: 
• SJF-CA vs SJF: SJF-SVM⊛ > SJF > SJF-LDA > SJF-KNN > SJF-DT 
• SJF-ELA vs SJF: [SJF ≈ SJF-XGB] > SJF-RF > SJF-LGB > SJF-AB 
• SJF-PM vs SJF: SJF > SJF-BAY > SJF-NAV 
• SJF-RA vs SJF: [SJF ≈ SJF-LN ≈ SJF-PLY ≈ SJF-RBST] > SJF-RDG > SJF-MLP > SJF-LAS 
 

Figure 7 shows Energy IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm. 
 

 
Figure 7. Energy IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm. 
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The energy results convey the SJF-SVM of the SJF-CA category, SJF-XGB of the SJF-ELA category, SJF-BAY 
of the SJF-PM category, and SJF-LN, SJF-PLY, and SJF-RBST hybrid algorithms of the SJF-RA provide the best 
performance within their respective categories. Additionally, the SJF-SVM hybrid algorithm of the SJF-CA 
category provides the best energy results across all the SJF-ML developed hybrid algorithms, along with the 
SJF algorithm. 

6.4. LB Results  
Table 6 includes the LB comparison of SJF with presented SJF-ML Hybrid Algorithms. 

 

Table 6. LB comparison of SJF with presented SJF-ML Hybrid Algorithms. 

Table 6 shows the following LB comparison of the SJF-ML hybrid algorithms compared to the SJF algorithm: 
• SJF-CA vs SJF: SJF-SVM⊛ > SJF-DT > SJF-KNN > SJF > SJF-LDA 
• SJF-ELA vs SJF: SJF-AB > SJF-RF > [SJF ≈ SJF-XGB] > SJF-LGB 
• SJF-PM vs SJF: SJF-BAY > SJF-NAV > SJF 
• SJF-RA vs SJF: SJF-LAS > SJF-MLP > SJF-RDG > [SJF ≈ SJF-LN ≈ SJF-PLY ≈ SJF-RBST] 
 

Figure 8 shows LB IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm. 
 

 
Figure 8. LB IMPR % graph for SJF-ML Hybrid Algorithms compared to SJF Algorithm. 

LB Results VM Counts AVG IMPR%  
vs SJF Category Algorithm 20 40 60 80 100 

Classical SJF 2.30 4.56 6.50 8.40 9.99 6.35 - 

SJF-CAs  
vs SJF 

SJF-DT② 1.48 3.08 4.8 6.31 7.83 4.70 25.9843 
SJF-KNN③ 1.18 3.23 4.91 6.51 7.99 4.76 25.0394 
SJF-LDA④ 2.21 4.5 6.51 8.48 10.16 6.37 0.3150 
SJF-SVM①⊛ 0.23 0.75 1.24 1.62 1.14 1.00 84.2520 

SJF-ELAs 
vs SJF 

SJF-AB① 1.65 3.51 5.25 6.78 8.19 5.08 20.0000 
SJF-LGB④ 2.21 4.5 6.51 8.48 10.16 6.37 0.3150 
SJF-RF② 2.29 4.54 6.47 8.37 9.96 6.33 0.3150 
SJF-XGB③ 2.30 4.56 6.50 8.40 9.99 6.35 0.0000 

SJF-PMs 
vs SJF 

SJF-BAY① 1.48 3.28 5.03 6.61 8.04 4.89 16.3780 
SJF-NAV② 1.63 3.54 5.38 7.14 8.84 5.31 22.9921 

SJF-RAs 
vs SJF 

SJF-LAS① 1.23 2.79 4.44 6.07 7.70 4.45 29.9213 
SJF-LN④ 2.30 4.56 6.50 8.40 9.99 6.35 0.0000 
SJF-MLP② 2.25 4.49 6.35 8.34 9.84 6.25 1.5748 
SJF-PLY④ 2.30 4.56 6.50 8.40 9.99 6.35 0.0000 
SJF-RDG③ 2.29 4.54 6.48 8.37 9.95 6.33 0.3150 
SJF-RBST④ 2.30 4.56 6.50 8.40 9.99 6.35 0.0000 
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The LB results convey the SJF-SVM of the SJF-CA category, SJF-AB of the SJF-ELA category, SJF-BAY of the 
SJF-PM category, and SJF-LAS of the SJF-RA provide the best performance within their respective categories. 
Additionally, the SJF-SVM hybrid algorithm of the SJF-CA category provides the best LB results across all the 
SJF-ML developed hybrid algorithms, along with the SJF algorithm. 

7. Cumulative Results and Implications 
This section includes filtering the better-performing SJF-ML hybrid algorithms obtained post the experiment 
along with their implications. Table 7 includes the comparative matrix representing the cumulative 
experimental results with performance of algorithms categorized as Best, Good, Average, Poor, or Worst. 

 
Metric Best Good Average Poor Worst 

Cost 
SJF 
SJF-XGB 
SJF-LN 

SJF-BAY 
SJF-LDA 
SJF-PLY 
SJF-RF 
SJF-ROB 

SJF-LGB 
SJF-NAV 
SJF-SVM 
SJF-RDG 

SJF-KNN 
SJF-AB 
SJF-MLP 

SJF-DT 
SJF-LAS 

Time 

SJF 
SJF-XGB 
SJF-LN 
SJF-PLY 
SJF-RBST 

SJF-LDA 
SJF-RF 
SJF-BAY 
SJF-RDG 

SJF-SVM 
SJF-LGB  
SJF-NAV 
SJF-MLP 

SJF-KNN  
SJF-AB  
SJF-LAS 

SJF-DT 

Energy 

SJF-SVM 
SJF 
SJF-XGB 
SJF-LN 
SJF-PLY 
SJF-RBST 

SJF 
SJF-RF 
SJF-BAY  
SJF-RDG 

SJF-LDA 
SJF-LGB  
SJF-NAV  
SJF-MLP 

SJF-KNN  
SJF-AB  
SJF-LAS 

SJF-DT 

LB 
SJF-SVM  
SJF-AB  
SJF-BAY  
SJF-LAS 

SJF-DT  
SJF-RF  
SJF-NAV  
SJF-MLP 

SJF-KNN  
SJF 
SJF-XGB 
SJF 
SJF-RDG 

SJF 
SJF-LGB  
SJF-LN 
SJF-PLY  
SJF-RBST 

SJF-LDA 

Table 7. Comparative Matrix representing cumulative results for the experiment. 

Table 7 shows that the developed SJF-ML hybrid algorithms, such as existing SJF, SJF-XGB of the SJF-ELA 
category, and SJF-LN of the SJF-RA category, provide the best cost results. The hybrid developed algorithms 
SJF-DT of the SJF-CA category and the SJF-LAS of the SJF-RA category are least suitable for the cost and can 
be avoided for hybridizations and implementations in the cloud. In terms of time performance metric, the 
existing SJF, along with SJF-XGB of the SJF-ELA category, SJF-LN, SJF-PLY, and SJF-RBST algorithms of the 
SJF-RA category provide the best results concerning time. Concerning time, the hybrid-developed SJF-DT 
algorithm of the SJF-CA category can be avoided for implementation since it provides poor results concerning 
time. In terms of energy, SJF-SVM of the SJF-CA category, existing SJF, SJF-XGB of the SJF-ELA category, 
and SJF-LN, SJF-PLY, SJF-RBST algorithms of the SJF-RA category provide the best results concerning energy. 
Like the time performance metric, the SJF-DT performance metric provides poor results concerning energy. 
Lastly, the SJF-SVM of the SJF-CA category, SJF-AB of the SJF-ELA category, SJF-BAY of the SJF-PM category, 
and SJF-LAS of the SJF-RA category provide the best results concerning LB. Here, the SJF-LDA of the SJF-CA 
category provides poor LB results. All the other developed hybrid algorithms provide either good, average, or 
poor performance compared within their SJF-ML categories, along with the SJF algorithm. Among the best 
SJF-ML performers, the SJF-XGB and SJF-LN algorithms perform better across maximum parameters, and the 
cloud can deploy these SJF-ML hybrid algorithms to ensure better results are obtained against the baseline of 
the SJF algorithm. Thus, the integration of ML with SJF provides fruitful results, improving the required cost, 
time, energy, and LB-considered performance metrics, and can be used to provide a better decision-making 
ability to the cloud to evolve itself from existing versions and provide better QoS. 
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8. Conclusion and Future Research Direction 
This research paper provided hybrid scheduling methods by combining the currently existing best Shortest 
Job First (SJF) scheduling algorithm with sixteen Machine Learning (ML) algorithms. The ML algorithms 
within the categories of Classification Algorithms (CA), Ensemble Learning Algorithms (ELA), Probabilistic 
Models (PM), and Regression Algorithms (RA) were used to develop SJF-CA, SJF-ELA, SJF-PM, and SJF-RA 
as the four different categories of SJF-ML hybrid algorithms. From these sixteen SJF-ML hybrid categories, 
SJF-ML hybrid algorithms including SJF-AB, SJF-BAY, SJF-DT, SJF-KNN, SJF-LASSO, SJF-LDA, SJF-LGBM, 
SJF-LIN, SJF-MLPNN, SJF-NAVBAY, SJF-POLY, SJF-RDGE, SJF-RF, SJF-ROBST, SJF-SVM, and SJF-XGB are 
developed across the four SJF-ML categories. The main aim was to embed the cloud's scheduling process with 
ML techniques and improve the scheduling by enhancing the considered performance metrics such as cost, 
time, energy, and LB. The existing SJF algorithm was used as a baseline to compare it with all the developed 
SJF-ML algorithms across all the mentioned metrics. The real-time Google big data tasks were computed using 
all the SJF-ML hybrid algorithms across five different experimental scenarios of VM counts. From the 
experiment conducted, it can be conveyed that the SJF-XGB of the SJF-ELA category and the SJF-LN of the 
SJF-RA category provided better results across the maximum considered parameters. The cloud can deploy 
these variants for scheduling, rather than the SJF algorithm. A major limitation of the presented SJF-ML 
hybrid algorithms is the complexity of integration, where the coordination of both algorithms needs to be 
carefully executed. An additional limitation is the overhead of time spent in training the SJF-ML algorithms, 
which adds to the unwanted latency and energy consumption. The experiment findings conclude that the 
development of ML algorithms with scheduling approaches in the cloud provides better results through their 
improved decision-making, pattern recognition of BDTs, and overall allocation of resources, therefore 
providing a better, enhanced, and evolved version of itself.  As a part of future research direction, the author 
aims to develop a second-level hybridization where the best performers, SJF-XGB and SJF-LN algorithms, will 
be integrated to ensure further improvements can be made for the cloud evolution. This second-level 
algorithm will be named SJF-XL, a combination of SJF-XGB and SJF-LN, where the individual first-level hybrid 
algorithm characteristics will be used to provide better and enhanced scheduling results to the first-level 
evolved cloud. Figure 9 represents the architecture where the SJF-XL second-level hybrid algorithm will be 
used by the cloud. 
 

 
Figure 9. Second-Level SJF-ML Architecture. 
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