JIOS, VoL. 37,No. 1 (2013) SUBMITTED 10/12; ACCEPTED 03/13

UDC 004.415.53
Original Scientific Paper

Creating TTCN-3 Test Suite from CPN Specification

Marina Bagi¢ Babac marina.bagic@fer.hr
University of Zagreb

Faculty of Electrical Engineering and Computing, Zagreb, Croatia

Dragan Jevti¢ dragan.jevtic@fer.hr
University of Zagreb

Faculty of Electrical Engineering and Computing, Zagreb, Croatia

Abstract

Testing of a software product is the key activity before deploying it in the real-time
environment. Therefore testing should be introduced into the product development process as
ecarly as possible in order to decrease the costs of repairing the damage in later phases. In this
paper we use Coloured Petri Nets (CPN) for the system specification and also as a system to
be tested instead of its implementation. This specification also serves as the basis for the test
suite generation. Test cases are provided in the language of Testing and Test Control Notation
version 3 (TTCN-3) due to its general application area and platform independence. Stop-and-
wait communication protocol has been used as a tutorial example of our approach.

Keywords: specification, coloured Petri nets (CPN), testing, TTCN-3

1. Introduction

In this paper we use the relationship between the software system specification and testing in
order to introduce testing phase of the software system development as early as possible. We
focus on the high-level design of the development process and the system testing phase of the
V-model. System tests check whether the system as a whole implements effectively the high-
level design [12]. The whole system has to be tested to check if it delivers the features
required. Our testing approach is a black box testing since we relate our testing with the
specification rather than the implementation of the system.

Specification language that we have chosen in order to design the system is Coloured
Petri nets (CPN) due to its general purpose, strong formal syntax, semantics and visuality
supported by CPN Tools [9]. Furthermore, we believe that CPN is a lot more than merely a
modeling language. It is a complete modeling philosophy which has been developing for
decades and is supported with numerous papers and articles [8], [10], [11] etc. and also online
tool support [2]. It has been recognized in both academia and industry as useful modeling and
verification formalism with a wide area of application. Its major strength is its simplicity,
clearness and availability for any kind of a user.

Our selection of a testing language is Test and Testing Control Notation version 3
(TTCN-3) which is an internationally standardized testing language. The language is designed
to provide a general-purpose testing language suitable for a wide range of testing applications.
It can be used across the whole product development cycle [21]. TTCN-3 supports
specifications of test scenarios using textual and other (graphical, tabular, etc.) presentation
formats. In this paper we use TTCN-3 textual notation which is referred to as a core language
in the literature [5].

In this paper we specify and test an example of a communication protocol with CPN and
TTCN-3 respectively in order to explain the use of specification for creating a test suite.
Another aspect of motivation is to cover system specification with testing code, and also to
introduce system testing as early as possible into the development process of the system in
order to decrease the costs of repairing the damage in later phases. We explain some

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

BAGIC BABAC AND JEVTIC CREATING TTCN-3 TEST SUITE...

similarities of the two languages and focus on mapping of their data types and architectural
concepts.

The idea of using CPN model as both specification and a resource for creating TTCN-3
test suite has been recently published in [17]. However, the example in [17] is the
specification of a banknote processing machine while we choose an example of
communication protocol. Also, the paper lacks any details on transformation between the two
languages, so it leaves us with the vague idea of how the transformation might have been
done. In this paper we are strongly focused on details of the transformation starting from data
types to ports and component translation using the keywords from both of the languages.

The contribution of this paper relates to the model-based testing (MBT) [19], as a
systematic and automated test case generation technique, being successfully applied to verify
industrial-scale systems and is supported by commercial tools [7].

There is more and more interest in MBT since it promises early testing activities,
hopefully early fault detection. However, to get full benefits from MBT, automation support
is required, and the level of automation support of a specific MBT technique is likely to drive
its adoption by practitioners [1]. Furthermore, scalability is still an open issue for large
systems as in practice there are limits to the amount of testing that can be performed in
industrial contexts. Even with standard coverage criteria, the resulting test suites generated by
MBT techniques can be very large and expensive to execute, especially for system level
testing on real deployment platforms and network facilities [7].

The outline of this paper is as follows; after the introductory section, the second and the
third sections of this paper explain the benefits of CPN and TTCN-3. After the specification
of the communication protocol in CPN, the fourth section focuses on CPN specification
translation to TTCN-3 test suite using the elements of both languages which are used in this
example.

2. Specification of the Communication Protocol

After setting up all the requirements for the software system, the next step in the software
development process is a formal specification, or a high-level design. We use a formal
specification language of Coloured Petri nets (CPN, or CP-nets) for specifying an example of
communication protocol.

1" ["Stop ", "and ", "wait"] [1

: Received 1. 1°
Send 1 1°["Stop ","and ","wa|t"]| o ﬂ
) PacketBuffer

PacketBuffar

Sender “ Receiver

¥

¥

Frame A Frame Frame r Y Frame

Communication Channel

[Communication Channel]

Figure 1. CPN specification of Stop-and-wait protocol

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

2.1. Coloured Petri Nets

We have chosen Coloured Petri nets as a graphical language to specify an example of
communication protocol not only due to many qualities of CP-nets but also because of their
strong tool support by CPN Tools [2]. The tool is maintained and extended with new releases
regularly. CPN Tools provides us with the editor, simulator and state space analysis tools, and
many more features [9].

CP-nets are not merely graphical representation of a system. It contains both graphical
and textual elements. CPN is based on the extended finite state machine. States and transitions
between them are represented via so called places, transitions and arcs between them. Places
and transitions are nodes and nodes of the same type cannot be connected directly via arcs.
They are used to carry tokens which are referred to as sets of colours. Colours stand for data
types in CPN to emphasize the difference between the traditional Petri nets with ordinary
token and the CPN which differentiate data types.

2.2. Stop-and-wait Protocol

In this section we specify so called Stop-and-wait protocol using CPN Tools. Stop-and-
wait protocol describes the communication between the three basic participants: the sender,
the receiver and the communication channel between them.

The protocol is initiated by the sender’s sending the data to the receiver. The
communication channel forwards the data throughout the internet to the receiver. Once the
receiver receives the data, he acknowledges the receipt of the data by sending the
acknowledgement back to the sender via the same communication channel. Since the protocol
is distributed and vulnerable due to the possible loss in the communication channel, or some
unpredicted situations, we need to test all the communication participants

Stop-and-wait protocol has been fully specified in [10] using Design/CPN tool. Later it
has been slightly changed and adapted to the latest CPN Tools releases in a form of so called
Simple protocol. However, we have taken the initial Stop-and-wait protocol as it has been
specified in [10] and we have adapted it to the latest CPN Tools version.

1°["Stop ","and ", "wait "]

1 1°["Stop ","and ","wait"]|
PacketBuffer

ket
[PRIEAE p:ipackets

(sn, acked)

1°(0, acked)
dframe -
P NextSend |1 -1"(0,acked)
e

Accept
(sn, rmtacked)r

v

& ASeqxStatus
(sn, p)
dframe
Sending . (sn, status)
if r>sn
DataFrame then (rn, acked)
dframe else (sn, acked)
17(0,™) Y
Time |y (sn, notacked) Recaive
out % AckFrame
DataFrame
F 3
dframe
¥
dframe ackframe rn

Send Data
Frame

dataframe dframe

- oAt Receivehck
ransmitData
Frame

Figure 2. CPN specification of the sender module

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

BAGIC BABAC AND JEVTIC CREATING TTCN-3 TEST SUITE...

The protocol originates from the datalink control layer of the OSI network architecture.
The participants are depicted in Figure 1 as CPN modules. The protocol transfers a number of
packets from the sender to a receiver. The communication medium may lose packets and
packets may overtake each other. Hence, it may be necessary to retransmit packets and to
ignore doublets and packets that are out of order.

Figure 1 depicts the protocol from the high-level perspective since the details of
implementation are hidden within the module hierarchy. This model nicely corresponds to the
TTCN-3 specification of test components since CPN has explicitly defined three
components/modules and the communication ports/places between them. In order to specify
TTCN-3 communication ports, interfaces of these components/modules are crucial. Ports
represent interfaces between the test components and the test components and the protocol
(this is why ports were historically called PCOs — Points of Control and Observation).

[]
Received (1 1°[]
o PacketBuffer

if sn=rn
then packets™~[p]

else packets packets

(0, acked)

_ frn atatysg)
- 1 (Oacked)=—B ;1 Frome
SeqxStatus J

; if (sn=rn)
ackframe rn then (rn+1, notacked)

else (rn, notacked)
TrabsmitAck ReceiveData
[Out] Frame

Frame

Send (rn, acked)

Ack Frame

t (rn, notacked)

dataframe (sn, p)

Figure 3. CPN specification of the receiver module

Lower-level design of the Sender module is shown in Figure 2. We do not explain each
place and transition of the CP-net as it is thoroughly explained in [10]. Besides, in order to
test the specified functionality in TTCN-3, it suffices to extract only input/outgoing places
from this specification (places Send, TransmitData and ReceiveAck). These places are directly
connected to the corresponding places of communication channel.

TransmitData Recaivaick
Frame
dataframe dframe ackframe rn
L 4
DataChannal AckChannel
dataframe dframe ackframe m
L 4
% ReceiveData) @
Frame

Figure 4. CPN Specification of the Channel Module

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

In the same manner the receiver module has been specified in Figure 3. The relevant
places are Received, ReceiveData and TransmitAck being the interface for the communication
channel. And last, but not least important is the specification of the channel in Figure 4. For
the sake of simplicity here it is an ideal channel that cannot lose messages, so it only works as
the medium which transfers the accepted messages towards the receiver/sender. It contains
the relevant places TransmitData, ReceiveData, ReceiveAck and TransmitAck. which we are
going to be used for testing purposes.

3. TTCN-3 Testing

TTCN-3 (Testing and Test Control Notation version 3) is a globally adopted standard test
notation for the specification of test cases. TTCN-3 is intended for various application areas
like protocol testing (e.g. mobile and internet protocols), supplementary service testing,
module testing, testing of CORBA based platforms, testing of API’s etc. TTCN-3 is an
abstract language in the sense that it is test system independent which means that a test suite
in TTCN-3 for one application can be used in any test environment for that application [12].

Test System

Figure 6. TTCN-3 test components [10]

3.1. TTCN-3 Test Suite Architecture

A TTCN-3 specified test suite is a collection of test cases together with all the declarations
and components needed for the test. The top-level unit of a TTCN-3 test suite is a module,
which can import definitions from other modules. A module consists of a declarations part
and a control part. The declarations part of a module contains definitions, e.g. for test
components, their communication interfaces (ports), type definitions, test data templates,
functions, and test cases [12].

The control part of a module calls the test cases and describes the test campaign. For this,
control statements like if-then-else and while loops are supported. They can be used to specify
the selection and execution order of individual test cases. The module parameter list defines a
set of values that are supplied by the test environment at runtime. During test execution these
values are treated as constants and can be accessed within the module from any scope. Groups
can be used to structure the declarations of a module to improve the readability.

The port and component types are used to define the configuration of a test system.
Figures 6 shows test components in a test system. Each test system contains at least one main
test component (MTC) and an arbitrary number of parallel test components (PTCs) which are
created by MTC at the test system startup. These components communicate with the SUT
(System Under Test) through abstract test system interface which is defined using ports.

Figure 7 shows the communication between the test case and the SUT via a single port.
Port serves as a point of unidirectional or bidirectional message exchange between the test
components or the test component and the SUT. During this communication tests produce
sending and receiving messages which are stimulus to the SUT expecting a response from it.
Depending on the kind of the response, we get test verdicts about passing or failing the test
cases.

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

BAGIC BABAC AND JEVTIC CREATING TTCN-3 TEST SUITE...

TTCN-3 Test Case

Port.send(Stimulus) Port.receive(Response)

» Assignment
ofa

/\ Test Verdict

System Under Test

Figure 7. Black-box testing with TTCN-3 [10]

Types of protocol messages are defined as structured types, which can be constructed as
record, set, enumerated types, etc. from basic types or other structured types. TTCN-3
supports a number of predefined basic types. They include typical programming basic types
such as integer, boolean and string types, as well as testing-specific types such as verdict type,
port and component type. It has pronouncedly a rich data type foundation in order to support
various kinds of applications to be tested as a SUT.

Communication between the ports can be either message-based or procedure-based
depending on the complexity of responses from the SUT. While message-based
communication lies on the pure exchange of the data, procedure-based communication
involves computation actions as well as exchange of data from either the SUT or a test system
before sending a response to the requestor entity. In the next section we use the concept of
message-based communication.

4. TTCN-3 Test Cases for Stop-and-wait Protocol

4.1. Mapping CPN to TTCN-3 Data Types

The most important thing about both CPN and TTCN-3 language specifications is to transfer
data throughout the process of modeling or testing. CP-net carries tokens from the initial
place through the sequence of places connected with the transitions while TTCN-3 test cases
send and receive data exchanged between either the test components themselves or between
the test components and SUT. Therefore, we begin by generating the corresponding data
types and structures from CP-net to TTCN-3. Since there is a great amount of similarity in the
specification of both data models, the process could be also automated. Some basic data types
are the same, e.g. string corresponds to charstring, int to integer, etc.

¥ colset Packet = string;

¥ colset PacketBuffer = list Packet;

¥ colset Seq = int;

¥ colset Status = with acked | notacked;

¥ colset SeqxStatus = product Seq * Status;
¥ colset DataFrame = product Seq * Packet;
¥ colset AckFrame = Seq;

¥ colset Frame = union dataframe:DataFrame + ackframe : AckFrame;
¥varp . Packet;

¥var packets : PacketBuffer;

¥var dframe : DataFrame;

= varsnrn

¥var status ! Status;

¥varm : AckFrame;

Table 1. CP-net data definitions from CPN Tools

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Data translation from CPN to TTCN-3 is more relieved than the opposite direction since
TTCN-3 has much richer data vocabulary than CPN and supports wider diversity of user
defined data structures of types and templates.

Table 1 shows colour set definitions for Stop-and-wait protocol (colset is a keyword for
the colour set). Here, Packet is an alias for the string and PacketBuffer is a list of Packets. Seq
is an alias for the int. Status is an enumeration type defined here with the values of acked and
notacked for the acknowledgement manipulation.

CPN colset maps to TTCN-3
equivalent
string charstring
int integer
with enumerated
record record
union union
list record of
product record

Table 2. Correspondence between CPN colour sets and TTCN-3 types

SeqxStatus and DataFrame are both Cartesian products (ordered data types) placing one
Seq (inf) at the first position and Status or Packet at the second position, respectively.
AckFrame is an alias for the Seq. And, Frame is a union structure which is consisted of either
DataFrame Cartesian product or merely int (AckFrame). The rest of the Table 1 is a few
variable definitions according to previously defined colour sets.

For each colour set from Stop-and-wait protocol we find the corresponding TTCN-3 data
type (see Table 2) and according to these mappings we create corresponding TTCN-3 data
type definitions for our protocol (see Table 3). Note that both CPN and TTCN-3 data
definitions are textual. Even though CPN is a primarily graphical language and TTCN-3 also
has its own graphical version [6], data definitions and their manipulation remain textual.

type charstring Packet;
type integer Seqg;

type record of Packet PacketBuffer;
type enumerated Status {
acked, notacked};
type record SegStatus/{
Seq seq,
Status status
}
type record of segStatus SegxStatus;
type record SegPacket{
Seq seq,
Packet packet
}
type record of SeqPacket DataFrame;
type Seq AckFrame;
type union Frame {
DataFrame dataframe,
AckFrame ackframe

}

template Frame packet0 := {dataframe := {{seq := 0, packet := "Stop "}}}
template Frame ack(0 := {ackframe := 0}
template Frame packetl := {dataframe := {{seq := 1, packet := "and "}}}
template Frame ackl := {ackframe := 1}
template Frame packet2 := {dataframe := {{seq := 2, packet := "wait"}}}
template Frame ack2 := {ackframe := 2}

Table 3. TTCN-3 data definitions of Stop-and-wait protocol

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

BAGIC BABAC AND JEVTIC CREATING TTCN-3 TEST SUITE...

While CPN uses variables as the message carriers in the specifications, TTCN-3 uses so
called templates. Therefore, in Table 3 type definitions are followed by template definitions.

4.2. Mapping CPN Modules to TTCN-3 Test Cases

After translating data types from CPN to TTCN-3, there is an important step left — test cases
generation. In order to make test cases we first need to specify type components in which test
cases are going to be run. CPN specification serves in a way that we just need to extract the
required relevant information for the test components creation. Even the places between the
modules are called ports in CPN. The same concept holds for the test components. Test
components need to be defined with their interfaces (ports) towards the SUT.

type port TransmitData message {
in Frame

}

type port ReceiveData message {
out Frame

}

type port TransmitAck message {
in Frame

}

type port ReceiveAck message {
out Frame

}

type port Send message {
inout PacketBuffer

}

type port Received message {
inout PackBuffer

}

type component Channel ({
port TransmitData pt transmitData;
port ReceiveData pt receiveData;
port TransmitAck pt transmitAck;
port ReceiveAck pt receiveAck

}

type component Sender {
port TransmitData pt transmitData;
port ReceiveAck pt receiveAck;

}

type component Receiver {
port TransmitAck pt_transmitAck;
port ReceiveData pt receiveData;

Table 4. Test suite architecture: port and component types

Figure 8 shows test components that are used for testing our protocol. These are all
parallel test components as the main test component creates and starts them all and delivers
the final verdict.

TransmitData ReceiveData TransmitData ReceiveData

PTC

Sender ¢y Receiver

ReceiveAck TransmitAck ReceiveAck TransmitAck

Figure 8. Parallel test components of the test suite

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

The main test component performs a test cast execution in Table 8. Figure 8 also
emphasizes the act of ports and the directions of frames flow, i.e. from the sender towards the
channel, and from the channel towards the receiver. Conversely, acknowledgements flow in
the opposite direction, from the receiver to the channel and from the channel back to the
sender.

In order to make a framework for running test cases it is necessary to define test system
interface. However, when testing the whole protocol with a number of involved participants,
it is required to first define what exactly is going to be tested. Therefore, we make here three
test components, one for each of the involved participants. When testing the sender, he is our
SUT and we use the channel and the receiver test components to act as reliable
communication participants. When testing the communication channel, we use the sender and
the receiver test components as reliable communication participants. And when testing the

receiver, we involve the sender and the channel test components as reliable communication
entities.

testcase tc_testChannel () runs on Channel ({

alt |

[] pt _receiveData.receive (packet0) {
transmitData.send(packetO)
}

[] pt receiveData.receive (ack0) {
transmitAck.send (ack0)
}

[] pt receiveData.receive (packetl) {
transmitData.send (packetl)

[] pt receiveData.receive (ackl) ({
transmitAck.send (ackl)
}

[] pt receiveData.receive (packet2) {
transmitData.send (packet?2)
}

[] pt receiveData.receive (ack2) ({
pt transmitAck.send(ack2)
setverdict (pass) ;

}

Table 5. Test case for the channel test component

All the relevant type ports and test components made out of them are shown in Table 4.
For the sake of simplicity we have chosen the same names for ports as they were defined in
CPN specification. The communication between these ports is message-based as it has been
defined in CPN specification. Types of messages are also strictly taken from corresponding
CPN definitions (Table 3). For simulation purposes we have specified three frames to be sent

by the sender test component (“Stop ”, “and ” and “wait”) to the receiver test component via
the channel test component.

testcase tc testSender () runs on Sender ({

pt transmitData.send (packetO);
alt {
[] pt receiveAck.receive (ack0) {
pt transmitData.send (packetl);
}
[1 pt _receiveAck.receive ({
setverdict (fail)

}

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

BAGIC BABAC AND JEVTIC CREATING TTCN-3 TEST SUITE...

alt {
[] pt _receiveAck.receive (ackl) {
pt_transmitData.send (packet2)
}
[] pt receiveAck.receive ({
setverdict (fail)

}

alt {
[] pt receiveAck.receive (ack2) {
setverdict (pass)
}
[] pt _receiveAck.receive ({
setverdict (fail)

}

Table 6. Test case for the sender test component

Last but not least important, we make test cases to run within our test components. Table
5 shows test case to run on the channel test component. In the spirit of a black-box testing test
case is based on stimulus — response communication. If it receives a data packet or an
acknowledgement, it transfers it to the appropriate outgoing port.

testcase tc testReceiver() runs on Receiver ({

alt {
[] pt receiveData.receive (packet0) {
pt transmitAck.send(ackO0) ;
}
[] pt receiveData.receive {
setverdict (fail)
}
}
alt {
[] pt receiveData.receive (packetl) {
pt transmitAck.send(ackl) ;
}
[] pt receiveData.receive {
setverdict (fail)
}
}
alt {
[] pt receiveData.receive (packet2) {
pt transmitAck.send(ack2);
setverdict (pass) ;
}
[l pt receiveData.receive {
setverdict (fail)

}

Table 7. Test case for the receiver test component

As it runs on the channel test component, it has four ports (Figure 8) which correspond to
CPN port places (Figure 1) TransmitData, ReceiveAck, TransmitAck and ReceiveData
coloured with Frame colset. We assume an ideal channel with no transmission loss of data
and instant response on stimuli acceptance. Therefore, upon the receipt of a frame from the
sender, e.g. packet0, it instantly sends the received packet0 to the receiver. Or in the other
direction, upon the receipt of an acknowledgement from the receiver, e.g. ack0, it instantly
sends the received ack(back to the sender. If all the transmitted packets are properly
delivered and acknowledged, the verdict of a test case is set to pass.

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13
10

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Similar principle remains for the rest of the test cases (Tables 6 and 7), i.e. tc_testSender
and zc_testReceiver. The only difference is the alt keyword which is introduced for different
options in case the messages come to the recipient out of order, when the verdict is set to fail.

Test case fc_testProtocol runs on the main test component. It starts first and creates all the
parallel test components in the system by connecting the corresponding ports.

Once our test suite is complete and ready for the execution, we can simulate the test
component communication. We have used Loong Testing tool [13] which has served not only
for testing execution, but also as a verification tool for our testing code (syntax checker and
the compiler). Test results were compatible with the initial CPN specification.

testcase tc testProtocol () runs on EmptyComponent {

var Sender v_sender;
var Channel v_channel;
var Receiver v_receiver;

v_sender := Sender.create;

v_channel := Channel.create;

v_receiver := Receiver.create;

connect (v_sender: pt transmitData, v _channel: pt receiveData);

connect
connect
connect

v_sender: pt receiveAck, v _channel: pt transmitAck);
v_channel: pt transmitData, v_receiver: pt receiveData);
v_channel: pt receiveAck, v_receiver: pt transmitAck);

Table 8. Test case embedded in MTC

The main strength of the above approach is obtaining tests and test results very early in
the development process. However, scalability issues and how to handle more complex
examples and larger real world applications still remain an open issue. One step is to automate
some of the process. Concerning the Stop-and-wait example, data transformation from CPN
to TTCN-3 is proposed, as well as I/O (Input/Output) places (ports in CPN) to ports in TTCN-
3, and CPN modules to test components. Also, expressions of directed arcs from CPN could
have been transformed to send/receive statements in TTCN-3.

5. Conclusion and Future Work

Although at first glance specification of system requirements and testing do not seem to be
very closely connected, we have given an example of their close relationship in order to
introduce testing as early as possible into the development process of a software product.
Furthermore, we have used the specification of the system as a system under test and also as
the origin for writing test cases.

In the words of concrete languages and tools, we have used Coloured Petri nets (CPN) for
system specification and Testing and Test Control Notation version 3 (TTCN-3) for testing to
prove that it is possible to map specification model to testing model of a system.

Even more, revealing the great similarity between their underlying concepts (data types
and extended finite state machine which they both support), the future work is to automate
some of the process of their mapping. Using the example of a communication protocol, where
the sender sends the message to the receiver via the communication channel and the receiver
acknowledges it by sending the appropriate reply throughout the same channel, we have given
an idea of how to map some of the basic data types from CPN to TTCN-3, CPN port places to
communicating TTCN-3 ports, CPN modules to TTCN-3 test components, CPN message
sending and receiving mechanism to TTCN-3 stimulus and response communication, etc. We
have used elements of both languages showing how to provide an automatic approach in the
future. Automated generation of test cases would not only introduce tests very early into the
development process, but would also accelerate the process of testing itself.

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13
11

BAGIC BABAC AND JEVTIC CREATING TTCN-3 TEST SUITE...

Acknowledgements

This work was carried out within research project 036-0362027-1640 "Knowledge-based
network and service management", supported by the Ministry of Science, Education and
Sports of the Republic of Croatia.

References

[1]

[7]

[8]

[9]

[10]

[11]

Bringmann, E.; Krdmer, A. Model-Based Testing of Automotive Systems. 2008
International Conference on Software Testing, Verification, and Validation,
International Conference on Software Testing, Verification, and Validation (ICST).
pp. 485-493, ISBN 978-0-7695-3127-4, 2008.

CPN Tools. http://cpntools.org/, Feb. 2013.

Deil3, T: TTCN-3 for large systems, Systems Validation workshop Paris, Nokia
Research Center, pp. 1-61, 2004.

Ebner, M. A4n introduction to TTCN-3 version 3. ITU-T Study Group 17, Geneva,
5-14" Oct 2005.

ETSI, Methods for Testing and Specifcation (MTS). The Testing and Test Control
Notation version 3; Part 1 TTCN-3 Core Language. ETSI ES 201 873-1, V4.3.1,
2011.

ETSI, Methods for Testing and Specifcation (MTS).The Testing and Test Control
Notation version 3: Graphical Presentation Format. ES 201 873-3, V3.2.1, 2007.

Hemmati, H.; Arcuri, A.; Briand, L. Achieving Scalable Model-Based Testing
Through Test Case Diversity. technical report, Simula Research Laboratory, 2010.

Jensen, K. An Introduction to the Practical Use of Coloured Petri Nets. Lectures on
Petri Nets II: Applications, Lecture Notes in Computer Science vol. 1492, Springer-
Verlag, pp. 237-292., 1998.

Jensen, K. Kristensen, L.M. Coloured Petri Nets. Springer-Verlag Berlin
Heidelberg 2009.

Kristensen, L.M.; Christensen, S.; Jensen, K. The practitioner’s guide to coloured
Petri nets. International Journal on Software Tools for Technology Transfer 2 pp.
98-132, 1998.

Kristensen, L.M.; Jirgensen, J.B., Jensen, K. Application of Coloured Petri Nets in
System Development. Lectures on Concurrency and Petri Nets - Advanced in Petri
Nets. Proc. of 4th Advanced Course on Petri Nets. Vol. 3098 of Lecture Notes in
Computer Science, pp. 626-685. Springer-Verlag, 2004.

Lalani, N. Validation of Internet Applications. Fachhochschule Wiesbaden,
Karlstad University, University of Applied Sciences, Sweden, Master Thesis, 2005.

Loong Testing, http://ttcn.ustc.edu.cn/MainPageEn.html, Feb. 2013.

OpenTTCN Oy - OpenTTCN Ltd, OpenTTCN DocZone, TTCN-3 language
reference, http://wiki.openttcn.com/media/index.php/OpenTTCN/Language
_reference, Feb. 2013.

Rennoch, A.; Desroches, C.; Vassiliou-Gioles, T., Schieferdecker, 1. TTCN-3
Reference Card, http://www.blukaktus.com/card.html, online edition 4.4.1, Apr.
2012.

12

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13

JOURNAL OF [INFORMATION AND ORGANIZATIONAL SCIENCES

[16]

[17]

[18]

[19]

[20]
[21]

Santos-Neto, P.; Resende, R.; Padua, C. Requirements for information systems
model-based testing. Proceedings of the 2007 ACM symposium on Applied
computing - SAC '07. Symposium on Applied Computing. pp. 1409-1415, ISBN 1-
59593-480-4. edit., 2007.

Schnattinger, T.; Pietschker, A. Using Colored Petri Nets for System Specifications
and as a System Under Test Prototype, TTCN-3 User Conference 2011, 2011.

Shafique, M.; Labiche, Y. A Systematic Review of Model Based Testing Tool
Support. Carleton University, Technical Report, May 2010.

Stepien, B. TTCN-3 in a Nutshell. University of Ottawa, online tutorial,
http://www .site.uottawa.ca/~bernard/ ttcn3\ in\ a\ nutshell.html, Feb. 2013.

TTCN-3 home page, http://www.ttcn-3.org/, Feb. 2013.

Willcock, C.; Tobies, S.; Deiss, T.; Keil, S.; Engler, F.; Schulz, S. An Introduction
to TTCN-3. John Wiley & Sons Ltd, 2005.

Zander, J.; Schieferdecker, 1.; Mosterman, P. J., eds. Model-Based Testing for
Embedded Systems. Computational Analysis, Synthesis, and Design of Dynamic
Systems. 13. Boca Raton: CRC Press. ISBN 978-1-4398-1845-9, 2011.

JIOS, VOL. 37, NO. 1 (2013), PP. 1-13
13

