

75

FABASOFT BEST PRACTICES AND TEST METRICS MODEL
Nadica Hrgarek

Fabasoft R&D Software GmbH & Co KG, Linz, Austria

Nadica.Hrgarek@fabasoft.com

Abstract: Software companies have to face serious problems about how to measure the
progress of test activities and quality of software products in order to estimate test

completion criteria, and if the shipment milestone will be reached on time. Measurement is

a key activity in testing life cycle and requires established, managed and well documented

test process, defined software quality attributes, quantitative measures, and using of test

management and bug tracking tools. Test metrics are a subset of software metrics (product
metrics, process metrics) and enable the measurement and quality improvement of test

process and/or software product. The goal of this paper is to briefly present Fabasoft best

practices and lessons learned during functional and system testing of big complex software

products, and to describe a simple test metrics model applied to the software test process

with the purpose to better control software projects, measure and increase software quality.

Keywords: software metrics, software quality, software test, test metrics.

1. INTRODUCTION

People are not perfect, they make mistakes during development in design and code,

and software is developed by people. Software defects (bugs, failures) play more and more

important role in our everyday life, and cost a lot of money (e.g. Ariane 5 explosion; loss of

Mars climate orbiter).

Development organizations who deliver software based systems have to face serious

problems about how to control the progress of test activities and quality of software

products throughout the project life cycle in order to estimate test completion criteria, and if

the shipment milestone will be reached on time. Software is becoming more complex,

bigger and unsafe in safety-critical systems (e.g. computer controlled radiation therapy

machine Therac-25 overdosed six people; the US Vicennes shot down the Iranian Airbus

320, which was mistaken for an F-14 and 290 human lives lost; Patriot missile hit an

American military barracks). So in summary, managing software quality is necessary to

deliver high quality, and trustworthy (reliable, secure and safe) software products.

Measurement is a key activity in testing life cycle and requires established, managed

and well documented test process, defined software quality attributes, quantitative

measures, and using of test management and bug tracking tools.

Testing is the process of executing a program or system with the intent of finding

errors. [7, p. 4] The goal of testing activities is to reduce risk and uncover as many faults

(bugs, defects) in software as possible. Of the one part testing cannot guarantee the

correctness of software but of the other part can be effectively used to find defects.

UDK 004.412

Survey paper

N. Hrgarek. Fabasoft best practices and test metrics model

76

Many software organizations spend in average 30 to 50 percent of their software

budget on testing, but many software projects fail or delivered software is frequently

unreliable because of quality problems. Good testing should uncover serious quality

problems so called showstoppers. Defects detected too late in software life cycle lead to

large amounts of additional defect removal costs.

Software testing is not only critical factor to improve software quality, it is also very

important to improve software (development) process itself. This paper presents the best

software quality assurance practices and simple test metrics model that contribute to

improved software testing process and software quality. The list of the Fabasoft software

engineering and quality assurance best practices, and test metrics is primarily focused on

software testing process.

2. FABASOFT QUALITY ASSURANCE BEST PRACTICES

Fabasoft is a leading manufacturer of standard software for electronic government and

enterprise content and records management. Fabasoft target customer segment is large-scale

service organizations both in the public sector (Fabasoft eGov-Suite
1
) and in the private

sector (Fabasoft eCRM-Suite
2
).

The importance of quality assurance and its impact on software at Fabasoft is not

underestimated. Quality assurance is an integral part of the software development process

and maintenance. Software quality must be built in from the beginning and every Fabasoft

software professional/company employee is responsible to ensure that his or her work is

correct. Software quality engineers are integrated in the testing team and must ensure that

software developers are doing high quality work. Finding undiscovered defects in the

development stage results in easier correction, improves customer satisfaction, and is more

cost-effective. In addition, software quality assurance must be applied to the software

process itself (compliance with ISO 9001:2000 standard).

In order to ensure the delivery of high quality software products, Fabasoft ensures

software quality assurance during the whole software development life cycle, and uses the

following software engineering and quality improvement best practices.

2.1. USE CASE SPECIFICATIONS

Fabasoft software development process is based on the new German model V-Modell

XT (extreme tailoring) for planning and realizing (software) projects, unified process (UP)

model, and advanced use case modelling concept. Use cases are used as basis for user

documentation, and deriving test cases in test plans. They help identify features to be tested

and help design the required test cases.

Use case specifications are very helpful for software quality engineers because they

provide necessary information about input data and expected output results. Without good

written specifications software quality engineer can not effective perform tests.

1 Integrated and public sector certified product for document management, workflow, file and process

2 Integrated customer relations management, and enterprise content management for private service

organizations.

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

77

2.2. CODE REVIEWS

A source code (peer) review is a part of static testing and provides security, reliability

and functionality wins. The purpose of code reviews is to detect product defects before they

are passed on to another software development phase or released to the customer.

In order to provide the best value for improving software quality, code reviews are

usually performed by Fabasoft skilled development project managers.

Number of defects detected by code reviews is proposed measure for counting the

defects in the source code program. To determine code review process effectiveness, for

each code review is recommended to collect and track necessary effort which contains the

total hours spent on various part of the code review event (preparation, meeting, rework,

etc.).

Software reviews and audits are detailed described in IEEE standard 1028:1997 (for

details see [2]).

2.3. UNIT TESTING

Unit or component testing is the testing of individual software components. [3] Unit

testing tests units (e.g. objects, classes, methods, functions, procedures) in isolation (ideally

no interaction with other components).

Fabasoft software engineers are primary responsible to specify and perform

(automated) unit tests to make sure most faults are found during unit testing. To perform

unit testing, they use Rational Purify and Rational Quantify tool.

For more information about software unit testing see IEEE standard 1008:1987.

2.4. FUNCTIONAL AND NON-FUNCTIONAL TESTING

Functional testing is based on test inputs which are generated using program

specifications. It tests how well software meets the functionality requirements. To achieve

the best testing results is necessary to perform as functional as non-functional tests.

Functional tests are performed manually and automated as far as possible (Fabasoft UCQ).

Non-functional tests are carried out manually and automated in Abilities Lab

department. Non-functional testing includes: interface test, setup test, stress test,

documentation test, configuration test, performance test, and load test.

2.5. MULTI-PLATFORM TESTING

Fabasoft software products and the Fabasoft reference architecture are available for

both Microsoft Windows and Linux environments to provide optimal integration into

existing infrastructures.

Fabasoft software products are tested and available with the same high quality on both

operating systems platforms in combination with different web browsers and groupware.

2.6. DAILY AND WEEKLY BUILDS

Daily builds is a well known software engineering best practice. Every build contains

software release with changes that are being promoted into the change control system.

The advantage of using daily builds is that the newer releases of software are every day

available to developers and testers. Regression tests after building discover integration

problems where a change breaks the build.

N. Hrgarek. Fabasoft best practices and test metrics model

78

2.7. AUTOMATED TEST EXECUTION WITH FABASOFT UCQ TOOL

Fabasoft UCQ (Use Case Quality Automation) tool supports use case based and

automated software quality assurance for Fabasoft products and project solutions. The tool

employs predefined use cases for the automated testing of system environments during

system modifications or version upgrades. The recorded use cases are automatically

executed in order to verify whether the installation was properly performed. Any errors are

logged, displayed, and remedied in a timely and targeted fashion. Use of Fabasoft UCQ is

especially helpful for regression testing.

2.8. RISK BASED TESTING WITH SMOKE TESTS

Smoke tests are coarse form of regression test to determine that the software product

Smoke test is usually applied to daily build to see if there is any

of new errors.

To perform smoke testing Fabasoft has implemented priority for each test case in test

plan. Test cases with the highest priority and risk are always first performed as smoke tests

to detect major problems of main functionalities in product. The supported functionalities

2.9. DEFECT TRACKING AND RESOURCE MANAGEMENT

Testing is a group of activities that can be planned in advance, managed and performed

systematically. Most of the defects are being detected during different phases of testing.

Resource and defect management helps to understand the dynamics of software

development and test process. It is necessary to measure and predict product quality, to

predict shipment milestone, to estimate test completion criteria, etc. Defect data can be used

in project tracking and analysis and help manager to evaluate project progress and improve

project planning.

Every defect (quality problem, incident, deviation, issue) and requirement in Fabasoft

software products and/or projects is documented / recorded as implementation order (Figure

3) by ID, priority and severity (0 critical with the highest priority, A major with high

priority, B, C, D minor with the lowest priority), and problem type (e.g. total failure,

defect, loss of data, security, performance, project management, documentation, new

functionality, etc.).

Quality problems and requirements are reported back to the software engineer,

describing the wrong and expected behaviour.

Fabasoft internal quality assurance and product planning tool is knowledge base for

requirements and quality problems, and also has the ability to visualize test milestones and

3. SOFTWARE METRICS

Much attention has been focused recently on quality assurance as well as software

measurement. Software measurement is a continuous process that has to be integrated into

the software development process. This process supports the management goals to have

predictable outputs, assess project status, reduce risks, early detect problem areas, increase

product/process quality, and customer satisfaction.

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

79

Kan [5] classifies metrics into the following three categories: product metrics, process

metrics, and project metrics (see Figure 1).

Software

metrics

Process metrics

Product metrics Project metrics

Figure 1. Software metrics classification

Software quality metrics are a subset of software metrics that focus on quality aspects

of the product, process, and project. [5, p. 85]

Software quality metric is a function whose inputs are software data and whose output

is a single numerical value that can be interpreted as the degree to which software possesses

a given attribute that affects its quality. [4, p. 3]

Many software metrics have been defined

expected (estimated) number of failures, mean time to failure (MTTF), defect removal

efficiency (DRE), memory size, defect severity, rework effort, comment percentage (CP),

Chidamber & Kemerer object oriented metrics suite [1], MOOD metrics set, etc.

4. TEST METRICS MODEL

The objective of testing is to have the highest likelihood of finding the most errors with

a minimum amount of timing and effort.

In order to manage and control the software testing process, it has to be measured.

Similarly to Kan [5], Konda [6, p. 36] classifies test metrics into three categories: product,

project and process. Test metrics are a subset of software metrics (product metrics, process

metrics) and can be used to measure and improve quality of test process and/or software

product.

Collecting test metrics is not easy activity, but is a necessary aspect of software testing

process. Currently more than 10 metrics are being collected in this study including rework

effort, actual defect counts and measures of test coverage. The collected test metrics are

used as a basis for software quality measurement and reporting.

This paper intends to propose a simple test metrics model, experimented in several

completed Fabasoft quality assurance projects.

Test metrics modl represents an optimum set of black-box test metrics at the system

test level to improve the software quality. In the following some of the best known test

metrics are described.

N. Hrgarek. Fabasoft best practices and test metrics model

80

4.1. TEST CASES COVERAGE (TCC)

The basic component of testing is a test case which describes inputs, expected and

actual result. Black-box test cases set is organized in Fabasoft internal quality assurance

tool into test plan.

Test cases coverage is a simple derived metric for measuring test coverage which

shows the relation between executed test cases and total number of specified test cases.

TCC measure ensures that all test cases have been executed at least once.

A very important question in software testing is how do we know when testing is

complete. TCC provides the information about the testing activities progress and test

completion criteria, and is used to assess the scope of the testing process.

casestesttotal

executedcasestest
TCC (1)

4.2. NUMBER OF TEST CASES FAILED (TCF) AND PASSED (TCP)

If the actual result after test case execution varies from the expected result, then a

quality problem has been detected. In one test case zero, one or more quality problems can

be found.

Every test case that contains one or more quality problems / requirements is tracked as

failed test case. The more test cases that fail, the more effort required to correct the quality

problem.

TCF = test cases executed passed test cases (2)

TCP = test cases executed test cases failed (3)

4.3. NUMBER OF TEST CASES CLARIFIED (CTC)

This is a measure of the total number of test cases that need to be clarified. The more test

cases that need to be clarified, the more wasted test iterations occurs.

4.4. NUMBER OF TEST CASES RUNS (TCR)

For every test case in test plan is possible to get the number of test cases runs. This

measure is especially important for regression testing.

4.5. NUMBER OF DETECTED DEFECTS (NDD)

One of the most popular and very used test metrics is the number of detected defects

(faults, quality problems) in software per reporting time period.

Quality problems indicate errors or defects in the existing functionalities of the Fabasoft

software products i.e. projects. Quality problems are recorded in Fabasoft internal quality

assurance tool as implementation requests (Figure 2).

Number of critical problems so called showstoppers is useful to know before and after

the shipment. All known showstoppers must be repaired before the delivery.

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

81

4.6. DEFECT DENSITY (DD)

Defect density shows relationship between number of discovered defects and product

size (e.g. KLOC). Large number of reported defects (DD>25%) can be result of

requirements not being met, inadequate testing, or poor code quality.

In our test metrics model we use DD as relationship between TCF and executed test

cases.

sizeproduct

defectsofnumber
DD (4)

executedcasestest

TCF
DD (5)

4.7. NUMBER OF IMPLEMENTATION REQUESTS (NIR)

All (user) requirements, problems and quality problems are collated in Fabasoft internal

quality assurance and product planning system as new implementation requests (Figure 2)

with an implementation status (new, closed, solved, open, rejected, etc.).

Implementation request elements are: implementation status, project, version, build,

summary, problem description, attachment, problem type, priority in project, to be version,

to be milestone, use cases, etc.

Figure 2. Sample implementation request

N. Hrgarek. Fabasoft best practices and test metrics model

82

4.8. NUMBER OF IMPLEMENTATION ORDERS (NIO)

Implementation order (Figure 3) is a track of quality problem or requirement. The head

of the product development project assesses the quality problems or requirements described

in implementation request and create implementation order.

Implem -

engineer (developer), software quality engineer, and manager, (planned) fixing version,

implementation status, implementation request (1:n), component folder, fixing build,

summary, problem type, problem change log, open date, close date, etc.

Figure 3. Sample implementation order

4.9. IMPLEMENTATION REQUESTS DISTRIBUTION

To easy identify quality problems using tables and charts (e.g. histograms, pie charts),

Fabasoft uses the implementation requests distribution by problem type (see Figure 8),

component, product planning folder, and implementation status (see Figure 7).

4.10. NUMBER OF REMAINED DEFECTS IN PRODUCTION VERSION (DIP)

Only exhaustive testing can show a program is free from defects. Even simple programs

demonstrate that exhaustive testing is impossible in practice. Exhaustive testing to find

every fault in software system is impossible because of too many possible paths, inputs and

user environments. Bugs will be found by customers after the product is released.

Number of unfixed defects released to production is a metric of production release

quality. DIP measure is the number known defects after shipment and will be corrected in a

new release.

DIP = total number of release defects number of corrected release

defects (6)

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

83

4.11. REWORK EFFORT (RE)

Rework effort is recorded for every implementation order (1 hour is equivalent to 0,125)

as the required time to solve and close a quality problem / requirement.

This metric provide information about passed as well as to predict future rework effort

to fix a quality problem or to implement a (user) requirement.

4.12. TOTAL STAFF LEVEL

One simple measure that can be collected in software projects is staff (personnel) level,

which counts the total number of software personnel available for a project.

 The results can give software project managers a coarse indication of whether they will

have enough personnel for a project or whether they will have to start looking for new team

members.

5. TEST METRICS MODEL CASE STUDY

Before starting to write this paper, an agreement is made with the company to outline

the boundaries of the study. It is decided that the actual data will not been shown in tables

and presented on the charts. Before drawing charts, the data will be multiplied by a constant

factor.

The focus of this paper is on the development and testing of the Fabasoft Folio

components. These components were developed by Fabasoft for the ELISA project. Many

test scenarios and test cases were executed during multiple test activities by two software

quality engineers. Metrics based on test data collected and/or calculated from test plan (see

Figure 4) which contains test cases, implementation requests and orders at the system test

level are summarized in Table 1. A metrics collection program was initiated with a small

set of test metrics. Test data were collected from two test plans of a real-life Fabasoft

software project, build 27 and 29. The reason for doing this is to measure the improvements

in the test process and software project.

Analyzing and using measurement test data (see Table 1) can allow managers to have

objective information which helps them to make the decisions necessary to run their

projects. Collecting this low level, simple test data also helps them by providing the basis

for possibly improved estimates for future projects. It also allows project/product managers

to use it in a variety of different analyses. Test metrics help test managers to get insight in

running test projects.

N. Hrgarek. Fabasoft best practices and test metrics model

84

Figure 4. Sample test plan for an Fabasoft project

Table 1. Test data

Project: ELISA

Version: 7.0.3

Client: .NET

Operation system: Windows XP Professional SP2

Web browser: Microsoft Internet Explorer 6.0 SP2

Test date 13.11.2006 17.11.2006

Test build ID 27 29

Total test cases defined 46 46

Test cases executed 44 41

Test cases not executed 2 5

Test cases clarified (CTC) 2 2

Test cases coverage (TCC) (%) 95,65 89,13

Test cases passed (TCP) 21 30

Test cases failed (TCF) 23 11

Defect density (DD) (%) 52,27 26,83

Total implementation requests (NIR) 32 14

Total implementation orders (NIO) 19 3

Total defects released to production

(DIP)

6 9

Number of software quality engineers

(testers)

2 1

Number of software developers 1 1

Number of project/product managers 2 2

Total staff level 5 4

Total test cases executed by tester A 17 41

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

85

Total test cases executed by tester B 27 0

Implementation requests by implementation status

New 6 9

Closed 19 0

Solved 0 0

Open 0 0

Rejected 7 6

Unclear 0 0

Delayed 0 0

Pending 0 0

Implementation requests by problem type

Failure 19 7

New functionality 2 3

Defect 3 1

Optical / usage 2 1

Documentation 0 0

Crytical with message 5 0

Total failure 1 1

Specification 0 1

Loss of data 0 0

Security 0 0

Performance 0 0

Project management 0 0

Hotfix request 0 0

Implementation requests by component

PS-Folio-AT 20 1

Web-FSCUIWIN:FSCUIWIN 2 2

Implementation requests by product planning folder

PS-Folio-Projekte 21 1

Fabasoft Folio 4 6

Fabasoft Components Clients 7 7

6. RESULTS

The results of the evaluation of the two test executions for a software project were

compared for this case study. Two comparisons were made.

The collected data in Table 1 has been graphically shown on pie charts and histograms

in Microsoft Excel (see Figure 5, 6, 7 and 8) and analyzed with responsible project and

product manager.

N. Hrgarek. Fabasoft best practices and test metrics model

86

Test cases coverage (TCC) - 13.11.2006

96%

4%

Test cases executed

Test cases not executed

Test cases coverage (TCC) - 17.11.2006

89%

11%

Test cases executed

Test cases not executed

Figure 5. Test cases coverage

Defect density (DD) - 13.11.2006

48%

52%

Test cases passed (TCP)

Test cases failed (TCF)

Defect density (DD) - 17.11.2006

73%

27%

Test cases passed (TCP)

Test cases failed (TCF)

Figure 6. Defect density

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

87

Implementation requests distribution by

implementation status - 13.11.2006

0

5

10

15

20

Closed Rejected New Solved Open Unclear Delayed Pending

Implementation requests distribution by

implementation status - 17.11.2006

0

2

4

6

8

10

New Rejected Closed Solved Open Unclear Delayed Pending

Figure 7. Implementation requests distribution by implementation status

Implementation requests distribution by problem type -

13.11.2006

0
2
4
6
8

10
12
14
16
18
20

Failu
re

C
ry

tic
al w

ith
 m

ess
ag

e

D
ef

ect

N
ew

 fu
nc

tio
nal

ity

O
pt

ic
al

 /
usa

ge

Tota
l f

ai
lu

re

D
oc

um
ent

atio
n

S
pe

ci
fic

atio
n

Lo
ss

 o
f d

at
a

S
ec

ur
ity

P
er

fo
rm

anc
e

P
ro

je
ct

 m
ana

gem
ent

H
ot

fix
 r
eq

ue
st

Implementation requests distribution by problem type -

17.11.2006

0
1
2
3
4
5
6
7
8

F
a
ilu

re

N
e
w

fu
n
c
ti
o
n
a
lit

y

D
e
fe

c
t

O
p
ti
c
a
l
/

u
s
a
g
e

T
o
ta

l
fa

ilu
re

S
p
e
c
if
ic

a
ti
o
n

D
o
c
u
m

e
n
ta

ti
o
n

C
ry

ti
c
a
l
w

it
h

m
e
s
s
a
g
e

L
o
s
s
 o

f
d
a
ta

S
e
c
u
ri
ty

P
e
rf

o
rm

a
n
c
e

P
ro

je
c
t

m
a
n
a
g
e
m

e
n
t

H
o
tf

ix
 r

e
q
u
e
s
t

Figure 8. Implementation requests distribution by problem type

N. Hrgarek. Fabasoft best practices and test metrics model

88

Pie charts which graphically represent test cases coverage are shown in Figure 5. In this

example, TCC is not equal to 100% because some test cases were not executed and/or need

to be clarified first. TCC provides the feedback to the test manager about the current state

of testing progress.

Defect density is provided in Figure 6. In this example, DD shows that circa 52% test

cases fails in the first test run and contains major or minor defects shown in Fig. 8. The

second test execution shows significant defect density decrease.

Figure 7 shows the implementation requests distribution by implementation status. At

the last test execution a lot of implementation requests have

assessed by the responsible project/product manager. Many implementation requests with

 increase the number of defects released to production

(DIP).

The test manager can use an example chart as shown in Figure 8. Presented histograms

show the relation between the number of implementation requests and the problem type.

The most detected defects are categorized as failure.

7. CONCLUSION

Generally, software projects still fail to be delivered on time, within budget, and with

desired quality. A key point for reducing risks and quality improvement is to measure the

quality of the product being developed, and become aware of potential problems.

Cost of defect correction is higher with time and most expensive if defects are detected

by customers in production environments because end-users in their own right expect error

free products. Test metrics can provide valuable information that is used in risk

management, defect prevention and quality improvement during software development.

This paper used a simple test metrics model to show how test/project/product managers

can use measures and metrics to better control software projects, identify risks, measure and

increase software quality. This model is practical, may be applied to software projects, and

help managers to have visibility into and control over their overall projects in addition to

identifying and monitoring their risk areas.

At the beginning of software measurement implementation the best advice is to choose

relevant, simple, and small set of test metrics that is appropriate for project, provide value

to the organization and do not require a lot of effort to collect and analyze. Analyzing and

interpreting the information produced by the test metrics is essential to making the right

decisions. In the future test metrics model have to be extended with a new effective metrics

to build an optimum test metrics model that provide useful information and helps managers

for daily, weekly or monthly decision making.

8. ACKNOWLEDGEMENTS

This paper was produced as part of the Fabasoft quality assurance program. I am very

grateful to Christian Kastner and Klaus Katterbauer who helped with their suggestions

during the work on this paper.

Nadica Hrgarek is a member of the Research & Development eGov-Suite department at

Fabasoft R&D Software GmbH & Co KG in Linz, Austria. She is a software quality

engineer on Fabasoft eGov-Suite projects to ensure their success in using quality assurance

methods, metrics and techniques. Her current research interests are statistical process

control methods in software development process, software quality assurance, software

metrics, and test management.

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

89

Hrgarek received a BS in information systems and a MS in information science from

the University of Zagreb, Croatia. She is a member of the ASQF society.

REFERENCES

[1] Chidamber, S. R.; Kemerer, C. F. A Metrics Suite for Object Oriented Design, IEEE

Transactions on Software Engineering, Vol. 20, No. 6, 1994, pp. 476-493.

[2] IEEE Computer Society. IEEE Std. 1028:1997 IEEE Standard for Software Reviews,

New York, 1998.

[3] IEEE Computer Society. IEEE Std. 610.12:1990 IEEE Standard Glossary of Software

Engineering Terminology, New York, 1990.

[4] IEEE Computer Society. IEEE Std. 1061:1998 IEEE Standard for Software Quality

Metrics Methodology, New York, 1998.

[5] Kan, S. H. Metrics and Models in Software Quality Engineering, Second Edition,

Addison-Wesley, Boston, 2004.

[6] Konda, K. R. Measuring Defect Removal Accurately, Software Test & Performance,

Vol. 2, No. 6, July, 2005, pp. 35-39.

[7] Myers, G. J. Methodisches Testen von Programmen, Oldenbourg Wissenschaftsverlag

, 2001.

Received: 11 January 2007

Accepted: 27 November 2007

