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 The rapid growth of the Internet of Medical Things (IoMT) has introduced critical 
cybersecurity challenges, highlighting the need for robust and accurate intrusion 
detection systems (IDS). This study presents a hybrid machine learning (ML) framework 
to strengthen intrusion detection in IoMT networks using the CIC-IoMT2024 dataset. 
The framework combines Information Gain (IG) and Principal Component Analysis 
(PCA) for feature selection and dimensionality reduction, while SMOTEENN and 
SMOTETomek are applied to address severe class imbalance. The processed data are 
classified using Random Forest (RF), K-Nearest Neighbors (KNN), XGBoost (XGB), 
Multi-Layer Perceptron (MLPC), and Logistic Regression (LR), with hyperparameters 
optimized through Bayesian Optimization. Performance is evaluated using Accuracy, 
Precision, Recall, F1-Score, and AUC. Experimental results reveal that the optimized 
XGB classifier with SMOTEENN achieves a peak accuracy of 99.811%. This top-tier 
performance surpasses several existing benchmarks, validating the effectiveness of 
integrating IG-PCA with advanced resampling and optimization strategies. This work 
contributes a lightweight, scalable, and highly accurate IDS, offering a practical and 
efficient solution for enhancing security in resource-constrained, next-generation 
medical IoT systems. 

Keywords: Internet of Medical Things, Intrusion Detection Accuracy, IG-PCA, Machine 
Learning, Bayesian Optimization 

1. Introduction 

The proliferation of the Internet of Medical Things (IoMT) has catalyzed a paradigm shift in healthcare, 
enabling innovations such as remote patient monitoring, automated diagnostics, and interconnected smart 
health services (Alturki et al., 2025; Razdan & Sharma, 2022; Wang et al., 2021). This digital transformation 
holds immense potential for improving patient outcomes and operational efficiency. However, the increasing 
connectivity and inherent heterogeneity of IoMT devices have also introduced significant security 
vulnerabilities (Ahmed et al., 2024; Binbusayyis et al., 2022; Mathkor et al., 2024). Operating in resource-
constrained environments and often lacking standardized security protocols, these devices are prime targets 
for cyberattacks, making data privacy, secure communication, and real-time threat detection paramount 
concerns (Papaioannou et al., 2022; Zachos et al., 2021). 

To mitigate these threats, the development of robust Intrusion Detection Systems (IDS) specifically 
designed for IoMT ecosystems has become a critical area of research (Alalhareth & Hong, 2024; Ibrahim & 
Al-Wadi, 2024). m (ML)-based IDS have demonstrated considerable promise by learning network behavior to 
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intelligently classify legitimate and malicious traffic (Berguiga et al., 2025; Chaganti et al., 2022). 
Nonetheless, their practical implementation is hindered by several persistent challenges, including the 'curse 
of dimensionality' from high-dimensional data, severe class imbalance where attack data is sparse, and the 
stringent requirement for lightweight models that can operate in real-time on devices with limited 
computational power (Husain et al., 2025). 

In response, the literature presents several strategies. To manage data complexity, hybrid methods 
combining Information Gain (IG) for feature selection and Principal Component Analysis (PCA) for 
dimensionality reduction have been explored to enhance classification accuracy while minimizing 
computational load (Kumar et al., 2022; Nasir et al., 2022; Odhiambo Omuya et al., 2021; R.M. et al., 2020). 
To counteract class imbalance, over-sampling and hybrid sampling techniques like SMOTEENN and 
SMOTETomek are widely used to improve model sensitivity towards minority attack classes (Alsharaiah et 
al., 2025; Bouke et al., 2024; Sarkar et al., 2024; Talukder et al., 2024). Recent advanced models have 
achieved high accuracy; for instance, systems integrating deep learning with blockchain have reported 
accuracies of 99.7% across 18 attack types (Abdiwi, 2024). while federated learning approaches have reached 
97.31%. Similarly, combining SMOTE with classical ML models has yielded accuracies up to 99.2% (Mohsin 
& Jony, 2024). 

Beyond the technical vulnerabilities, security breaches in IoMT ecosystems pose direct threats to 
organizational stability and patient safety. A successful cyberattack could lead to the compromise of sensitive 
patient health information (PHI), disruption of critical clinical workflows, or even manipulation of life-
sustaining medical devices, causing irreparable harm to patients and catastrophic reputational damage to 
healthcare providers (Chuma & Ngoepe, 2022). Despite these advancements, a significant research gap 
persists. Many existing solutions focus on maximizing a single metric like accuracy, often at the cost of 
computational efficiency, model interpretability, or scalability—qualities that are non-negotiable for real-
world IoMT deployment. A holistic framework that systematically integrates and optimizes preprocessing, 
feature engineering, and model tuning to create a balanced, lightweight, and effective IDS is still needed. This 
study addresses this gap by proposing a comprehensive ML-based framework to optimize intrusion detection, 
validated on the contemporary CIC-IoMT 2024 dataset (Dadkhah et al., 2024). Our approach prioritizes a 
pragmatic balance between high detection performance and computational feasibility, ensuring its suitability 
for resource-constrained IoMT infrastructures. 

The major contributions of this research are as follows: 
1. Development of an Optimized IDS Framework: We propose and evaluate an end-to-end intrusion 

detection framework that synergistically integrates data preprocessing, feature engineering (using 
IG and PCA), and a comparative analysis of advanced data balancing techniques (SMOTEENN and 
SMOTETomek). This creates a robust and computationally efficient system specifically tailored for 
IoMT environments. 

2. Systematic Hyperparameter Optimization: We employ Bayesian Optimization (BO) for automated 
and efficient hyperparameter tuning of multiple ML classifiers. This approach systematically 
enhances model performance and reduces the manual effort and computational cost associated with 
traditional grid-search or random-search methods. 

3. Comprehensive Performance Validation: The proposed framework is rigorously validated on the 
recent and highly relevant CIC-IoMT 2024 dataset. This provides a robust and up-to-date benchmark 
of its effectiveness against modern cyber threats, assessing performance across multiple metrics, 
including accuracy, precision, recall, F1-score, and Area Under Curve (AUC).  

We present a comprehensive performance evaluation of our proposed method against baseline models 
and other optimization approaches from the literature. This demonstrates that our framework achieves an 
enhanced balance between high detection accuracy and practical computational efficiency. 

2. Related work 
The growing complexity and interconnectivity of IoMT systems have prompted extensive research into 
developing secure, efficient, and intelligent IDS. A significant body of literature has focused on leveraging ML 
to identify malicious behavior in healthcare-related IoT environments. Traditional signature-based IDS 
approaches are often ineffective in IoMT contexts due to their inability to detect novel or evolving threats. 
Consequently, ML-based IDS have gained traction due to their adaptive learning capabilities and ability to 
generalize from data. Studies such as those by (Chaganti et al., 2022) and (Ibrahim & Al-Wadi, 2024) have 
demonstrated the feasibility of ML models like Decision Trees, Random Forests, and Support Vector Machines 
in IoMT-specific datasets. These models achieved high detection accuracy but often required further 
optimization for real-time deployment due to their computational overhead. 
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Efficient feature engineering plays a pivotal role in enhancing IDS performance, particularly when 
handling high-dimensional IoMT data. To improve detection speed and simplify model complexity, several 
studies have adopted hybrid feature reduction techniques. For instance, (Sayed et al., 2023) and (Kumari & 
Jain, 2024), combined Information Gain (IG) and Principal Component Analysis (PCA), achieving higher 
classification accuracy and reduced training time. Similarly, (Odhiambo Omuya et al., 2021) developed a 
hybrid PCA-IG model to address the challenges of high-dimensional datasets. By minimizing redundant and 
irrelevant attributes, the PCA-IG model significantly improved classification accuracy and computational 
efficiency. This approach achieved superior performance in accuracy, precision, recall, and training time 
compared to conventional feature selection methods and classifiers such as Naïve Bayes. In addition to feature 
optimization, researchers have explored various data resampling techniques to mitigate class imbalance. 
Methods such as SMOTE (Synthetic Minority Over-sampling Technique), SMOTEENN, and SMOTETomek 
have been widely employed to enhance model sensitivity toward minority classes. (Husain et al., 2025) and 
(Alsharaiah et al., 2025) reported substantial improvements in minority class detection using these balancing 
strategies, while (Mohsin & Jony, 2024) integrated SMOTE-based balancing with classical classifiers, 
achieving accuracy gains exceeding 99% across multiple attack categories.  

Furthermore, (Doménech et al., 2025) demonstrated the significant impact of preprocessing and 
balancing techniques, such as Random Undersampling and SMOTE, on the CIC-IoMT2024 dataset, improving 
accuracy by 26.35% and the F1-score by 29.40% over baseline models. However, they also observed that 
SMOTE occasionally reduced the detection rate for minority classes, such as “ARP Spoofing,” due to the 
generation of ambiguous synthetic samples. Complementarily, (Torre et al., 2025) employed Federated 
Learning integrated with Differential Privacy and Homomorphic Encryption to ensure decentralized training 
with strong privacy protection, albeit at the expense of higher computational complexity. Overall, while the 
existing literature presents numerous innovations in IDS for IoMT, several limitations persist. Many models 
are designed for general IoT scenarios and do not account for the stringent latency and power requirements 
in healthcare settings. Additionally, model interpretability, essential for healthcare providers, is often 
overlooked. Few studies offer scalable solutions that combine lightweight processing with high detection 
accuracy and balanced class performance. 

3. Proposed methodology 
The methodology of this study follows a structured ML pipeline designed to construct and evaluate an effective 
IDS for IoMT networks. The entire workflow, from data preparation to performance evaluation, is illustrated 
in Figure 1 to validate their effectiveness and suitability for deployment in resource-constrained IoMT 
environments. 

Figure 1. Proposed Method 

3.1. Datasets Description 
This research is grounded in the CIC-IoMT 2024 dataset (Dadkhah et al., 2024), provided by the Canadian 
Institute for Cybersecurity. The dataset encompasses diverse and representative network traffic patterns 
commonly observed in IoMT environments, including both normal operations and various forms of malicious 
activity such as DDoS, infiltration, and other significant cyber threats. 
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3.2. Data Preprocessing and Sampling 
The initial stage of this study involved a systematic preprocessing pipeline applied to the CIC-IoMT2024 
dataset to ensure high data quality and efficient computational handling. Initially, all raw data files were 
merged into a unified dataframe. A deduplication procedure was then performed to eliminate redundancy, 
resulting in the removal of 5,119 duplicate entries. This yielded a clean dataset consisting of 7,155,712 unique 
records, each described by 46 attributes. Each record in the dataset was categorized using the ‘Label’ feature 
as either ‘Benign’ or one of 18 distinct malicious attack types, as illustrated in Figure 2. To prepare the dataset 
for ML, all categorical variables, including the target ‘Label’, were converted into numerical form using Label 
Encoding. 

The dataset was subsequently divided into training and testing subsets using a 70/30 split ratio, 
5,008,998 samples for training (X_train, y_train) and 2,146,714 samples for testing (X_test, y_test). Given the 
large dataset size, training models directly on the full data would lead to substantial computational overhead. 
To address this, stratified random sampling was employed to maintain the proportional representation of all 
classes within both subsets, ensuring consistency with the original class distribution and minimizing sampling 
bias. A maximum threshold of 15,000 samples per class was established for downsampling the majority 
classes. Classes with counts exceeding this threshold (e.g., TCP_IP-DDoS-UDP, MQTT-DDoS-Connect_Flood) 
were randomly reduced to 15,000 samples, while minority classes with fewer instances (e.g., Recon-
Ping_Sweep, Recon-VulScan) were retained entirely. This hybrid downsampling strategy effectively reduced 
the size of the training data while preserving the diversity across all 19 classes. The resulting sampled training 
dataset comprised 232,087 records, with class distribution summarized as follows: 
Benign (15,000), TCP_IP-DoS-UDP (15,000), TCP_IP-DDoS-TCP (15,000), TCP_IP-DDoS-SYN (15,000), TCP_IP-
DDoS-ICMP (15,000), MQTT-DoS-Publish_Flood (15,000), MQTT-DDoS-Connect_Flood (15,000), MQTT-
DDoS-Publish_Flood (15,000), TCP_IP-DoS-ICMP (15,000), TCP_IP-DoS-SYN (15,000), Recon-Port_Scan 
(15,000), TCP_IP-DoS-TCP (15,000), TCP_IP-DDoS-UDP (15,000), Recon-OS_Scan (11,314), ARP_Spoofing 
(11,233), MQTT-DoS-Connect_Flood (8,941), MQTT-Malformed_Data (3,591), Recon-VulScan (1,490), and 
Recon-Ping_Sweep (518). 

To enhance the performance and convergence of the learning algorithms, feature normalization was 
applied using StandardScaler, which transformed each feature to have a mean of zero (μ = 0) and a standard 
deviation of one (σ = 1), as expressed in Equation (1).  

𝑧 =  (𝑥 −  𝜇) / 𝜎 (1) 

Standardization is a critical step to ensure that all features are on a comparable scale, preventing features 
with larger magnitudes from disproportionately influencing the model. 

 

Figure 2. Distribution of cyberattacks 
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3.3. Feature Selection 
IG is employed to select features with the highest predictive power by measuring their mutual information 
with the target class. It is calculated as the reduction in entropy after splitting the dataset based on an 
attribute. Formally, IG for an attribute 𝐴 relative to a dataset 𝑆 as shown in Equation (2): 

Gain(𝑆, 𝐴) = Entropy(𝑆) − ∑  

𝑣∈Values(𝐴)

|𝑆𝑣|

|𝑆|
Entropy(𝑆𝑣) (2) 

Where, 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) is the entropy of the entire dataset, Values 𝐴 denotes the set of possible values for attribute 
𝐴, 𝑆𝑣 is the subset of 𝑆 where attribute 𝐴 has value 𝑣, |𝑆𝑣|

|𝑆|
 represents the proportion of the dataset falling into 

subset 𝑆𝑣. A higher IG value indicates a stronger dependency between the feature and the target variable, 
suggesting greater predictive relevance. The IG scores were computed for all 42 standardized features using 
the training dataset. Based on the distribution of IG values, an empirical threshold of IG > 0.001 was 
established to differentiate high-impact from low-impact features. Consequently, 40 features with IG scores 
above this threshold were retained for further model training and evaluation. The ranked list of features is 
presented in Table 1. 
 

Rank Feature Name IG Value 

1 IAT 2.644043 

2 Tot sum 1.742246 

3 Tot size 1.711671 

4 Min 1.648812 

5 Max 1.637822 

6 AVG 1.609903 

7 Magnitue 1.603614 

8 Header_Length 1.537972 

9 Srate 1.422746 

10 Rate 1.422336 

… … … 

31 ARP 0.028318 

32 IPv 0.027613 

33 LLC 0.025614 

34 DNS 0.009515 

35 HTTP 0.007317 

36 IRC 0.006482 

37 cwr_flag_number 0.004747 

38 Telnet 0.003675 

39 SMTP 0.001834 

40 ece_flag_number 0.001489 

41 SSH 0.000744 

Table 1. IG result 

The remaining three features, namely Drate, DHCP, and IGMP, exhibited IG scores of 0.000000, indicating 
negligible contribution to class discrimination. Therefore, these features were excluded from further analysis 
to reduce noise and enhance model efficiency. 

3.4. Dimensionality Reduction 
To further refine the feature space and mitigate potential multicollinearity among the 42 features previously 
selected by Information Gain (IG), Principal Component Analysis (PCA) was applied. PCA is an unsupervised 
linear transformation technique that projects the data into a new subspace defined by orthogonal principal 
components (PCs) that capture the maximum variance within the original feature set. Considering the high-
dimensional and multi-class characteristics of the CIC-IoMT2024 dataset, the number of principal components 
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was empirically determined to be 31. This configuration was selected to ensure that both dominant and subtle 
variance patterns were retained—critical for distinguishing among the 19 different traffic classes, including 
those with closely related characteristics. The transformation process is grounded in the covariance 
relationship between features, mathematically expressed in Equation (3): 

𝑐𝑜𝑣𝑥,𝑦 =
∑(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)

𝑁 − 1
 

(3) 

Where 𝑥𝑖 and 𝑦𝑖 are individual sample values, 𝑥 and 𝑦 are the mean values of variables 𝑥 and 𝑦, and 𝑁 
denotes the total number of observations. The PCA transformation demonstrated that 31 components 
collectively explained 99.99% of the total variance, confirming that the reduced feature space preserved 
nearly all relevant information from the IG-selected features while significantly minimizing redundancy. This 
dimensionality reduction enhanced computational efficiency and reduced the potential risk of overfitting 
during model training. The transformed training and testing datasets exhibited shapes of (232,087, 31) and 
(2,146,714, 31), respectively, indicating successful feature compression while maintaining discriminative 
power. Table 2 summarizes the proportion of variance explained by each principal component. The first few 
components—PC1 (21.20%), PC2 (9.67%), PC3 (7.58%), PC4 (7.44%), and PC5 (6.57%)—collectively 
accounted for over 52% of the total variance, demonstrating that most of the variability in the data was 
captured by a relatively small number of components. 

 
Principal 

Component (PC) 
Individual Variance 

Explained (%) 
Cumulative Variance 

Explained (%) 
PC1 21.20 21.20 
PC2 9.67 30.87 
PC3 7.58 38.45 
PC4 7.44 45.90 
PC5 6.57 52.47 
PC6 5.20 57.67 
PC7 4.43 62.10 
PC8 4.25 66.35 
PC9 4.15 70.50 
PC10 4.01 74.51 

… … … 
PC26 0.33 99.21 
PC27 0.28 99.50 
PC28 0.23 99.73 
PC29 0.13 99.85 
PC30 0.08 99.94 
PC31 0.05 99.99 

Table 2. PCA result 

3.5. Class Balancing 
A persistent challenge in most cybersecurity datasets, including the CIC-IoMT2024 dataset used in this study, 
is class imbalance. This issue arises when certain attack types or benign traffic dominate the dataset, causing 
machine learning (ML) models to become biased toward majority classes and perform poorly in detecting 
minority or rare attacks. To address this problem, two robust hybrid resampling techniques were applied to 
the PCA-transformed training data (comprising 31 components): SMOTEENN and SMOTETomek. Both 
methods combine synthetic over-sampling of minority classes with under-sampling or cleaning mechanisms 
to achieve a more balanced and representative dataset. 

1. SMOTEENN: The Synthetic Minority Over-sampling Technique combined with Edited Nearest 
Neighbors (SMOTEENN) first generates synthetic samples for underrepresented attack classes to 
increase their presence in the dataset. Subsequently, the ENN cleaning process removes ambiguous 
or noisy samples from both majority and minority classes to refine the decision boundaries. 
Applying this approach produced a training dataset consisting of 227,025 samples across all 19 
classes. The post-resampling distribution showed improved balance, with class counts ranging 
approximately between 5,692 and 14,909 instances per class. 
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2. SMOTETomek: The SMOTE combined with Tomek Links (SMOTETomek) method similarly begins 
by synthesizing minority samples using SMOTE and then identifies Tomek links—pairs of samples 
from different classes that are nearest neighbors. The majority-class instances involved in these 
links are removed to better delineate class boundaries. This method resulted in a slightly larger, 
more uniform dataset containing 271,764 samples, with class counts ranging approximately 
between 12,013 and 14,983 instances per class. 

Both methods successfully mitigated the class imbalance observed in the original dataset (where class 
counts ranged from 518 to 15,000). While SMOTEENN introduced a moderately balanced structure 
emphasizing data cleanliness, SMOTETomek achieved a near-uniform class distribution and clearer decision 
margins. These balanced datasets were subsequently used to independently train and evaluate the machine 
learning models to assess their robustness and generalization across balanced conditions.. 

3.6. Model 
Four ML models were chosen due to their established effectiveness in intrusion detection tasks: 

1) Random Forest (RF) builds a large collection of decision trees and then aggregates their individual 
predictions. This aggregation process boosts the model's overall accuracy and reduces the risk of 
overfitting to the training data (Al-Abadi et al. (2023)). 

2) K-Nearest Neighbors (KNN) is a non-parametric algorithm used for classification by labeling a data 
point according to the most common class among its k nearest neighbors within the feature space 
(Sun & Chen (2021)). 

3) XGBoost (XGB) is an advanced gradient boosting algorithm. It develops a predictive model by 
creating a series of decision trees one after another, with each new tree aiming to rectify the 
inaccuracies of the preceding models in the sequence (Salehpour et al. (2024)). 

4) Logistic Regression (LR) is a fundamental statistical algorithm used for binary classification tasks. 
Despite its name, it is a classification model that calculates the probability of a specific outcome. It 
employs the logistic (sigmoid) function to transform the output of a linear equation into a 
probability score between 0 and 1, making it highly interpretable and computationally efficient 
(Chalichalamala et al. (2023)). 

5) Multi-Layer Perceptron Classifier (MLPC) is a supervised artificial neural network model consisting 
of interconnected layers of nodes: input, hidden, and output. It applies nonlinear activation 
functions to capture complex patterns in data and employs backpropagation for weight 
optimization, enabling robust classification performance across diverse domains, particularly in 
high-dimensional and nonlinear problem spaces (Zhao et al. (2025)). 

3.7. Hyperparameter Optimization 
To fine-tune each model and maximize its predictive performance, BO was employed. BO efficiently explores 
the hyperparameter search space by building a probabilistic surrogate model that estimates the objective 
function based on prior evaluations. In this study, the objective function 𝑓(𝑥) represents the mean 5-fold 
cross-validation accuracy for a given set of hyperparameters 𝑥. The optimization iteratively updates its belief 
about 𝑓(𝑥) using a Gaussian Process (GP) and selects the next candidate point 𝑥∗ by maximizing an acquisition 
function, typically the Expected Improvement (EI). Mathematically, the BO process can be expressed as (4). 

𝑥∗ = arg 𝑚𝑎𝑥
𝑥∈𝑋

𝛼(𝑥 ∣ 𝐷𝑡),
 where 

𝛼(𝑥 ∣ 𝐷𝑡) = 𝔼[𝑚𝑎𝑥(𝑓(𝑥) − 𝑓(𝑥+), 0)] (4) 
Here, 𝐷𝑡 = {(𝑥𝑖 , 𝑓(𝑥𝑖))}

𝑖=1

𝑡  denotes the set of observed evaluations, 𝑓(𝑥+) is the best performance obtained 
so far, and 𝛼(𝑥 ∣ 𝐷𝑡) represents the acquisition function guiding the exploration–exploitation trade-off. This 
automated and probabilistically guided tuning process ensures that each classifier—trained on both 
SMOTEENN and SMOTETomek balanced datasets—is optimized toward its most effective configuration before 
final evaluation, thereby enhancing the robustness, generalizability, and reliability of our findings. 

3.8. Evaluation 
To validate the dependability and stability of the proposed models, we evaluated their performance on 
intrusion detection within the IoMT environment using a diverse range of evaluation metrics. These metrics 
include: 
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1) 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑃+𝑇𝑃+𝐹𝑁
 , measuring overall correctness 

2) 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , measures the fraction of true positive cases among all instances classified as 

positive, indicating how accurately the model identifies positive outcomes. 
3) 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
 , reflecting the model's sensitivity to actual positives. 

4) 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 , balancing precision and recall. 

5) 𝐴𝑈𝐶  = 𝑇𝑃𝑅 ∗
 𝑇𝑃 

 𝑇𝑃 + 𝐹𝑁 
 , evaluates a model’s capability to differentiate between classes in 

classification tasks, providing insight into its overall discriminative power. 
This evaluation framework facilitates the effective development of a smart IDS tailored for the intricate 

IoMT landscape. 

4. Result and Analysis 
This research presents a thorough evaluation of the ML models developed for intrusion detection within IoMT 
environments. A systematic performance analysis is conducted for each model using datasets balanced 
through SMOTEENN and SMOTETomek techniques. The results are critically interpreted and positioned 
within the context of existing scholarly works to underscore the novel contributions of this study. The 
implementation was carried out on Google Colab Pro, leveraging high-performance CPUs and substantial RAM 
resources to ensure efficient execution. This computationally robust configuration facilitates the handling of 
memory-intensive operations and accelerates processing, thereby enhancing the overall experimental 
workflow. 

4.1. Experimental Design 
The discussion section interprets these results, compares them with existing literature, and highlights the 
contributions of this research. The evaluation was conducted using five state-of-the-art ML classifiers: RF, 
KNN, XGB, MLPC and LR. Each model was trained and tested on two distinct datasets that were processed 
using the IG-PCA feature engineering pipeline and balanced with either SMOTEENN or SMOTETomek. Model 
performance was assessed using standard evaluation metrics: Accuracy, Precision, Recall, F1-Score and AUC. 

To ensure each model achieved its maximum potential, all classifiers were fine-tuned using the BO 
process. A predefined search space, outlining the range of possible values for each hyperparameter, was 
established to guide the optimization. The specific search spaces for each classifier are detailed in Tables 3 
through 7. 
 

Hyperparameter Type Search Space 
'n_neighbors' Integer [100, 1000] 
'max_depth' Integer [5, 100] 
'min_samples_split' Integer [2, 20] 
'min_samples_leaf' Integer [1, 10] 
'max_features' Categorical [sqrt, log2, none] 
'bootstrap' Categorical [True, False] 
'criterion' Categorical ['gini', 'entropy'] 

Table 3. RF Search Space Perimeter 

Hyperparamete
r 

Type Search Space 

'n_neighbors' Integer [1, 90] 
'weights' Categorical ['uniform', 'distance'] 
'metric' Categorical ['euclidean', 'manhattan', 'minkowski'] 
'algorithm' Categorical ['auto', 'ball_tree', 'kd_tree', 'brute'] 
'leaf_size' Integer [10, 900] 
'p' Integer [1, 2] 

Table 4. KNN Search Space Perimeter 



RIYADI, KURNIABUDI, JASMIR ET AL. A HYBRID IG-PCA AND MACHINE LEARNING APPROACH… 
 

 

JIOS, VOL. 49, NO. 2 (2025), PP. 345-359 353 

 
Perimeter name Type Search Space 
'n_estimators’ Integer [50, 500] 
'max_depth’ Integer [3, 90] 
'learning_rate’ Float [0.01, 0.3] 
'subsample’ Float [0.5, 1.0] 
'colsample_bytree’ Float [0.5, 1.0] 
'gamma’ Float [0, 5] 
'min_child_weight’ Integer [1, 10] 
'reg_alpha’ Float [0, 5] 
'reg_lambda’ Float [0, 5] 
‘scale_pos_weight’ Float [0.5, 5] 

Table 5. XGB Search Space Perimeter 

Hyperparameter Type Search Space 
'Penalty' Categorical ['l1', 'l2', 'elasticnet', 'none']  
'C' Real [1e-3, 1e3, prior='log-uniform'] 
'solver' Categorical ['lbfgs', 'liblinear', 'saga', 'newton-cg'] 
'max_iter' Integer [100, 2000]  
'l1_ratio' Real [0, 1, prior='uniform'] 

Table 6. LR Search Space Perimeter 

Hyperparameter Type Search Space 
'n_layers' Categorical [1, 2, 3] 
'hl1' Integer 32 – 512 
'hl2' Integer 16 – 512 
'hl3' Integer 8 – 512 
'activation' Categorical ['relu', 'tanh', 'logistic'] 
'solver' Categorical ['adam', 'sgd', 'lbfgs'] 
'alpha' Real 1e-5 – 1e-1 (log-uniform) 
'learning_rate' Categorical ['constant', 'invscaling', 'adaptive'] 
'learning_rate_init' Real 1e-4 – 1e-1 (log-uniform) 
'max_iter' Integer 200 – 2000 
'batch_size' Integer 32 – 512 
'early_stopping' Categorical [True, False] 

Table 7. MLPC Search Space Perimeter 

4.2. Performance on the SMOTEENN-Balanced Dataset 
Models trained on the dataset balanced with the SMOTEENN technique demonstrated exceptional 
classification performance. Notably, ensemble-based methods yielded the most competitive results. 
Specifically, RF and XGB achieved near-perfect scores across all evaluation metrics. This highlights their 
robustness in mitigating class imbalance and their capacity for modeling complex decision boundaries.  

The detailed performance metrics following BO are presented in Table 8, with a corresponding graphical 
representation in Figure 3. These results underscore the superior performance of the ensemble models. XGB 
attained the highest scores across all metrics, with an accuracy, precision, recall, and F1-score of 99.811%. 
RF followed closely with highly comparable performance metrics. Both models achieved a near-perfect Area 
Under the Curve (AUC) of 99.999%, indicating exceptional discriminative capability. 
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Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) 
RF 99.795 99.795 99.795 99.795 99.999 

XGB 99.811 99.811 99.811 99.811 99.999 
KNN 93.923 93.943 93.923 93.901 99.773 
LR 78.047 83.261 78.047 76.071 99.117 

MLPC 95.815 95.961 95.815 95.808 99.817 

Table 8. The BO result for SMOTEENN 

 
Figure 3. The BO result for SMOTEENN 

BO identified the optimal configuration for RF as comprising 224 estimators with a maximum depth of 18. 
The use of the entropy criterion and max_features = 'log2' facilitated the development of diverse and 
minimally correlated trees, thereby enhancing the ensemble's robustness. Furthermore, setting 
min_samples_leaf = 3 and min_samples_split = 10 effectively mitigated overfitting by ensuring adequate 
sample representation in each terminal node and controlling the tree splitting process. This configuration 
enabled the RF model to achieve a weighted F1-score of 0.9977, reflecting strong predictive performance 
across all classes. 

For XGB, the optimal setup consisted of 224 estimators, a maximum depth of 25, and a learning rate of 
0.1357, achieving a balance between model complexity and convergence speed. Parameters such as 
colsample_bytree = 0.7224 and subsample = 0.8517 promoted ensemble diversity by limiting feature and 
sample usage per tree. The regularization terms reg_alpha = 0.7516 and reg_lambda = 3.2294 were 
instrumental in preventing overfitting by constraining model complexity. Additionally, gamma = 0.0524 and 
min_child_weight = 4.5367 regulated partitions to avoid excessive granularity. The scale_pos_weight = 
1.4732 parameter addressed any residual class imbalance. This comprehensive tuning resulted in a weighted 
F1-score of 0.9981, marginally surpassing RF and demonstrating its outstanding classification power. 

In contrast, the non-ensemble models demonstrated lower, albeit still effective, performance. The KNN 
classifier achieved a respectable F1-score of 93.901% and an AUC of 99.773%. LR yielded more moderate 
results, with an F1-score of 76.071% and an AUC of 99.117%, indicating reasonable but comparatively lower 
effectiveness. In summary, the findings confirm that for IoMT intrusion detection, ensemble methods, 
particularly XGB and RF, when coupled with the SMOTEENN balancing technique, deliver the most accurate, 
robust, and generalizable classification performance. 
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4.3. Performance on the SMOTETomek-Balanced Dataset 
Models trained on the dataset balanced using the SMOTETomek algorithm demonstrated consistently high 
classification performance. The results affirmed the superiority of ensemble-based approaches, which 
delivered the most competitive outcomes. Both RF and XGB achieved near-perfect scores across all evaluation 
metrics, validating their robustness in handling class imbalance and their capability to model intricate 
decision boundaries. 

The detailed outcomes of the BO for hyperparameter tuning are cataloged in Table 9 and visualized in 
Figure 4. Consistent with the findings from the SMOTEENN dataset, ensemble methods emerged as the top 
performers. XGB was the leading model, achieving the highest weighted F1-score of 98.892%, marginally 
surpassing RF, which secured an F1-score of 98.752%. Both models also attained exceptional AUC values, 
indicating robust discriminative power. 

 
Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) AUC (%) 

RF 98.754 98.784 98.754 98.752 99.975 
XGB 98.897 98.899 98.897 98.892 99.983 
KNN 91.959 91.943 91.959 91.901 99.647 
LR 76.719 81.287 76.719 74.773 98.861 

MLPC 94.212 94.985 94.212 94.057 99.694 

Table 9. The BO result for SMOTETomek 

 
Figure 4. The BO result for SMOTETomek 

BO identified the optimal configuration for RF vs 224 estimators with a maximum depth of 18. The selection 
of the entropy criterion alongside max_features = 'log2' was instrumental in fostering the growth of diverse 
and minimally correlated trees, which enhanced the overall robustness of the ensemble. To prevent 
overfitting, min_samples_leaf = 3 and min_samples_split = 10 were implemented, ensuring that each terminal 
node was supported by a sufficient number of samples while controlling the frequency of splits. This carefully 
tuned configuration enabled RF to achieve strong predictive accuracy and balanced performance. 

For XGB, the optimal hyperparameter set included 224 estimators, a maximum depth of 25, and a 
learning rate of 0.1357, a combination designed to strike a balance between the model's predictive power and 
its convergence stability. Overfitting was further mitigated by setting colsample_bytree = 0.7224 and 
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subsample = 0.8517, which promoted ensemble diversity by restricting the proportion of features and 
samples used for each tree. The regularization terms (reg_alpha = 0.7516, reg_lambda = 3.2294) and split-
control parameters (gamma = 0.0524, min_child_weight = 4.5367) effectively constrained model 
complexity. Finally, scale_pos_weight = 1.4732 was applied to address any residual class imbalance. This 
optimized setup confirmed XGB’s potent and well-balanced classification capability. 

The other models also yielded noteworthy results. KNN and the MLPC delivered solid performance, with 
F1-scores of 91.901% and 94.057%, respectively. In contrast, LR showed comparatively lower predictive 
accuracy, suggesting a greater sensitivity to the data structure produced by the SMOTETomek process. In 
conclusion, these findings reinforce that for IoMT intrusion detection, ensemble methods—particularly XGB 
and RF —when paired with the SMOTETomek balancing technique, provide the most accurate, robust, and 
generalizable classification performance. 

4.4. Comparative Analysis of proposed techniques 
The integration of IG for feature selection and PCA for dimensionality reduction proved highly effective in 
refining the dataset. By prioritizing the most informative features and eliminating redundant or irrelevant 
attributes, this preprocessing strategy substantially reduced data complexity while preserving critical 
discriminative information. This step not only enhanced computational efficiency but also contributed to 
improving model generalization capability. In addition, the application of the SMOTEENN and SMOTETomek 
balancing methods successfully mitigated the issue of class distribution imbalance. These techniques ensured 
that the models remained unbiased toward majority classes, thereby improving their ability to accurately 
detect minority-class attack instances—a crucial requirement for intrusion detection in IoMT environments. 
As shown in Table 10, our proposed XGB model achieved an accuracy of 99.811% on the CIC-IoMT 2024 
dataset. This performance surpasses several benchmarks, including the RF model from Dadkhah et al. (73.3%) 
and the XGB model from Mohsin & Jony (99.20%). Notably, our model's accuracy is highly comparable to 
other state-of-the-art methods, such as those by Lucia Hernandez-Jaimes et al. (99.83%) and Ghourabi & 
Alkhalil (99.85%), validating the effectiveness of the optimized XGB pipeline proposed in this study. 

Model Accuracy 
RF with 19 Class (Dadkhah et al., 2024) 73.3% 

RF with 2 Class + RandomOverSampler (Abdiwi, 2024) 99.7% 
XGB with 19 Class (Mohsin & Jony, 2024) 99.20% 

XGB with 6 Class + SMOTE (Doménech et al., 2025) 99.83% 
XGB with 2 Class + Federated Learning + BO (Ghourabi & Alkhalil, 2025) 99.85% 
Proposed XGB with 19 Class + IG-PCA + SMOTEENN + BO (this paper) 99.811% 

Table 10. Comparison best accuracy result for CIC-IoMT 2024 dataset 

4.5. Organizational Implications and Practical Adoption  
Beyond its technical accuracy, the practical viability of the proposed IDS is determined by its integration 
within a healthcare organization's existing operational, governance, and strategic frameworks. This section 
discusses the key organizational implications for its successful adoption. 
 For adoption and implementation, the proposed framework is designed as a software-based solution that 
can be deployed on a dedicated server or virtual machine within the hospital’s data center. Integration into 
the existing infrastructure would involve configuring the system to monitor network traffic from core switches 
or gateways, a task manageable by the organization's network and cybersecurity teams. While a data scientist 
may be beneficial for initial model fine-tuning, the lightweight nature of the IG-PCA pipeline minimizes the 
need for specialized, high-cost hardware, making it accessible for institutions with limited resources. The 
primary requirement is a moderately provisioned server and collaboration between existing IT personnel for 
setup and maintenance, ensuring a low barrier to entry. 
 Effective governance is crucial for translating the system's alerts into actionable responses. Responsibility 
for the IDS would typically reside with the Information Security team, under the direct oversight of the Chief 
Information Security Officer (CISO). A clear incident response protocol must be established: upon detecting a 
potential threat, the IDS would generate an alert, ideally feeding into a central Security Information and Event 
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Management (SIEM) system (González-Granadillo et al., 2021). Tier-1 security analysts would then be 
responsible for initial validation. Confirmed critical threats would be escalated to a dedicated incident 
response team, with the CISO holding the authority to approve decisive actions, such as isolating compromised 
medical devices to contain the threat and protect the wider network. 
 The strategic benefits for the healthcare organization extend far beyond technical threat detection. By 
providing robust security, the IDS directly enhances patient trust in the hospital's digital services, which is 
critical for the adoption of telehealth and online patient portals. Furthermore, implementing such an advanced 
security measure helps the organization demonstrate due diligence and achieve compliance with stringent 
data protection regulations and cybersecurity accreditation standards. Proactively identifying threats reduces 
the risk of operational downtime in critical clinical systems, preventing significant financial losses and 
ensuring continuity of patient care. Ultimately, the system serves as a strategic asset, providing the CISO with 
valuable threat intelligence to inform risk management policies and justify security investments (Ramezan, 
2025). 

5. Conclusion 
This study proposed and validated a comprehensive framework for intrusion detection tailored to the unique 
challenges of the IoMT, including high-dimensional feature spaces and pronounced class imbalance. The 
methodology integrated a multi-stage data preprocessing pipeline consisting of IG for feature selection, PCA 
for dimensionality reduction, and hybrid resampling through SMOTEENN and SMOTETomek to achieve data 
balance. This approach effectively enhanced data quality and improved overall model robustness. 
Furthermore, BO was systematically employed to fine-tune the hyperparameters of five classifiers—RF, KNN, 
XGB, LR, and MLPC—resulting in consistent performance gains across all models. Notably, the XGB classifier 
combined with the SMOTEENN technique achieved a peak accuracy of 99.811% on the CIC-IoMT2024 
dataset. This performance is highly competitive with state-of-the-art approaches and surpasses several existing 
benchmarks. Although the proposed XGB model did not achieve the absolute highest accuracy, the difference 
(0.039%) is marginal and statistically insignificant given the 19-class complexity of the dataset. Importantly, 
the proposed framework achieved this result with lower computational overhead and improved class balance, 
underscoring its scalability and deployment potential in real-world IoMT intrusion detection systems. 

Overall, the findings demonstrate the efficacy and practical viability of the proposed framework in 
developing accurate, efficient, and scalable intrusion detection systems suitable for resource-constrained IoMT 
environments. This research contributes a practical tool that enhances the cybersecurity posture of healthcare 
institutions. By enabling reliable and efficient threat detection, the framework strengthens operational 
resilience, protects critical medical data, and supports governance structures essential for secure digital 
transformation in the healthcare sector. Future work will focus on two key directions. First, the scalability 
and robustness of the framework will be validated using larger and more heterogeneous IoMT datasets. 
Second, lightweight deep learning architectures will be explored to further reduce detection latency while 
adhering to the strict energy efficiency and performance constraints inherent in IoMT devices. 
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