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Abstract

This article considers the multicriteria optimization approach using the modified genetic
algorithm to solve the project-scheduling problem under duration and cost constraints. The work
contains the list of choices for solving this problem. The multicriteria optimization approach is
justified here. The study describes the coevolution approach together with Pareto principles,
which are used in the modified genetic algorithm. We identify the mathematical model of the
project-scheduling problem. We introduced the modified genetic algorithm. The article includes
the example.

Keywords: project, project management, project scheduling, multicriteria optimization,
coevolution, Pareto principles, genetic algorithm

1. Introduction

Project scheduling is an integral part of project management in IT. Decisions made in this stage
can influence on the whole project. Since the incorrect decision-making in resource allocation
can lead to breach of project term. The reduction of the project cost and duration are the critical
goals for many IT companies. Some companies often employ developments only for project
development. Each developer requires fixed wage and as a rule, the better developer requires
the greater wage.

The project-scheduling task under duration-cost trade-off is a typical task of multi-objective
optimization. The article proposes a solution of this problem by means of the modified genetic
algorithm proposed by Goldberg [3] using coevolution [10] and Pareto Principles. The
following things should be done to reach the solution:

1. Formulate the multi- objective optimization task in general form.

2. Formulate the project-scheduling task.

3. Consider the ability of using problem solution alternatives.

4. Describe the modified genetic algorithm for project scheduling task.

2. Multi-objective optimization

The multi-objective optimization [7] is the tuple <x, z, g>:
Xx={X;,...X,}€X
2(X) =1{2;(X), .., 2, (X) } (1)
g(x)={g;(x);- 8}

x — Decision variable vector.

X— Solution space.

z —Objective functions (optimality criterions).

g- Constraints.
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For multiple-objective problems [9], the objectives are generally conflicting, preventing
simultaneous optimization of each objective hence, optimizing x with respect to a single
objective often results in unacceptable results with respect to the other objectives. The Pareto
principals [7] are using for these purposes

If all objective functions are for minimization, a solution x is said to dominate another
solution y (x ¢ y), if and only if:

Vi,zl.(x)Szl.(y)/\Eli,zl.(x)<zl.(y) )

A solution is called Pareto optimal, if it is not dominated by another solution in the search
space. The list of all non-dominated solutions is calls the Pareto optimal set and it forms the
Pareto Front.

The main goal of a multi-criteria optimization algorithm is to determine solutions in the
Pareto optimal set. However, it is very difficult to identify the whole Pareto optimal set due to
its size. It is also computationally infeasible for many cases. Therefore, a practical approach is
to determine the approximate solution (the best-known Pareto set) that represent the Pareto
optimal set as much as possible. With these concerns in mind, a multi-objective optimization
approach should achieve the following three conflicting goals:

1. The approximate set should be as close as possible to the real Pareto front. It should be

a subset of the Pareto optimal set.
2. Solutions in the set should be uniformly distributed over of the Pareto front.
3. Approximate solutions should cover the whole spectrum of the Pareto Front.

3. Mathematical model

According to PMBOK [1] a project — a temporary undertaken to create a unique product, service
or result. We will understand the project P as undertake characterized by a set of goals Z,
constraints C that includes a set of tasks and a set of resources R. Thus, a project is defined as
a tuple:
P=<z,C, W,R> 3)
The project purposes are defined according to the project optimality criterions. The
objective functions are presented as:

Z= {ZT ,Z¢ } “
The minimal duration and the minimal cost are two main goals in this case:
Z; — min
. (%)
Zo —> min

Every project has the following constraints as a rule:

e The total duration TO.

e The total cost CO.

The tasks set is the constraint too. To simplify the calculation of the project cost, the cost
will only include the personnel salaries, excluding other costs (rent of space, public service,
etc). Thus, under the constraint we will understand the follows:

C =<T0, C0> (6)

The set W includes tasks, which represent an unit of work. Each task consists of
laboriousness, which is expressed, in unit of time.

W={w,},i=1,N
|W|=N (7)
weW
Each project is defined as a directed acyclic graph G= (V, E) in which V is the set of nodes
and E is the set of the arcs showing the relationships between tasks. There are four types of
relationships:

FS — finish-start, in a finish-to-start dependency, the second task in the relationship cannot
begin until the first task finishes;
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FF — finish-finish, the first task be finished, in order for the second task to finish. The second
task can finish any time after the first task finishes;

SS — start-start, the first task has begun, in order for the second task to begin;

SF — start-finish, the second task in the relationship cannot finish until the first task starts.

To determine the relationships between the tasks we use first-order logic, we introduce the
functions and relations:

FinishStart(w;,w;) = Start(w;) 2 Finish(w )
FinishFinish(w;,w;) = Finish(w;) 2 Finish(w )

8
StartStart(w;,w;) = Start(w,) = Start(w;) ®
StartFinish(w;,w ;)= Finish(w;) 2 Start(w;)
Start — the function returning the date of commencement of the task,
Finish — the function returning the date of completion of the task,
FinishStart — the FS relationship,
FinishFinish — the FF relationship,
StartStart — the SS relationship,
StartFinish — the FS relationship,
The set R includes human resources.
R={r},j=L.M
IR|=M )
reRr

Each resource 1; has specified skills to perform tasks and receive the salary c;. To calculate
the duration of the task wi by assignment the resource rj to it we introduce the function
Duration. To simplify the calculation of the tasks duration we use the correspondence matrix
B={bj;}. The size of this matrix is N*M. Each element of the matrix represents the value of the
task run-time by the resource. Thereby:

Duration(w;,7;) = bij (10)

12 J
In addition, only one task can be assigned to only one resource. We introduce the flag for
this purpose

L,if the task iis assigned to the resource j,
X = . (11)
0, if not.
Then the following condition should be satisfied for any task:
M
Vii=1N,) x; =1 (12)
j=l

Thus, the project duration and cost can be calculated as:

M
max(Start(w, ) + Z Duration(w,, ;) *x; ) (13)

>0
J=1

N M
ZZDuration(wi,rj)*xij *c, (14)

i=1 j=1
The objective function can be represented as:

M
max(Start(w;) + Z Duration(w;, ;) * x;;) — min
=
Vo (15)
Z:Z:Duration(wi ,7;)*x; *¢; —> min
i=l j=1
The constraints can be represented as (8) and:
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M
max(Start(w; ) + z Duration(w,,r;) *x;) <T

J=1

(16)
N M
ZZDuration(wi,kj)*xU *c; <C,

J

i=1

4. Alternatives

If we consider only one parameter such as duration or cost, we have one-criterion optimization.
The evolutionary algorithms show oneself to advantage for this problem:

e The bee’s algorithm [5].

e The ant colony algorithm [8].

e The genetic algorithm [2].

The evolutionary algorithms works well with multi-objective optimization compared to the
pointed algorithms such as simulated annealing [6] and tabu search. The methods provides the
following advantages:

e More accurate search.

e Finding a set of solutions instead of a single.

e As arule, the methods are independent to the basic solution.

The classical approach to solve a multicriteria optimization problem is to assign a weight
to each normalized objective function so that the problem is converted to a one-criterion
optimization problem with a scalar objective function [2]. This approach greatly simplify and
expedite search theoretically, but computed solutions are often not optimal.

It is also possible to reduce a multicriteria optimization problem to a one-criterion
optimization problem by random selection of criteria that will be evaluated the alternative. The
modification of genetic algorithm VEGA (Vector Evaluated Genetic Algorithm) includes this
approach.

These approaches are easy to implement and computationally as efficient as a single
objective genetic algorithm. The major drawback of objective switching is that the population
tends to converge to solutions, which are very superior in one objective, but very poor at others.

Using of the Pareto principles excludes this drawback. Today the most popular methods to
solve multicriteria optimization problem is using of the modified genetic algorithms that take
into account the Pareto principles. These methods provide complex analysis of the whole
criteria spectrum simultaneously.

This approach has one disadvantage its performance. The possible methods to increase the
algorithm performance are reducing of the search space and using parallel computing. The
coevolutionary algorithms [4] can solve this problem. a coevolutionary algorithm is an
evolutionary algorithm (or collection of evolutionary algorithms) in which the fitness of an
individual depends on the relationship between that individual and other individuals As a rule
there is a splitting of optimization problem into smaller components thereby, the search space
reducing occurs. Each of the components responsible for optimizing single criteria, then the
computation can be performed in parallel streams, better using computational capabilities of
the machine. After the calculation of the fitness values of all species in population the process
of cooperation or competition among different populations is used.

5. Solution method

At first, we should identify the chromosome definition or the coding system for the solution
representation. The vector p of the N size will represent solution which elements are integers
identifying the specific resource. Thus:

Vi, 1<plil<M (17)
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The index of this vector represents the task number or identifier, so if j = p [i], that means
that the task i has been assigned resource j. Each chromosome defines the schedule which has
its own duration and cost.

Because the scheduling has one collective goal (executing of the project within the time
limit and budget) the cooperative type of coevolution is suggested here. As it is two-criterion
optimization problem, the whole problem is divided into two subproblems: the first minimizes
the project duration, the second — the cost. Each of the subcomponents uses the genetic
algorithm. Selection of individuals requires the fitness values of individuals. Total fitness value
of individual is determined according to internal and external fitness values. The internal fitness
value is calculated by the value of optimized criteria. For the first component, it is duration, for
the second — cost. Next, it should be determined how well the individual from the one
population of one the component cooperates with the individual of another population of
another component.

There are mainly three such attributes: the sample size, selective bias, and credit assignment
for potential interactions during fitness assessment. Interaction sample size determines number
of collaborators/competitors from each population to use for a given fitness evaluation.
Interaction selective bias determines the degree of bias of choosing a collaborator/competitor.
Interaction credit assignment determines the method of credit assignment of a single fitness
value from multiple interaction-driven objective function results. We will use the population
count as the sample size. Thus, the selective bias determines the whole population. The total
fitness value is calculated by the formula:

f(p):f}nt(p)*fext(p) (18)
p — Individual

S (D) _ Internal fitness value individual

Jea(P) External fitness value of individual.
The internal fitness value is calculated by the formula:

S (P)= 1

value(p,criteria) (19)

Criteria — Optimization criteria. Criteria has two possible values: time, cost.
Value (p, criteria) —Value of the criteria of individual p, see 13 for time and 14 for cost.
External fitness values are calculated using the following formulas:

N
Z cooperate (p,., pfj , cost)
T -
fext (pki) =

L

N
Z cooperate (p,, pgj ,time)
C i

fext (pki ) =

L (20)
k — Population generation (number).
L — Population size

T
Pk _ The individual of the population in generation k, which optimizes time.

c

Pk - The individual of the population in generation k, which optimizes cost.

cooperate (pl,p2, criteria) — Cooperation value of two individuals in different population
of the same generation, return one of the possible values: 1(true), O(false)

The cooperation function is calculated according to:

cooperate( p;,p ;, criteria) = value( p; , criteria) < value(p ; , criteria) 1)

The external fitness value for individual i in generation k is greater, the more individuals
from other population of the same generation k, which optimize one criteria, greater than the
value of non-optimized criterion of individual i.
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The crossover, mutation and ellitism operations do not differ from the corresponding
operations in the case of single-criterion optimization. Selection of the individuals is based of
the total fitness value. Because we are facing multicriteria optimization problems with the
approach of the Pareto principles, we need a specific ranking strategy based on the classification
of candidate solutions. The iteration count can be considered as a stop condition of algorithm.

Because we are facing multicriteria optimization problem at the end we should construct
Pareto front of non-dominated solutions.

6. Example

As an example, the problem has been solved with the following parameters:

N=20
M=10

e Population size — 100
e [teration count — 50
e Mutation — 5 %
o T =0
° CO =00
The data about resources R are shown in the table 1.
Resource 1 2 3 4 5 6 7 10
number
Salary 7 8 9 2 4 6 7 7
Table 1 Resources list
The tasks data W are shown in table 2.
Task number 1 2 3 4 5 6 7 8 9 10
Predecessors 1,3 2,3 1,2,3 1,2,3 1, 2,
3, 4,
5,6
Task number 11 12 13 14 15 16 17 18 19 20
Predecessors L, 3, (1, 2,14, 5|1, 3,| 1,3 45, 2, 3,11, 2,1, 3,|1, 4,
4,6,7 |4, 5,17,8,9 |7, 10, 11, 4, 513, 7,17, 12, | 11,15
6,7 11,13 12,1516, 9,1 9,11 | 13,
14,1 14,
16,18

The relationship FS was considered in this sample for simplicity.

Table 2 Tasks list

matrix B is shown in table 3

The correspondence

Resource/ 1 2 3 4 5 6 7 8 9 10
Task
1 8 10 4 3 2 6 2 9 7 4
2 9 9 3 7 10 2 8 2 10 3
3 10 3 10 4 5 10 7 2 2 1
4 3 2 8 5 4 10 7 1 10 6
5 4 5 5 3 8 5 9 8 3 7
6 7 1 6 2 3 8 9 8 7 8
7 7 4 10 1 1 5 2 6 3 5
8 5 1 5 8 3 10 5 10 5 4
9 9 2 7 5 2 2 8 4 6 4
10 7 5 9 8 9 1 3 2 1 6
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11 5 5 7 4 9 1 8 6 5 5
12 4 3 3 10 5 2 4 10 7 7
13 8 4 3 9 8 10 10 9 1 5
14 3 10 1 3 5 9 6 6 7 3
15 3 8 8 10 6 2 4 2 2 5
16 6 5 10 8 8 4 1 9 10 9
17 5 3 7 10 10 2 10 6 6 10
18 6 6 8 5 6 10 6 4 6 3
19 1 7 8 8 6 7 9 1 9 8
20 3 8 3 9 3 10 1 7 1 2

Table 3 Period of execution of tasks according to resource

As a result, two solutions were found:
Schedule#1. Total Duration — 18, total Cost — 204 and allocation:

Task1: Begin: 0; End: 3; Resource4. Task2: Begin: 0; End: 3; Resourcel0.
Task3: Begin: 3; End: 7; Resource4. Task7: Begin: 7; End: 8; Resource4.
Task9: Begin: 0; End: 2; Resource2. Task4: Begin: 4; End: 5; Resource8.
Task5: Begin: 8; End: 11; Resource4. Task6: Begin: 11; End: 13; Resource4.
Task8: Begin: 4; End: 5; Resource?2. Task15: Begin: 5; End: 7; Resource8.
Task10: Begin: 7; End: 8; Resource6. Task11: Begin: 8; End: 9; Resource6.

Task12: Begin: 7; End: 11; Resource?7. Task13: Begin: 7; End: 8; Resource9.
Task14: Begin: 13; End: 16; Resource4. Task16: Begin: 11; End: 12; Resource7.
Task18: Begin: 11; End: 15; Resource8.  Task20: Begin: 11; End: 12; Resource9.
Task17: Begin: 15; End: 18; Resource2.  Task19: Begin: 15; End: 16; Resources8.
Schedule#2. Total Duration — 13, total cost — 211 and allocation:

Task1: Begin: 0; End: 2; Resource7. Task2: Begin: 0; End: 2; Resource6.
Task3: Begin: 0; End: 1; ResourcelO. Task7: Begin: 2; End: 4; Resource7.
Task9: Begin: 0; End: 2; Resource?2. Task4: Begin: 2; End: 3; Resource8.
Task5: Begin: 2; End: 5; Resource9. Task6: Begin: 2; End: 4; Resource4.
Task8: Begin: 2; End: 3; Resource2. Task15: Begin: 5; End: 7; Resource9.
Task10: Begin: 5; End: 6; Resource®6. Task11: Begin: 6; End: 7; Resource®6.
Task12: Begin: 7; End: 9; Resource®6. Task13: Begin: 7; End: 8; Resource9.

Task14: Begin: 7; End: 10; Resource4. Task16: Begin: 7; End: 8; Resource7.
Task18: Begin: 7; End: 11; Resource8. Task20: Begin: 8; End: 9; Resource7.
Task17: Begin: 11; End: 13; Resource®6. Task19: Begin: 11; End: 12; Resourcel.
Dynamics of cost and duration changes is presented in table 4.

Iteration T optimization | C optimization | Iteration T optimization C optimization
T C T C T C T C
0 31 571 37 494 26 13 235 19 274
1 38 516 39 471 27 13 217 19 302
2 35 432 34 487 28 13 239 20 275
3 34 415 31 472 29 13 243 18 271
4 29 362 35 435 30 13 223 18 258
5 28 384 31 466 31 13 219 18 253
6 26 358 28 456 32 13 220 18 262
7 25 407 29 388 33 13 225 18 253
8 21 354 27 432 34 13 220 18 238
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9 21 359 27 367 35 13 219 18 228
10 20 261 22 339 36 13 219 18 226
11 16 335 22 369 37 13 219 18 224
12 17 319 23 332 38 13 220 18 224
13 15 289 23 332 39 13 219 18 222
14 15 280 22 348 40 13 219 18 222
15 14 293 21 311 41 13 219 18 222
16 14 293 21 311 42 13 212 18 222
17 14 298 20 313 43 13 217 17 218
18 14 245 19 330 44 13 217 18 217
19 14 231 19 341 45 13 211 18 211
20 14 266 19 329 46 13 211 18 211
21 13 217 20 297 47 13 209 18 211
22 13 237 20 278 48 13 209 17 212
23 13 248 19 302 49 13 209 18 204
24 13 214 19 291 50 13 211 18 204
25 13 235 20 254

Table 4 Time history of optimization criteria

This table show the dynamics of criteria optimization. The iteration#50 shows that it were
found two solutions (schedules) which compose the Pareto-optimal set. There are two solutions
(one for each optimization function or subcomponent of program) in each iteration (row in
table). The solutions represented in rows have the best fitness values in their generations for
each subcomponent. Because of using mutation there are some leaps, for example in the
iteration#0 the min value of duration for subcomponent optimizing duration is 31 while for the
iteration#1 it is 38.

Different launchings of the program give different results

Launch Tteration Mutation rate T optimization | C optimization
count T C T C
1 75 5% 14 225 18 210
2 100 5% 14 200 16 190
3 125 5% 12 200 15 182
4 150 5% 12 180 15 156
5 175 5% 12 158 15 150
6 75 25% 15 184 16 182
7 100 25% 14 186 15 170
8 125 25% 15 160 17 150
9 150 25% 17 149 17 149
10 175 25% 14 148 15 147

Table 5 Results depending on different input
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As it is shown in the table 5 the results of algorithm depends on iteration count and mutation
ration. Of course using of more iteration gives better result. The genetic algorithm gives
different generations and as a result different solutions while mutation rate gives locale
optimum escape.

7. Conclusion

This article contains information about how to solve the problem of duration-cost trade-off in
project scheduling using the modified genetic algorithm that takes into account the coevolution
and Pareto Principles The proposed two-criterion optimization can be extended by adding
additional objective functions such as minimization of risks or maximization of quality Specific
alternative strategy rankings can be replaced by another. Besides, it is possible to use this
approach in other evolutionary algorithms: the ant colony algorithm and the bee’s algorithm as
an example. Using of this method can greatly simplify the work of the project manager in
scheduling and recruitment of staff for project teams.
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