

187

RESOLVING DATABASE CONSTRAINT COLLISIONS USING

IIS*CASE TOOL

1
,

 2
,

3
,

4
Pavle Mogin

1,2
 University of Novi Sad, Faculty of Technical Sciences, Serbia

{ivan, sdristic}@uns.ns.ac.yu
3
University of Montenegro, Faculty of Science, Montenegro

jelenap@cg.yu
4
Victoria University of Wellington, School of Mathematical and Computing Sciences,

 New Zealand

 pmogin@mcs.vuw.ac.nz

Abstract: Integrated Information Systems*Case (IIS*Case) R.6.21 is a CASE tool that we
developed to support automated database (db) schema design, based on a methodology of

gradual integration of independently designed subschemas into a database schema. It

provides complete intelligent support for developing db schemas and enables designers to

work together and cooperate reaching the most appropriate solutions.

The process of independent design of subschemas may lead to collisions in expressing

the real world constraints and business rules. IIS*Case uses specialized algorithms for
checking the consistency of constraints embedded in the database schema and the

subschemas. IIS*Case supports designers in reviewing and validating results obtained after

each step of the design process. The paper outlines the process of resolving collisions. A

case study based on an imaginary production system is used to illustrate the application of

IIS*Case. Different outcomes and their consequences are presented.

Keywords: Database Schema Design and Integration, CASE tool, Constraint Collisions,

IIS*Case.

1. INTRODUCTION

There are two common basic approaches to the process of database (db) schema

design: (a) the direct approach, and (b) the approach of a gradual integration of external

schemas [13].

In the direct approach, user requirements are processed all-at-once. However, only in

the most trivial cases, user requirements allow the design to proceed in this manner. It

follows from the fact that a number and the complexity of user requirements most often

overcome a perception power of an average designer. Besides, user requirements are rarely

stable enough so as to be "frozen" at the very beginning of the design process. Therefore,

we conclude that this approach may be appropriate only in the case of the design of small

db schemas.

UDK 004.651

Original scientific paper

S.

188

Performing the design of complex db schemas, as well as modelling complex systems

in common, requires more knowledge and skills than any single person can have. Usually,

the knowledge relevant to the application domain is often distributed among many

stakeholders with different backgrounds in their education and experience, and having

different view perspectives concerning the system being designed. On the other hand, the

design of complex db schemas, so as to be successful, requires reaching a shared

understanding of different view perspectives, concepts and knowledge from the application

domain. The approach of a gradual integration of external schemas may be a rational

methodological choice to overcome the problems of the design of complex db schemas.

Integrated Information Systems * Case (IIS*Case) R.6.21 is a CASE tool, relying on

the approach of a gradual integration of external schemas. It is developed to support an

automated database (db) schema design, based on the concepts end-users are familiar with.

It is based on a methodology of gradual integration of independently designed subschemas

into a db schema ([13], [15], [16], [11]). IIS*Case is designed to provide complete support

for developing db schemas and to give an intelligent support during that process. It enables

designers to work together and cooperate reaching the most appropriate solutions.

The process of independent design of subschemas may lead to collisions in expressing the

real world constraints and business rules. If collisions exist, at least one subschema is

formally not consistent with the db schema. Programs made over an inconsistent subschema

do not guarantee safe database updates. IIS*Case uses specialized algorithms for checking

the consistency of constraints embedded in the database schema and the subschemas. The

nature of the most of the collisions is such that designers alone have to resolve them, at the

conceptual level, but we believe that IIS*Case may considerably improve the process of

their resolving.

The paper illustrates the application of IIS*Case in the process of resolving constraint

collisions, for a selected case study. The case study represents a simplified, imaginary

production system. We discuss in the paper some alternative designer's decisions and

analyze their possible consequences. Not all of the alternatives are always applicable, and

we highlight such particular cases in the paper.

Our approach is based on the concept of the form type ([8], [15], [11]). Unlike some

other similar approaches ([6], [3]), we do not use the Entity-Relationship (ER) data model

for conceptual modelling. Instead, we focus on straightforward generating relational db

schemas using form type specifications. Although the approach is similar to the one

presented in [1], we have not found references covering all the aspects of our approach. A

model-driven tool for agile software development DeKlarit
TM

, which is presented in [1],

also utilizes the synthesis algorithm for relational db schema design. Besides many

similarities between the approach of DeKlarit and our approach in IIS*Case, there are also

significant differences that are discussed in [11]. Collaboration database design techniques

presented in [7] use the concept that is very similar to our concept of the form type.

However, the form types in IIS*Case provide more information about various types of

relational db schema constraints and they carry additional information concerning the

embedded functionality of future transaction programs made over such form types. As the

main differences between our approach and the other ones we recognize the following ones:

(i) IIS*Case generates not only relation scheme keys and basic referential integrity

constraints, but also uniqueness constraints and other interrelation constraints; (ii) IIS*Case

provides algorithms for integrating independently designed subschemas into a unified db

schema; (iii) Unified db schema and subschemas are aimed not only for queries, but also

for safe updates that guarantee database consistency. A more detailed discussion of related

works may be found in [11].

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

189

Apart from Introduction and Conclusion, the paper consists of three sections. In

Section 2 we present a survey of the approach. Section 3 is devoted to the constraint

collisions. Section 4 presents a case study, and illustrates the application of IIS*Case in

detecting and resolving collisions. We particularly cover resolving collisions of the key,

uniqueness, null value, and referential integrity constraints.

2. AN OUTLINE OF THE APPROACH

Generally, design of a complex db schema is based on a gradual integration of external

schemas. An external schema is a structure that, at the conceptual level, formally specifies a

user view on a db schema. The first step of a db schema design process is to produce a

separate external schema for each group of similar end users business tasks. Each transa-

ction program that supports a user requirement is based on an external schema, which is

associated to it.

A db schema design in the IIS*Case environment is organized by decomposing the

whole project into application systems. An application system is a specification of a

subsystem of a future information system. The set of all application systems of an

information system is organized as a tree structure. It is the application system tree of the

information system. Thus, each application system may include one or more child

application systems (application subsystems). Fig. 1 depicts two different application

system trees in IIS*Case: Factory and Faculty Organization. Application system

Administration has three application subsystems: Personnel, Working_Unit and

Working_Orders.

External schemas in IIS*Case are expressed by sets of form types. A form type

generalizes a document type, i.e. a screen or report form that users utilize to communicate

with an information system [11]. Each form type is designed in the context of an

application system. Therefore, a set of form types is a part of an application system, and

represents an input specification for the process of the db schema design.

Fig. 2 depicts steps of the db schema design process in IIS*Case. Texts written in italic

style denote the outputs of the preceding steps. Conceptual modelling is performed by

creating sets of form types. For each application subsystem, a set of form types is created.

After their creation, external schemas should be integrated into a conceptual db

schema. In contrast to other (conceptual) data models, relational data model offers much

wider possibilities to formalize and automate the process of db schema integration [18].

Therefore, db schema integration in IIS*Case is done at the implementation level, where a

db schema is expressed by the relational data model. A db schema is obtained by a gradual

integration of subschemas. A subschema is obtained by expressing an external schema

using the concepts of the relational data model and by applying the synthesis algorithm

[13], [1]. A formal specification of a subschema may be found in [10]. Step 2 generates a

subschema for each directly subordinated application subsystem of the selected application

system. Step 3 generates a relational db schema for the selected application system. It is

called a potential database schema.

S.

190

Figure 1. Application system trees in IIS*Case

The process of independent design of external schemas may lead to collisions in

expressing the real system constraints. If such collisions exist, at least one subschema is

inconsistent with the potential database schema. The programs made over inconsistent

subschemas do not guarantee safe database updates. (The problem of safe database updates

is discussed in [17].) Therefore, the appropriate procedures for resolving collisions, which

arise as a result of independent modelling of subschemas, must be applied. The process of

detecting and resolving constraint collisions is called the consolidation of a db schema and

its subschemas. Shaded rectangles in Fig. 2 represent steps of the consolidation process.

Db schema design is an iterative process, ending when all subschemas are consistent

with a potential db schema. The potential db schema becomes a formal specification of an

implementation db schema (Step 6).

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

191

Figure 2. Steps of the db schema design process

IIS*Case supports a designer in reviewing and validating results obtained after each

step of the design process. For example, the designer may review generated relation

schemes and constraints, and check the compatibility with the subschemas. If the designer

is not satisfied with generated results, or there are some incompatibilities, he or she can go

one or more steps back, make changes in form types and repeat the process.

A more detailed explanation of the db design process in IIS*Case may be found in

[11].

3. CONSTRAINT COLLISIONS

Our approach to the integration is based on detecting and resolving constraint

collisions that may arise among a potential db schema and subschemas of an application

system. In this section the principles of the process of resolving constraint collisions are

presented.

Let Pk be the subschema from one of the application subsystems of the selected

application system. In step 3 of the db design process, a potential database schema for the

application system is generated.

A db schema constraint is said to be relevant constraint for subschema Pk, if the operation

that might violate it, is allowed in Pk. The operations that might violate a constraint are

called critical operations.

A database schema constraint is said to be embedded into subschema Pk if it is a logical

consequence of the set of subschema constraints.

A constraint that is relevant for a subschema Pk may be embedded, or not embedded

into Pk. A constraint that is relevant for Pk but not embedded into it, may be:

 Includible, if it can be expressed using the existing concepts and structure of the

subschema Pk; or

 Extending, otherwise.

S.

192

In order to embed an extending constraint into a subschema Pk, we must add some new

concepts (new attributes, or even new relation schemes) into the subschema. Embedding an

includible constraint does not require any changes of the structure of a subschema.

A database constraint is potentially inconsistent if it is relevant for at least one

subschema Pk, but not embedded into it. Constraint inconsistencies are also called con-

straint collisions.

The integration process may successfully pass from step 3 trough step 6 (Fig. 2), only

if all the subschemas contain compatible sets of constraints i.e. if an empty list of collisions

is generated in step 4. Otherwise, the integration process stops, and the collisions must be

resolved. In the process of resolving collisions, colliding constraints may be embedded into

subschemas for various reasons. The main one is independent modelling of their form

types. Thus, the appropriate procedures for resolving collisions must be applied in step 5

(Fig. 2).

Fig. 3 depicts steps of the process of resolving constraint collisions. For each

potentially inconsistent constraint (PIC), a designer has to decide whether it should be

embedded into the db schema. Subschema constraints that are embedded into the db

schema are considered as globally valid.

If a designer decided to embed a PIC into a db schema, it must be also embedded into

all the subschemas, for which it is relevant. Therefore, for each subschema for which

selected PIC is relevant and not embedded into it, designer has two possible solutions:

 To embed selected PIC into Pk; or

 To exclude all critical operations for selected PIC from Pk. Accordingly, PIC is no

longer relevant constraint for Pk.

Figure 3. Steps of the process of resolving constraint collisions

Otherwise, a PIC must not be embedded into the set of database constraints. It is

important to emphasize here that subschema constraints must not be less restrictive than the

corresponding database constraints, but may be more restrictive. Consequently, some

subschema constraints may not be embedded into the db schema. A subschema constraint is

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

193

considered as locally valid if it is embedded into a subschema, but not embedded into the

db schema. Some constraints could not be locally valid. Uniqueness constraint is one of

them, as it is illustrated in Section 4.2. Therefore, a selected PIC has to be

 excluded from, or

 pronounced as locally valid in

all the subschemas from which it stems.

In the first iteration of the db schema design process, all constraints of a subschema are

pronounced as globally valid. Some of them may be pronounced as locally valid in the

subsequent iterations.

IIS*Case uses specialized algorithms to check the consistency of constraints embedded

in a db schema and the corresponding subschemas. Each execution of the consistency

checking algorithm processes all constraints of a selected type. Therefore, consistency

checking should be performed for each constraint type separately. Currently, IIS*Case

supports detecting collisions of attribute sets, and the constraints of the following types: key

and uniqueness constraints, null value constraints, and referential integrity constraints. It

generates the reports on detected collisions. Resolving collisions may lead to producing a

new version of a db schema. Each interrupt of the integration process caused by a collision

requires restarting the process from the point where the collision originated, which may be

far away from the interruption point.

It may also happen that the resolving of a collision causes a new collision to appear.

Sometimes, the existence of such a collision may force redoing almost the whole

integration process. That is a side effect of our approach that designers have to take into

account. By doing so, they will have a guarantee that the integrated db schema is formally

correct. Consequently, the probability of achieving a high quality db schema is

considerably higher than if they use an intuitive approach to db schema integration, which

would be based mostly on a common sense. In the following Section, we demonstrate the

application of IIS*Case in detecting collisions, together with an analysis of related reports

and possible designer's actions.

4. DETECTING AND RESOLVING COLLISIONS OF CONSTRAINTS

 IN IIS*CASE A CASE STUDY

We use a case study of an imaginary production system to illustrate the application of

IIS*Case in detecting and resolving collisions. The example is purposely simplified, in

order to clearly present the process of detecting and resolving constraint collisions.

We identified three groups of similar user requirements:

 Personnel managing personnel data, i.e. supporting insert, update and delete data

about staff members and insert and update some data about working units;

 Working Units (WU) managing WU data, i.e. supporting insert, update and delete

data about working units and insert, update and delete data about staff members

belonging to a particular WU;

 Working Orders (WO) supporting delete data about working orders.

For each of those groups, a set of form types is designed. Descriptions of the sets of

form types designed in IIS*Case for the sake of this case study may be found in [18]. As an

S.

194

illustration, the IIS*Case form for specifying form types is shown in Fig. 4. It presents the

form type Staff from the external schema PERSONNEL.

IIS*Case generates the following non-trivial inclusion dependencies at the level of the

attributes of a Universal Relation Scheme (URS):

{ ManagWU SSN , Sign SSN , Manag SSN }, as a reaction on a designer's

decision to introduce new attributes by the renaming of existing ones, as follows:

ManagWU from SSN (Social Security Number) for working unit's manager, Manag from

SSN for an employee's manager, and Sign from SSN for an employee who signed up a

working order.

For each group of user requirements, IIS*Case maps form types into a relational

subschema by inferring attributes and constraints from the form types and embedding them

into a relational subschema. It also generates the appropriate reports about the db schema

design progress. In this way, we obtain three subschemas: PERSONNEL, WORKING_UNIT

and WORKING_ORDER. Each of them is presented in the following text, with its sets of

relation schemes and interrelation constraints, where each relation scheme is represented as

a named triple, with the following components: a set of attributes, a set of keys, and a set of

uniqueness constraints [13].

Figure 4. Form type Staff from external schema PERSONNEL

PERSONNEL

 Staff({IdWU, SurN, DatB, Addr, SSN, Name}, {SSN}, {})

 NULL values allowed only for the attributes: SurN, Addr, Name, DatB

 Operations allowed in the relation scheme Staff: read, insert, update, delete

 WU({IdWU, NamWU, ManagWU},{IdWU}, {})

 NULL values allowed only for the attributes: ManagWU

 Operations allowed in the relation scheme WU: read, insert, update

 WU ManagWU Staff SSN

 Staff IdWU WU IdWU

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

195

WORKING_UNIT

 Staff({IdWU, SurN, DatB, Addr, SSN, Name, School, IdS, Manag, CelTel}, {IdWU+IdS,

SSN}, {})

 NULL values allowed only for the attributes: Addr, CelTel

 Operations allowed in the relation scheme Staff: read, insert, update, delete

 WU({WRoom, IdWU, NamWU, ManagWU}, {IdWU}, {NamWU})

 NULL values not allowed for all the attributes

 Operations allowed in the relation scheme WU: read, insert, update, delete

 WU ManagWU Staff SSN

 Staff IdWU WU IdWU

 Staff Manag Staff SSN

WORKING_ORDER

 WO({IdWO, DatWO, Amount, IdPR, Sign}, {IdWO}, {})

 NULL values allowed only for the attribute: Sign

 Operations allowed in the relation scheme WO: read, delete.

IIS*Case produces the first version of a db schema (i.e. a potential db schema) by

using synthesis algorithm, and independently designed subschemas. The order of

integration is irrelevant.

IIS*Case performs the consistency checking over the potential db schema and all the

specified subschemas, for each constraint type, separately. The order of selecting constraint

types in the consistency checking procedure is relevant. IIS*Case imposes the following

order of constraint types in consistency checking: checking of the attribute sets, the key and

uniqueness constraints, the null value constraints, and finally the referential integrity

constraints. Successful execution of the procedure for a selected constraint type is a

prerequisite for initiating the procedure for the subsequent constraint type. The consistency

checking for the subsequent constraint types cannot be initiated, whereas the detected

collisions are not resolved. The reports on detected collisions contain the explanations, how

to interpret collisions. The structure of those reports, for different constraint types, will be

presented in the following subsections.

The first condition that a db schema and a subschema have to satisfy is that the set of

attributes of each relation scheme of the subschema must be a subset of the attribute set of

at least one relation scheme of the db schema. A selected relation scheme satisfying the

aforementioned condition is called the corresponding database relation scheme. Checking

the collisions of the sets of attributes is the first step of the consistency checking process.

Further discussion of the collision is omitted from the paper. More information and the

examples may be found in [18], [18].

4.1. KEY CONSTRAINT COLLISIONS

A potential database schema ADMINISTRATION is generated using the subschemas

PERSONNEL, WORKING_UNIT and WORKING_ORDER. It is structured as follows:

 Staff({IdWU, SurN, DatB, Addr, SSN, Name, School, IdS, Manag, CelTel},

{IdWU+IdS, SSN}, {})

S.

196

 WU({WRoom, IdWU, NamWU, ManagWU}, {IdWU}, {NamWU})

 WO({IdWO, DatWO, Amount, IdPR, Sign}, {IdWO}, {})

 WU ManagWU Staff SSN

 Staff IdWU WU IdWU

 Staff Manag Staff SSN

 WO Sign Staff SSN .

The analysis of the attribute set collisions finishes successfully, and the process

continues by initiating the consistency checking of key constraints. A key constraint

collision is detected, the process stops, and an appropriate report is generated. The first part

of the report is shown in Fig. 5.

Figure 5. Report on key collisions

Relation scheme Staff in the subschema PERSONNNEL has SSN as the sole key, while

its corresponding relation scheme Staff in the potential db schema ADMINISTRATION has

two keys: SSN and IdWU+IdS. Operations insert and update are allowed for Staff in the

subschema PERSONNEL. Since they may violate the key constraints, the key constraint

IdWU+IdS is relevant for the subschema PERSONNEL, but it is not embedded into it.

Furthermore, it cannot be expressed using the concepts of subschema PERSONNEL, since

its relation schemes do not contain the attribute IdS. This constraint is extending one. A

designer initiates the process of resolving the collision.

According to Fig. 3, a designer may choose between four alternatives, in common.

However, some of them may be inapplicable in the specific situation.

1. The key constraint IdWU+IdS needs to be embedded into the db schema.
Consequently, the subschema PERSONNEL must be changed in one of the following

ways.

1.1. The operations insert and update of IdWU have to be removed from the relation

scheme Staff in PERSONNEL.

A designer may decide so if he or she finds that the operations insert and update of

IdWU are obsolete for Staff in PERSONNEL.

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

197

1.2. The key constraint IdWU+IdS must be embedded into the subschema

PERSONNEL.

A designer may decide so if he or she finds that the operations insert and update of

IdWU are mandatory for Staff in PERSONNEL. Since the key constraint IdWU+IdS

is extending one, in order to embed it into the subschema, a designer need to add

the attribute IdS into the relation scheme Staff in PERSONNEL.

2. The key constraint IdWU+IdS does not need to be embedded into the db schema.
Consequently, the subschema WORKING_UNIT must be changed in one of the following

ways.

2.1. The key constraint IdWU+IdS must be excluded from the relation scheme Staff

in WORKING_UNIT.

A designer may decide so if he or she finds that the key constraint IdWU+IdS is

obsolete for Staff in WORKING_UNIT.

2.2. The key constraint IdWU+IdS must be pronounced as a locally valid one for

the relation scheme Staff in WORKING_UNIT.

A designer may decide so if he or she finds that the key constraint IdWU+IdS is

mandatory for Staff in WORKING_UNIT. The case needs an additional

explanation. Namely, if the key constraint would be embedded into the subschema,

but would not be embedded into the db schema, then it might cause duplicate

values for IdWU+IdS in a db relation WU. If it would happen, a Database

Management System (DBMS) could not select the tuples making the virtual

relation over WU in WORKING_UNIT, unambiguously. A solution is to pronounce

the key constraint IdWU+IdS as a locally valid in WORKING_UNIT, and also to

embed the uniqueness constraint IdWU+IdS into the relation scheme WU in the

subschema PERSONNEL. In order to do that, since the constraint is extending one,

a designer has to add the attribute IdS into the relation scheme Staff in PER-

SONNEL.

Selecting the one of the aforementioned alternatives depends on a designer's judgment.

After selecting the most appropriate alternative and modifying the appropriate form types,

IIS*Case generates a new subschema PERSONNEL, and/or a new subschema

WORKING_UNIT, and also a new potential db schema ADMINISTRATION. Suppose that a

designer selects the solution 1.1, in order to resolve the collision.

4.2. UNIQUENESS CONSTRAINT COLLISIONS

After resolving the key collision, reinitiated analyses of the attributes sets, and key

collisions finish successfully, and the process continues by initiating the consistency

checking of uniqueness constraints. A uniqueness constraint collision is detected, the

process stops, and an appropriate report is generated. The first part of the report is shown in

Fig. 6.

S.

198

Figure 6. Report on uniqueness constraint collisions

We may notice that the attribute NamWU in the relation scheme WU in the potential db

schema ADMINISTRATION must have uniqueness values. This constraint stems from the

subschema WORKING_UNIT, and has been built into the db schema. However, it has not

been embedded into the subschema PERSONNEL. There are four alternatives:

1. The uniqueness constraint NamWU needs to be embedded into the db schema.
Consequently, the subschema PERSONNEL must be changed in one of the following

ways.

1.1. The operations insert and update of NamWU have to be removed from the relation

scheme WU in PERSONNEL.

The solution is analogous to the solution 1.1. from Subsection 4.2, and therefore it

is not commented here.

1.2. The uniqueness constraint NamWU must be embedded into the subschema

PERSONNEL.

Since the uniqueness constraint NamWU is includible one, it is sufficient to add it

in the appropriate form type in the external schema PERSONNEL.

2. Uniqueness constraint NamWU does not need to be embedded into the db schema.
Consequently, the subschema WORKING_UNIT must be changed in one of the following

ways.

2.1. The uniqueness constraint NamWU must be excluded from the relation scheme

WU in WORKING_UNIT.

A designer may decide so if he or she finds that the uniqueness constraint NamWU

is obsolete for the relation scheme WU in WORKING_UNIT.

2.2. The uniqueness constraint NamWU must be pronounced as locally valid in the

subschema WORKING_UNIT.

In this particular case, this solution cannot be applied. Namely, if the uniqueness

constraint would be embedded into the subschema, but would not be embedded

into the db schema, then it might cause duplicate values for NamWU in a db

relation WU. If it would happen, a Database Management System (DBMS) could

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

199

not select the tuples making the virtual relation over WU in WORKING_UNIT,

unambiguously.

Therefore, a designer may choose between the first three alternatives, since the fourth

one (2.2) is not a valid choice in the particular case. After selecting the most appropriate

alternative, and modifying the appropriate form types, IIS*Case generates a new subschema

PERSONNEL, or a new subschema WORKING_UNIT, and also a new potential db schema

ADMINISTRATION.

Suppose that the collision is resolved by excluding the uniqueness constraint over

NamWU from the appropriate form type (2.1), and consequently from the relation scheme

WU in the application system WORKING_UNIT.

4.3. NULL VALUE CONSTRAINT COLLISIONS

After resolving the uniqueness constraint collision, reinitiated analyses of the attributes

sets, key collisions and uniqueness constraint collisions finish successfully, and the process

continues by initiating the consistency checking of null value constraints. Some of the

detected null value constraint collisions are automatically resolved. In the appropriate

report, those changes are reported by the messages of type "info" (Fig. 7). The attribute

ManagWU may have null values in the subschema PERSONNEL, whereas in the

subschema WORKING_UNIT it must not. IIS*Case resolves the collision automatically by

converting attribute ManagWU in db schema into the attribute with null values allowed.

This change does not affect the form types from external schemas PERSONNEL and

WORKING_UNIT. The null value constraint over the attribute ManagWU becomes a

locally valid in the subschema WORKING_UNIT. Such a solution is formally valid,

because a DBMS can select tuples making the virtual relation over WU in

WORKING_UNIT, unambiguously.

Apart from automatic resolving collisions of the null value constraints, IIS*Case

detects collisions of the null value constraints with insert operations, on all the relation

schemes in child application systems that are declared for inserts. A collision arises if there

is a relation scheme in child application system with insert operation allowed, but not

containing all the not null attributes from the corresponding relation scheme. In the

appropriate report (Fig. 7), such collisions are represented with the "collisions" message

type.

S.

200

Figure 7. Report on NULL constraint collisions

In the case study, an insert operation is allowed for the relation scheme WU in the

subschema PERSONNEL. Apparently, WU does not contain the attribute WRoom, whereas

it is a not null attribute in the corresponding relation scheme in ADMINISTRATION.

 Possible designer's alternatives are:

1. The null value constraint for WRoom must be preserved in the db schema.

WRoom must be a not null attribute in ADMINISTRATION. Consequently, the

subschema PERSONNEL must be changed in one of the following ways.

1.1. The operation insert has to be removed from the relation scheme WU in

PERSONNEL.

1.2. The null value constraint WRoom must be embedded into the subschema

PERSONNEL.

Since the null value constraint WRoom is extending one, in order to embed it into

the subschema, designer needs to add the attribute WRoom into the relation

scheme WU in the subschema PERSONNEL.

2. The null value constraint for WRoom must be removed from the db schema.
WRoom must be an attribute with nulls allowed in ADMINISTRATION. Consequently,

the subschema WORKING_UNIT must be changed in one of the following ways.

2.1. The null value constraint WRoom must be removed from the relation scheme

WU in WORKING_UNIT.

The attribute WRoom must be pronounced as optional one in the appropriate form

type.

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

201

2.2. The null value constraint WRoom must be pronounced as locally valid in the

subschema WORKING_UNIT.

The attribute WRoom may be pronounced as optional one in the appropriate form

type, but with the operation "nullify a not null value" disallowed.

Suppose that the alternative (1.2) is chosen. After modifying the appropriate form

types, IIS*Case generates a new subschema PERSONNEL and a new potential db schema

ADMINISTRATION.

 4.4. REFERENTIAL INTEGRITY CONSTRAINT COLLISIONS

Reinitiated analyses of the attributes sets, key collisions, uniqueness constraint

collisions and null value collisions finish successfully. The final step is the consistency

checking of the referential integrity constraints. After detecting collisions, IIS*Case

produces an appropriate report (Fig. 8).

Figure 8. Report on referential integrity collisions

Two different message types may appear in the report: warnings and collisions.

Collisions must be resolved, while warnings need not.

A warning is generated only if a subschema contains a referenced relation scheme but

not the referencing one, and delete is an allowed operation for the referenced relation

scheme in the subschema. There are two possible alternatives to resolve the warning: (i)

disallowing the delete operation, or (ii) including the referencing relation scheme in the

subschema. Selecting the second alternative may cause a repetitive including of a vast

number of new relation schemes into the subschema. It may cause a subschema

"overloading". Therefore, IIS*Case allows a designer to decide weather to resolve, or to

ignore collisions of type "warning". A more detailed explanation of this problem may be

found in [11].

In the subschema WORKING_ORDER the relation scheme WO contains the attribute

Sign. Since the URS inclusion dependency Sign SSN exists, the db schema

ADMINISTRATION contains the referential integrity WO Sign Staff SSN , despite that it

does not exist in the subschemas PERSONNEL, WORKING_UNIT and

WORKING_ORDER. Delete is an allowed operation for the relation scheme Staff in the

S.

202

subschema PERSONNEL, as well as in the subschema WORKING_UNIT. A designer

decides not to resolve the warnings, since it does not reflect either on the database

consistency, or "commodity" of end users.

In the report from Fig.8, there is a collision concerning referential integrity constraint

R1: Staff Manag Staff SSN . In the subschema WORKING_UNIT, the relation scheme

Staff contains the attribute Manag, and participates in the constraint R1. Consequently, the

db schema contains the same referential integrity constraint, and Manag belongs to the set

of attributes of the db relation scheme Staff. The operation delete is allowed for the relation

scheme Staff in the subschema PERSONNEL. Therefore, the referential integrity constraint

R1 is relevant for PERSONNEL, and the operation delete may violate it. The designer's

alternatives are:

1. The referential integrity constraint R1 must be preserved in the db schema.
Consequently, the subschema PERSONNEL must be changed in one of the following

ways.

1.1. The operation delete has to be removed from the relation scheme Staff in

PERSONNEL.

1.2. The referential integrity constraint R1 must be embedded into the subschema

PERSONNEL.

Since the referential integrity constraint R1 is extending one, in order to embed it

into the subschema, a designer has to add the attribute Manag into the relation

scheme Staff in the subschema PERSONNEL. The referential integrity constraint

R1 is generated automatically, during the db schema design.

2. The referential integrity constraint R1 must be removed from the db schema.
Consequently, the subschema WORKING_UNIT must be changed in one of the following

ways.

2.1. The referential integrity constraint R1 must be excluded from the relation

scheme Staff in WORKING_UNIT.

One option is to exclude the attribute Manag from the relation scheme WU by

changing appropriate form type. Another one is to delete the URS inclusion

dependency Manag SSN , although it is not advisable, since the set of URS

constraints is changed.

2.2. The referential integrity constraint R1 must be pronounced as locally valid in the

subschema WORKING_UNIT.

This solution cannot be applied. Namely, the existence of basic and extended

referential integrity constraints is a consequence of the primary key propagation

[11]. Referential integrity constraints based on non-trivial inclusion dependencies

arise from the URS non-trivial inclusion dependencies that a designer defines at

the level of the set of all information system attributes [11]. Consequently, it is not

possible to pronounce a referential integrity as locally valid.

In this case, a designer may choose only between first three alternatives. After

selecting the most appropriate alternative, and modifying the appropriate form types,

IIS*Case generates a new subschema PERSONNEL, and/or a new subschema

WORKING_UNIT, and also a new potential db schema ADMINISTRATION. Suppose a

designer chooses the alternative 1.2. The following final versions of subschemas

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

203

PERSONNEL, WORKING_UNIT and WORKING_ORDER, and the final db schema

ADMINISTRATION are obtained, where the differences with respect to the previous version

are written in bold style:

PERSONNEL

 Staff({IdWU, SurN, DatB, Addr, SSN, Name, Manag}, {SSN}, {})

 NULL values allowed for the attributes: SurN, Addr, Name, DatB

 Operations allowed in the relation scheme: read, delete

 WU({WRoom, IdWU, NamWU, ManagWU}, {IdWU}, {})

 NULL values allowed for the attributes: ManagWU

 Operations allowed in the relation scheme: read, insert, update

 WU ManagWU Staff SSN

 Staff IdWU WU IdWU

 Staff Manag Staff SSN

WORKING_UNIT

 Staff({IdWU, SurN, DatB, Addr, SSN, Name, School, IdS, Manag, CelTel},

 {IdWU+IdS, SSN}, {})

 NULL values allowed for the attributes: Addr, CelTel

 Operations allowed in the relation scheme Staff: read, insert, update, delete

 WU({WRoom, IdWU, NamWU, ManagWU}, {IdWU}, { })

 NULL values not allowed for all the attributes

 Operations allowed in the relation scheme WU: read, insert, update, delete

 WU ManagWU Staff SSN

 Staff IdWU WU IdWU

 Staff Manag Staff SSN

WORKING_ORDER

 WO({IdWO, DatWO, Amount, IdPR, Sign}, {IdWO}, {})

 NULL values allowed for the attributes: Sign

 Operations allowed in the relation scheme WO: read, delete

ADMINISTRATION

 Staff({IdWU, SurN, DatB, Addr, SSN, Name, School, IdS, Manag, CelTel}, {IdWU+IdS,

SSN}, {})

S.

204

 NULL values allowed for the attributes: SurN, Addr, Name, DatB

 Operations allowed in the relation scheme Staff: read, insert, update, delete

 WU({WRoom, IdWU, NamWU, ManagWU}, {IdWU}, {})

 NULL values allowed for the attributes: ManagWU

 Operations allowed in the relation scheme WU: read, insert, update, delete

 WO({IdWO, DatWO, Amount, IdPR, Sign}, {IdWO}, {})

 NULL values allowed for the attributes: Sign

 Operations allowed in the relation scheme WO: read, delete

 WU ManagWU Staff SSN

 Staff IdWU WU IdWU

 Staff Manag Staff SSN

 WO Sign Staff SSN .

During the consolidation process, designers may also change the structure of

application systems, i.e. the sets of form types (i.e. external schemas). Afterwards, IIS*Case

generates subschemas and integrates them into a db schema. Therefore, when the

consolidation process successfully finishes, a consistent set of subschemas and consistent

sets of form types are obtained. IIS*Case consolidates not only the attribute sets and the

constraint sets, but also the sets of allowed operations and modifiable attributes. Form types

carry additional information about transaction programs and their screen forms.

Consequently, transaction programs generated over such form types will be in accordance

with the designed db schema.

5. CONCLUSION

IIS*Case supports collaborative work of designers with the aim to reach the most

appropriate solutions through their cooperation. A designer may devote his or her time and

power to analysis and modelling business processes and rules. The db design of even

complex information systems may be an easier task if it would be based on this approach

and IIS*Case, because the process of modelling is raised to the level, which is closer to

designers without an advanced knowledge of the database design.

IIS*Case is developed on t

[8], [13], [15], [16], [9], [18] and [11]. The principles of database updates using sub-

schemas are introduced in [17], and we argue that a subschema and the corresponding db

schema must satisfy certain formal conditions to allow safe database updates using a

program utilizing the concepts of a subschema. Such conditions are formulated at the level

of abstraction of instances. Using them, we were able to formulate the conditions of formal

consistency, and develop the algorithm for checking the formal consistency of db schema

constraints. The algorithm is embedded into IIS*Case. Therefore, detecting and resolving

collisions is an important activity in the db schema design process supported by IIS*Case.

The specificity of our approach is that collisions are not detected between different

subschemas, but between a db schema and a set of subschemas, since the integration

process is not mere unifying of subschemas. The process of detecting and resolving

Journal of information and organizational sciences, Volume 31, Number 1 (2007)

205

collisions may also help designers to recognize new database constraints, which have not

been previously identified.

Collisions are resolved by interrupting the process of the db schema integration and making

changes in the subschemas, i.e. application subsystems. Therefore, the integration process

must be restarted from the point of origin of a collision. Sometimes, it must be restarted

from the very beginning, and this is a side effect of our approach. Also, the resolving of

existing collisions may cause new ones to appear. Even more, these new collisions may

involve constrains of different types that have already successfully passed the consistency

checking. However, the primary goal of the approach proposed here was not only to make

the design process of complex db schemas easier. Our intention was also to provide such a

tool and the approach that will considerably improve the quality of resulting db schemas, in

contrast to the application of an intuitive approach, and make the design process more

efficient.

At present, IIS*Case R.6.21 produces a formal specification of an implementation

database schema. It also has an SQL generator that supports generating SQL specifications

of a database schema for different DBMSs. Further research and development efforts are

oriented towards extending current functionality. In the scope of the approach presented in

the paper, we are planning to make further improvements of the algorithms for consistency

checking and db schema integration. These improvements should cover consistency

checking for the following constraint types: check constraints, extended referential integrity

constraints, and inverse referential integrity constraints [13].

REFERENCES

[1] ARTech, DeKlaritTM
 (The Model-Driven Tool for Microsoft Visual Studio 2005),

Chicago, USA, Available: http://www.deklarit.com, current: November 2007.

[2] Beeri C., Bernstein P. A., Computational Problems Related to the Design of Normal

Form Relational Schemas, ACM Transactions on Database Systems, Vol.4, No.1,

March, 1979, pp. 30-59.

[3] Choobinch J., Mannio V. M., Nunamaker F. J., Konsynski R. B., An Expert

Database Design System Based on Analysis of Forms, IEEE Transactions on

Software Engineering, Vol.14, No 2, Feb. 1988, pp. 242-253.

[4] Date C. J., Composite Foreign Keys and Nulls, In C.J. Date and H. Darwen Rela-

tional Database Writings 1989-1991, Addison-Wesley Publishing Company,

Reading, Massachusetts, 1992.

[5] Date C. J., Darwen H., Foundation for Object/Relational Databases: The Third

Manifesto, Addison-Wesley Professional, 1998.

[6] Diet J., Lochovsky F., Interactive Specification and Integration of User Views Using

Forms, Proceedings of the Eight International Conference on Entity-Relationship

Approach Toronto, Canada 18-20. October, 1989, pp.171-185.

[7] Collaboration Techniques

to Design a Database, Univers , Spain, 2004.

[8] Govedarica M., An Automated Development of Information System Application

Prototypes, PhD Thesis, University of Novi Sad, Faculty of Technical Sciences,

Novi Sad, Serbia and Montenegro, 2002.

S.

206

[9] Govedarica M., Lukovic I., Mogin P., Generating XML Based Specifications of Information

Systems, Computer Science and Information Systems (ComSIS), Belgrade, Serbia and

Montenegro, Vol. 1, No. 1, 2004, pp. 117-140.

[10] Lukovic I., Govedarica M., Mogin P., Ristic S., The Structure of A Subschema and

Its XML Specification, Journal of Information and Organizational Sciences, Varaz-

din, Croatia, Vol. 26, No. 1-2, 2002, pp. 69-85.

[11] Lukovic I, Mogin P, Pavicevic J, Ristic S, "An Approach to Developing Complex

Database Schemas Using Form Types", Software: Practice and Experience, John

Wiley & Sons Inc, Hoboken, USA, ISSN: 0038-0644, DOI: 10.1002/spe.820, Vol.

37, No. 15, 2007, pp. 1621-1656.

[12] Lukovic I., Ristic S., Mogin P., A Methodology of A Database Schema Design

Using The Subschemas, IEEE International Conference on Computational

Cybernetics, Siofok, Hungary, August 29-31, 2003

[13] Lukovic I., Ristic S., Mogin P., Pavicevic J. Database Schema Integration Process

A Methodology and Aspects of Its Applying, Novi Sad Journal of Mathematics

(Formerly Review of Research, Faculty of Science, Mathematic Series), Novi Sad,

2006, pp. 115 140.

[14] Mogin P., Lukovic I., Govedarica M., Database Design Principles, 2
nd

 Edition,

University of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia and

Montenegro, 2004.

[15] Pavicevic J., Development of A CASE Tool for Automated Design and Integration of

Database Schemas, M.Sc. Dissertation, University of Montenegro, Faculty of

Science, Podgorica, Serbia and Montenegro, 2005.

[16] Ristic S., Research of Subschema Consolidation Problem, PhD Thesis, University of

Novi Sad, Faculty of Economics, Subotica, Serbia and Montenegro, 2003.

[17] base Updates Using a Subschema 7
th

IEEE International Conference on Intelligent Engineering Systems INES 2003,

Assiut-Luxor, Egypt, 4 6 March, 2003, Proceedings Vol. 1, pp. 203 212.

[18] Ristic S., Lukovic I., Mogin P., Pavicevic J., Integrating a Database Schema Using

IIS*Case Tool, 13
th

 Scientific Conference on Industrial Systems IS'05, Herceg Novi,

September 07 09, 2005.

[19] Schmalz M. S., Hammer J., Wu M., Topsakal O., EITH A Unifying

Representation for Database Schema and Application Code in Enterprise Knowledge

Extraction, Proceedings of the 22nd International Conference on Conceptual Model-

ing, Chicago, IL, November 2003.

Received: 19 March 2007

Accepted: 23 November 2007

