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Abstract 

The main objective of this paper is to systematically analyze the performance of water sample 
classifications for different data representations. We compare the classification of full data 
representation to the classification of data items in a lower dimensional space obtained by the 
projection of the original data on the space formed by first principal components, and further, 
on the space of centroids of classes. We use linear support vector machines for classification of 
ground water samples collected from five different localities of the Odra River basin. The 
obtained results are evaluated by standard measures including recall, precision and F1measure. 
Keywords: concept decomposition, dimensionality reduction, principal components analysis, 
support vector machines  

1. Introduction  

Water is incredibly important for every living organism to survive. It covers two thirds of the 
Earth’s surface, which makes our planet unique among other known celestial bodies. Water is 
primarily a chemical substance. Analyzing and interpreting the chemistry of water provides 
valuable insights into this phenomenon.  According to ISO standards, the quality of water is 
determined by testing for a specific chemical composition of a particular water sample. Water 
is generally described in terms of its nature, usage, or origin.  In that respect, distinction is 
made between water as a natural resource, drinking water, water for industrial use, sewage 
water, to name but a few examples. The category of the water being analyzed determines 
parameters by which it will be tested. The analysis of water samples is characterized by 
parameters forming an n-dimensional data space.  Dimensionality Reduction (DR) techniques 
are often applied on such data  to reduce dimensionality, thereby achieving noise reduction 
and allowing for recognition of  latent similarities between data items.  This preprocessing 
step in data mining improves the accuracy of the data analysis and the efficiency of the 
mining algorithm [11].   
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In their previous work, Praus and Praks [23] proposed applying the Latent Semantic 
Indexing (LSI) method for information retrieval  of  hydrochemical data. LSI includes two 
steps. In the first step, the dimensionality of the data is reduced by the projection on first 
principal components (which is equivalent to the application of SVD decomposition). The 
second step calculates the similarity between representations of water samples [3].  The 
representation of data in a lower dimensional space by concept decomposition is an intuitive 
approach that was originally developed for the purpose of text mining, where data are 
projected on centroids of clusters or classes [12]. Using concept decomposition instead of 
SVD is computationally less complex. Moreover, the literature suggests that the results of 
information retrieval of text documents are comparable to that of representation by LSI [13].  
In our research we will apply dimensionality reduction by PCA and also use concept 
decomposition in a supervised setting to test this approach on the task of hydrochemical data 
classification.  Motivated by the analyses by Praus and Praks [23], Dobsa and Dalbelo-Basic 
[13], and Aswani Kumar and Srinivas [5],   we classify ground water samples collected from 
the Odra River basin in Ostrava, Czech Republic, using linear support vector machines 
(SVM).  The paper is organized as follows.  Section 2 provides problem description and 
reviews related work.  Principal components analysis, concept decomposition and the 
algorithm of support vector machines are explained in Section 3.  The methodology we 
adopted to solve the problem is introduced in Section 4.  We demonstrate the proposed 
methodology and analyze the results obtained in Section 5.   
 

2. Problem Description and Related Work  

Hydrochemical datasets are represented as data matrices where each column of a given data 
matrix represents a sample composition and can be expressed as vector X=(x1,x2,…, xn), where 
xi is the ith chemical parameter and n is the total number of chemical parameters being 
considered for analysis.  Real hydrochemical data samples are noisy so the retrieval of 
similarities among such data items can lead to incorrect findings.   Such multidimensional 
data requires DR techniques to remove the noise by reducing dimensionality and enable the 
interpretation of latent information.  In the literature there are reviews of various DR 
techniques [2], [11].  Praus and Praks [23] applied a SVD based approach for removing noise 
and retrieval of similar water samples from a ground water dataset.  Several applications of 
SVD can be found in the literature including rule mining [6].   

Applications of data mining and artificial intelligence techniques for hydro data analysis 
are also well discussed in the literature. Ouyang applied PCA and Principal Factor Analysis 
(PFA) to evaluate the effectiveness of a surface water quality monitoring network in a river 
where monitoring stations were used as variables [20]. Brodnjak-Voncina et al.   studied the 
quality of the Mura River water by applying standard multivariate statistical methods and 
PCA [9].  They concluded that the PCA method is discriminant enough even given the weak 
correlation among the variables.  The case study by Kunwar P. Singh et al.   presented the 
usefulness of multivariate statistical techniques for evaluation and interpretation of large 
complex data sets to obtain  better information about  water quality [18].  Together with these 
statistical techniques, several hybrid methods are also discussed in the literature.   Sarbu and 
Pop   proposed a fuzzy PCA method for measuring the water quality of the Danube River 
[25].   Their analysis demonstrated that the fuzzy PCA achieved better compressible results 
than the classical PCA.  Razmkhah et al.  used PCA and cluster analysis methods to 
investigate the water quality of the Jajrood River [24].  To study the spatial variation and 
source apportionment of water pollution in the Qiantang River, Huang et al. used Fuzzy 
Comprehensive Assessment (FCA) and Factor Analysis [15].   Liu et al.   combined the 
information entropy theory and the fuzzy mathematics method for water quality assessment in 
the Three Gorges region in China [19].  Their analysis showed that the improved fuzzy 
comprehensive evaluation method is superior to the traditional model.   In light of the 
studies cited above, the present research aims to compare the performance of classification of 
water samples represented in the original and a lower dimensional space obtained by PCA and 
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concept decomposition.  The classification of groundwater samples with similar composition 
will be elaborated through a practical case study of the Odra River basin. 

3. PCA, Concept Decomposition and SVM  

In this section we briefly review the methodologies we adopted in our analysis for 
dimensionality reduction and classification.   

3.1. Principal Components Analysis 

PCA is one of the most popular multivariate statistical methods for information extraction and 
data compression by retaining only the important information followed by analyzing the 
variables structure. PCA transforms the original data variables into new, uncorrelated 
variables (axes), called principal components.  These components in the new coordinate 
system are the linear combinations of the original variables and describe different sources of 
variation.  The first principal component (PC) contains the largest variance of the original 
variables and passes through the center of the data.  The second PC is orthogonal to the first 
PC and contains the second largest variance in the original data variables set. A detailed 
explanation and illustration on PCA can be found in [1].  

3.2. Concept Decomposition  

Dhillon and Modha   proposed to use spherical k-means clustering as a means of identifying 
latent concepts in document collections [12].   They also proposed concept decomposition 
(CD), where documents are represented as projections on centroids of clusters which are 
called concept vectors.  Dobsa and Dalbelo-Basic improved CD by using a fuzzy k-means 
(FCM) algorithm and tested its appropriateness for the task of information retrieval [13]. 
FCM algorithm is the most widely used algorithm among family of algorithms which are 
based on iterative optimization of fuzzy objective function [8].  Karypis and Hong [17] and 
Dobsa et al. [14] used a supervised version of CD which calculates concept vectors as 
centroids of the existing classes for the task of classification.  They showed that such an 
approach results in better classification performance than using representation of full data 
matrix and representation by LSI especially when the size of the lower dimensional space is 
small.   A weighted FCM algorithm for CD has recently been proposed in [5] as well. In [26] 
is proposed algorithm for detecting the principal allotment among fuzzy clusters and its 
application as a technique for dimensionality reduction.  

Let A be n×m matrix of the hydrochemical data, where n is the number of parameters and 
m is the number of samples.  The concept matrix is an n × k matrix whose j-th column is 

concept vector cj, that is, [ ], , ...,k kC c c c= 1 2 .  If we assume linear independence of the 
concept vectors, then it follows that the concept matrix has rank k.   Now we define concept 
decomposition  Dk of data matrix A as the least-squares approximation of A on the column 
space of the concept matrix Ck. Concept decomposition is an n × m matrix  

                                                  ZCD kk
*= ,                                                                    (1) 

where Z * is  the solution of  the least-squares problem given as  

                                            ( ) .
1* ACCCZ T

kk
T
k

−
=                                                         (2) 

The columns of data matrix A are represented as a linear combination of the concept vectors, 
thereby reducing data space dimensionality.     

3.3. Support Vector Machines 

Support vector machine (SVM) finds a hyperplane which separates positive and negative 
training examples with the maximum possible margin [10].  This means that the distance 
between the hyperplane and the corresponding closest positive and negative examples is 
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maximized.  A classifier of the form )( bxwsign +⋅  is learned, where w is the weight vector 
or normal vector to the hyperplane and b is the bias.  The goal of margin maximization is 
equivalent to the goal of minimization of the norm of the weight vector when the margin is 

fixed to be of the unit value . Let the training set be the set of pairs mjyX jj ,,2,1),,( K= , 
where Xj are vectors representing samples, yj are labels which take value 1 if the sample is in 
the observed class and –1 if the sample is not in the class, and m is the total number of 
samples.   The problem of finding the separating hyperplane is reduced to the optimization 

problem of the type ,
min ,
w b

w w subject to 

                                      ( ) .,,2,1,1, mjbXwy jj K=≥+                                             (3) 
 

4. Methodology 

The classification of water samples will be performed for different representations of samples:  
full representation of data, representations by supervised concept decomposition and 
representation by projection on principal components.   The methodology used for the 
representation of water samples in the concept space is as follows: 

1. Compute centroids of classes to obtain the concept matrix Ck. 
2. Compute the reduced concept decomposition matrix Dk of the data matrix as Dk = 

CkZ
*, where Z* is the solution of the least squares problem given as  

Z*= (Ck
TCk)

-1Ck
TA. 

The SVM algorithm performs binary classification, classifying test samples into two 
classes: positive and negative. Since we are dealing with the problem of classification in five 
classes (i.e. five different locations) we shall transform that problem into five binary 
classifications and perform the classification by SVM for each class separately. 

5. Experimental results and Discussion 

5.1. Data Description 

In this section we report on the experiments conducted on ground water samples collected 
from five different localities in the Ostrava region spreading across the Odra River basin.  The 
area of this basin is approximately 6252 km2 and the total watercourse is approximately 1360 
km in length.  All  ground water samples were analyzed based on the parameters that are in 
accordance with the ISO standards, including:  pH, Ammonium, Nitrate, Chloride, Sulfate, 
Hardness, Electric Conductivity (EC),  Alkalinity, Acidity, Chemical Oxygen Demand by 
Permanganate (COD-Mn), Iron, Manganese, Dissolved oxygen and Aggressive carbon 
dioxide.  Descriptive statistics of these parameters in the samples considered for the analysis 
are given in Table 1.  In the data matrix we created the rows were constructed from the 14 
aforementioned parameters, while the 95 water samples represented the columns.  Projection 
on principal components columns of the data matrix was standardized (to have meant equal to 
0 and the standard deviation equal to 1).  The classification was performed on three-fold cross 
validation. We used the SvmLight v.5.0 (http://svmlight.joachims.org/) software with default 
parameters [16].  
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Table 1. Descriptive statistics of the ground water samples 

 
 
5.2. Results 
 
We evaluated the classification accuracy using recall, precision and the F1 measure. Precision 
p is a proportion of data items predicted positive that are actually positive. Recall r is defined 
as a proportion of positive data items that are predicted positive. The F1 measure is defined 

as ( )rpprF += 21 .  Table 2a and Table 2b present the results of evaluation of 
classification: precision, recall and F1  measures for each class and each representation, i.e.; 
representation by full data matrix (full), projection on 2 centroids (CD2), projection on 5 
centroids (CD5) and projection on n principal components Pn, n=2,3,4,5,6.  In the case of C2 
representation, the first centroid is a joint centroid of classes 1 and 2, while the second one is 
a joint centroid of classes 3, 4 and 5.  The best results (for precision, recall and F1 measure for 
all representations) are highlighted for every class. The classification using the representation 
of full data yielded high results on the F1 measure (above 80% for all classes but class 4).  
Classes are joined on the basis of similarity between them which is determined graphically by 
scatter plots, as shown in Figures 1 and 2.  Figure 1 illustrates the projection on two centroids, 
while Figure 2 displays the projection on first two principal components. 

Class 4 is the hardest one to recognize: recall for that class was significantly lower than 
for other classes. This can be explained by the fact that samples from that class were 
dispersed and are not linearly separable, which can be seen in scatter plots in Figures 1 and 2. 
Generally, the highest results on the  F1 measure  were achieved for representation by full data 
for classes 1 and 2 and for representation by projections on principal components for classes 
3, 4 and 5.  This can be explained by the fact that measures from locations 3, 4 and 5 were 
interwoven and therefore the semantic representation by principal components produced 
better classification results in this case.  This can also be substantiated by the fact that recall 
for classes 4 and 5  improved for representation P6 and P4, respectively, in comparison to 
representation by full data. 

 Mean Standard 
deviation 

Minimum Maximum Standard 
skewness 

Standard 
kurtosis 

Ammonia 
(mg/l) 

0.74 0.98 0.014 3.62 5.17874 1.41348 

Chloride (mg/l) 34.9 15.5 12.3 90 4.73363 3.2008 
COD-Mn (mg/l) 0.84 0.52 0.21 2.36 2.69893 -0.73901 
CO2 aggressive 

(mg/l) 
44.1 24.3 0.21 91.3 -0.73533 -1.99214 

Nitrate (mg/l) 17.1 18.2 0.50 81.7 4.21018 1.23388 
Iron (mg/l) 5.76 7.57 0.06 27.8 4.19133 -0.18692 
Alkalinity 
(mmol/l) 

1.5 0.93 0.25 4.1 1.6625 -1.69405 

Manganese 
(mg/l)  

0.463 0.490 0.06 1.76 3.09299 -1.39442 

pH 6.33 0.35 5.63 7.01 -0.17751 -2.34029 
Dissolved 

oxygen (mg/l) 
4.04 3.23 0.49 11.9 3.69017 -0.78504 

Sulfate (mg/l) 147 74.4 37.7 367 3.05774 -0.09845 
Hardness 
(mmol/l) 

2.20 0.83 0.83 4.4 1.49623 -1.30413 

Conductivity 
(mS/m) 

50.3 17.4 24.5 95.8 2.26373 -0.53798 

Acidity (mmol/) 1.20 0.45 0.25 2.25 2.13862 -0.86485 
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Generally, representation by projections on centroids of classes is less effective than 
representation by projections on principal components. Nevertheless, representation by 
projections on two centroids gives best results of recall for classes 1 and 3 (i.e., the largest 
classes forming centroids).  Performance of the classification by this representation for class 2 
was much lower, while classes 4 and 5 are not amenable to this representation since they are 
not linearly separable in a two dimensional space. For representation by projections on five 
centroids all classes were recognized.  However, the results for measures (recall, precision 
and F1 measure) were lower than representation by full data, except for precision for classes 1 
and 5, which were the best for all representations. For representation achieved by projections 
on the first two principal components, classes 4 and 5 are not amenable, while for 
representation by projections on the first three components only class 4 is not amenable. 

 
 
  

Class Measure Full CD2 CD5 

1 

 Precision 88.89 
±7.86 

80.16 ± 
6.25 

91.11 ± 
6.85 

Recall 100.00 ± 
0.00 

100.00 ± 
0.00 

85.56 ± 
13.96 

F1 93.94 ± 
4.29 

88.85 ± 
3.94 

86.97 ± 
4.94 

2 

Precision 100.00± 
0.00 

38.33 ± 
30.64 

47,22± 
33.56 

Recall 87.78± 
8.75 

30.00 ± 
21.60 

30.33± 
21.60 

F1 93.27± 
4.83 

33.33 ± 
24.94 

30.33± 
21.60 

3 

Precision 81.94± 
5.20 

80.47± 
14.97 

82.22± 
13.70 

Recall 81.55± 
7.19 

91.07± 
6.36 

32.14± 
18.21 

F1 81.47± 
4.44 

84.15± 
6.06 

42.68± 
17.58 

4 

Precision 100.00 ± 
0.00 

0.00 ± 
0.00 

50.00 ± 
40.82 

Recall 52.22± 
22.17 

0.00 ± 
0.00 

12.22 ± 
8.75 

F1 66.02± 
17.84 

0.00 ± 
0.00 

19.05 ± 
13.47 

5 

Precision 91.67± 
11.79 

0.00± 
0.00 

100.00± 
0.00 

Recall 91.67± 
11.79 

0.00± 
0.00 

55.56± 
21.87 

F1 91.67± 
11.79 

0.00± 
0.00 

68.57± 
20.34 

Table 2a. Results of classification for full representation and representation by concept decomposition 
 

All the classes were recognized in the process of classification by representation P4, by 
which 86.38% of the data variation was explained. By projection of the original data onto the 
first five principal components 90.38% of the data variation was explained. Despite the fact 
that data variation was explained to a great extent by representation P5, classification results 
were significantly improved for classes 3 and 4 by representation P6 (where 93.20% of data 
variation was explained).   
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 Table 2b. Results of classification for representation by projection on principal components 
 
  
Figure 3 shows macro-averages through classes of F1 measure of SVM classification for 

all representations of data including full data matrix (full), projection on 2 centroids (CD2), 
projection on 5 centroids (CD5) and projection on n principal components (Pn, n=2,3,4,5,6).   
The performance of representation by projection on four, five and six principal components 
was comparable to the performance of representation by full data matrix.  Only P6 
representation result exceeded (by 2%) the macro-average of F1 measure of full data matrix 
representation.   
Generally speaking, results were better for representation by projection on principal 
components, but separate results of recall and precision show that representation by projection 
on centroids of classes can also be useful in combination with other representations.  Concept 
decomposition was not as effective in this case as it was in the case of text mining because the 
dimensions of data representation of hydrochemical data are generally lower. Furthermore, 
representations of textual documents contain more redundancy than representations of 
hydrochemical data.  On the other hand, the advantage of CD is that it is computationally 
more efficient than SVD based projection on principal components [12].  The complexity of 
projection on principal components and concept vectors is the same, but computation of 
centroids of classes is much more effective than computation of principal components.  Future 
work should  investigate classification by SVM using different kernel functions and 
classification using decision trees. 

 

Class Measure P2 P3 P4 P5 P6 

1 

Precision 86.75 ± 
9.73 

81.99± 
3.71 

86.75± 
9.73 

86,25± 
9.93 

86.25 ± 
9.93 

Recall 100.00 ± 
0.00 

100.00± 
0.00 

100.00 ± 
0.00 

96.67± 
4.71 

96.67 ± 
4.71 

F1 92.62± 
5.46 

90.06± 
2.27 

92.62± 
5.46 

90.89± 
6.46 

90.89 ± 
6.46 

2 

Precision 100.00 ± 
0.00 

91.67± 
11.79 

93.33± 
9.43 

100.0± 
0.00 

100.00± 
0.00 

Recall 75.55 ± 
17.50 

81.11± 
16,41 

87.78± 
8.75 

81.11± 
16.41 

81.11± 
16.41 

F1 85.00 ± 
10.80 

85.86± 
14.07 

90.30± 
8.18 

88.64± 
10.33 

88.64± 
10.33 

3 

Precision 83.81± 
11.97 

83.81± 
11.97 

73.99± 
8.07 

81.35± 
4.59 

82.87± 
3.98 

Recall 58.93± 
2.53 

58.93± 
2.53 

82.14± 
12.71 

77.38± 
6.07 

86.31± 
11.69 

F1 68.69± 
2.86 

68.69± 
2.86 

76.57± 
1.16 

79.21± 
4.66 

84.20± 
6.83 

4 

Precision 0.00 ± 
0.00 

0.00 ± 
0.00 

100.00± 
0.00 

100.00± 
0.00 

100.00± 
0.00 

Recall 0.00 ± 
0.00 

0.00 ± 
0.00 

46.67± 
14.40 

46.67± 
14.40 

63.33± 
17.85 

F1 0.00 ± 
0.00 

0.00 ± 
0.00 

62.38± 
12.80 

62.38± 
12.80 

76.02± 
14.07 

5 

Precision 0.00 ± 
0.00 

91.67± 
11.79 

93.33± 
9.43 

93.33± 
9.43 

93.33± 
9.43 

Recall 0.00 ± 
0.00 

83.33± 
11.79 

100.0± 
0.00 

100.0± 
0.00 

100.00± 
0.00 

F1 0.00 ± 
0.00 

86.90± 
10.24 

96.30± 
5.24 

96.30± 
5.24 

96.30± 
5.24 
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6. Conclusions 

This paper confirms that the representation of data in a lower dimensional space can improve 
classification performance by capturing latent relations between variables.  Two methods for 
lowering the dimension of the original data representation were used: concept decomposition 
and projection on principal components.  Representation in a lower dimensional space can 
improve precision (which is improved for classes 1 and 5 by concept decomposition and class 
3 by projection on principal components) and recall (which is improved by concept 
decomposition for class 3 and for classes 4 and 5 by projection on principal components).  
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Figure 1. Projection on two centroids 
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Figure 3. Macro-average of F1 measure of classification by SVM  
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