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Abstract

There is suggested a method of approximating unit-hypercubic infinite antagonistic game with
the matrix game and the corresponding solution in finite strategies. The method is based on
dimension-dependent irregular samplings over the game kernel. Numbers of the sampling
points and their coordinates are chosen due to the stated conditions. If the sampled kernel is
not the flat matrix then the multidimensional payoff matrix is reshaped into the flat one
wherewith to solve the matrix game. The reshaping is a reversible matrix map. The concluding
step of the approximation is in checking the finite solution consistency. Consistency can be
weakened, and consistency can be checked at some rank corresponding to a natural number.
The higher rank of the finite solution consistency is, the wider neighborhood of the sampling
numbers at which the solution properties are monotonic-like.

Keywords: infinite antagonistic game, unit hypercube, sampling, multidimensional matrix,
matrix game, finite support strategy, approximate solution consistency

1. Infinite Antagonistic Game Models

Infinite antagonistic game model a lot of conflict events associated with resources allocation
[2, 7] and military processes [10], where components of the player’s action space constitute
intervals. In technical-technological uncertain problems [5, 12], infinite antagonistic game is
an appropriate model for removing multivariate or interval uncertainties [11, 8]. There are
also time-selection games [11, 6], modeling economic-ecological interaction and sports.
Sometimes, if there is a large number of pure strategies for a player, it is methodologically
natural as well as practically useful to assume that the set of pure strategies for this player is
infinite [7, 12, 11]. Thus game infiniteness allows modeling a wider class of conflict events,
providing unrestricted possibilities to watch the event and to get its result payoff.

2. Solving Infinite Antagonistic Games on Compact Action Spaces

The general theory of infinite antagonistic games is much more complex than the theory of
finite antagonistic games. However, if the antagonistic game kernel, defined on a Euclidean
finite-dimensional closed subspace, is a continuous function, then the game has a solution at
least in mixed strategies [11]. And convex-concave games on such subspaces are solved
easily: one of the players has the pure optimal strategy, and another player has the mixed
strategy — an optimal mixture of a few pure strategies [10, 12]. Generally, any continuous
compact game can be solved in ¢ -optimal strategies with finite supports [11]. And every
completely bounded antagonistic game has ¢ -optimal strategies with finite supports [7, 12,
11]. Support finiteness is a very important property, letting implement the solution
statistically if the game is played repeatedly. If support is infinite, there is statistical
impossibility to use every pure strategy from the support at least singly, what shifts the
averaged game value against the optimal one.
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Nonetheless, compact games cannot be solved by a universal algorithmic approach,
unless they are finite games [3]. Construction of € -nets [3] over compact brings a game finite
approximation, whose properties depend on value of the taken €. However, it is unclear how
to select € for the construction that the € -solution be sufficiently close to the genuine
solution of the initial infinite game. Sufficiency of the closeness is uncertain as well.

3. Goal of Article and Tasks for Its Accomplishment

This paper goal is to state conditions for finite approximation of infinite compact antagonistic
game, using similar to € -net-construction technique, but without resorting to Helly metric for
promptitude. A new approximation technique should be a method of sampling the infinite
antagonistic game, where the sampling measure is chosen explicitly. For compact game case,
it is easy to find an isomorphic game to the initial one, that the set of every player’s pure
strategies would be Euclidean finite-dimensional closed and bounded subspace [12, 11, 1].
Normally, that the spoken subspace is unit cube of the appropriate dimension [12, 13].

Approximation of unit-hypercubic infinite antagonistic game is going to be accomplished
via execution of the following tasks:

1. The game kernel, defined on unit hypercube, must be sampled. In general, there is no
constant sampling step along a hypercube dimension. The number of points to be sampled
will be specific for each dimension. Therefore, conditions for dimension-dependent irregular
samplings will be stated, letting sample the kernel correctly and accurately.

2. The multidimensional matrix of payoff values must be reshaped into flat matrix
wherewith to solve the matrix game. Maintenance of one-to-one indexing should be provided.

3. The solution of the matrix game, being the approximation of unit-hypercubic infinite
antagonistic game, mustn’t be too dependent upon the sampling. Thus, the players’ optimal
strategies will be checked for their consistency, implying relative independence upon the
sampling within minimal neighborhoods of numbers of points to be sampled.

4. The consistency conception should be generalized off the minimal neighborhoods to
wider ranges of natural numbers.

Finally, discussible and completive notices are going to be declared. These declarations
should clarify the paper scientific contribution and outline ways for further research.

4. Sampling the Infinite Antagonistic Game Irregularly

Let
M
HY =X [0;1]cR" (1)
m=1
and
N
HY =X [0;1]cRY )

n=l

be the first and second players’ pure strategy sets, respectively, where M e N, NeN.
Denote the first player pure strategy by

X:[xm]lxM er\y 3)
and the second player pure strategy by
Y=[y,]., cH}. (4)

Classically, a strategy here is a real point in the player’s hypercube associated with a decision
or a behavioral operation (action) of the player [10, 12, 11, 7]. In the situation
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M+N
(X, Y e <1y =X [0;1]cRM (5)
d=1
the first player gets the payoff K (X, Y), while the second player losses the same value. The
subsequent unit-hypercubic infinite antagonistic game

(m}), 1Y, K(X,Y)) ©6)

is assumed such that its kernel K(X,Y) defined on the unit (A + N)-dimensional
hypercube

M+N

H,y=Hy xH =X [0;1]c R (7
d=1

is measurable and is differentiable with respect to any of variables
M N
{{xm}m=1 > {yn}n=l} : (8)

Also there exist mixed derivatives of function K (X, Y) by any combination of variables (8)

in any situation (5), where every variable is included no more than just once.
1)

m

While sampling irregularly, let S’ be the number of intervals between the selected

points in m -th dimension of hypercube (1), and Sf,2> be the number of intervals between the
selected points in #z-th dimension of hypercube (2). Remember that each dimension is the unit
segment now. In the utmost case of sampling, an1> eN and S,<,2> € N. Therefore, endpoints of
the unit segment are included into the sampling necessarily. There is no fixed sampling step.
Thus, in m -th dimension the first player instead of the segment [0; 1] of values of m-th
component of its pure strategy (3) now possesses the set of points

0 (S<1>) _ {xr<5m>}s§,‘>+1 by RO ’ x<S'<"l>+1> _1,

s, =1

m m m m

) < xfnd"’+1> vd, =1, anl> at m=1, M . )

m

In n-th dimension the second player instead of the segment [O; l] of values of n-th
component of its pure strategy (4) now possesses the set of points

e (Sf,2>) :{ <S”>}s,<,2>+1 by y<1> _o, y<s§2>+1> 1
5,1

n n n n

Y <) g =1, 8% at n=1, N. (10)
Consequently, the finite hypercubic irregular lattice

0N 0 (0N 0
D" =X Y (s! )=><{{xm }] }CHM (11)

m=1 m=1
substitutes the hypercube (1), and the finite hypercubic irregular lattice
D@ >N< (0 >N< NS g 1
- b n ( n )_ b {yn }snzl - N ( )

substitutes the hypercube (2). This makes possible transition from infinite game (6) to finite
one
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(p", D%, K(X,¥)) by XeD" and YeD (13)

on the finite hypercubic irregular lattice pDVxp¥ cH MAN -

{{S;l)}:_l’ {S§2>}nN_l} (14)

shouldn’t erase information about local extremums and gradient over hypersurface K (X, Y).

The choice of numbers

Thatis Vs, =1, S and v s =1, S there ought to be

"MK (X, Y) -0 "VK(X,Y)
>0 or
Ox,0X, ...0X,, 00,00, ...0Vy Ox,0x, ...0X,, 00,07, ...0yy
Vx, e [xfj"’>; xf,f"’“q and V y, E[y,gs”>; y,<f"+lq by m=1,M and n=1, N, (15)

<0

and

| aM+NK(X, Y) |
|8x18x2 ...0X,,00,0, ...0yy |

<Y

m 2 n

v ox, e[x ), xs”’+1>] and V y, e[y<s”>;y,<f”+l>] by m=1,M and n=1, N (16)

for some y >0, implying tolerable fluctuations of the hypersurface K (X, Y) on every one of

H{[xﬁf”; x,,f"‘“q}j; }le , {{[yff">; yﬁs”ﬂ}i}N } ‘

segments

n=1

Actually, inequalities (15) and (16) are conditions for sampling the game (6) kernel from the

hypercube (7) down to hypercubic irregular lattice DV« D? with (9) — (12). The following
assertion directs for choosing the numbers (14) and points

(5) st ¥ (5. s@a) Y
{{x }1 }1{{y }l }1 (17)

in order to sample the game (6) kernel.
Theorem 1. If the hypersurface K (X, Y) local extremums are reached at points having

5) st M ) s N
e for)

then, if inequalities (16) hold, the game (6) kernel is sampled with (9) — (12).
Proof. Since having local extremums only with components (18), the hypersurface
K (X, Y) does not have local extremums on every one of intervals

fleseni? ) ooy |

Hence, for the differentiable hypersurface K (X, Y), conditions (15) hold as well. The
theorem has been proved.

only components
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For conditions (16), parameter y is pre-assigned on reasoning about the value

1< k-(max max K (X, Y)— min min K (X, Y))

XEH)S> YEH§,2> XEH‘?) Y€H§3>

by, say,
A €{0.001, 0.005, 0.01, 0.02}
or other values for scale factor A . Nevertheless, some conditions below may cause need to

resample the game (6) kernel. These conditions are going to be applied for the finite game
(13) solution. But before stating them, this game should be represented as matrix one.

5. Mapping Payoff Multidimensional Matrix into Flat Matrix

The triplet (13) is a finite game but not matrix game unless M = N =1. The multidimensional
matrix of payoff values, generated by the values of hypersurface K (X, Y) on the finite

lattice D" ><D<2>, must be reshaped into flat matrix. This will allow to find the finite game
solution with any acceptable methods for solving matrix games, including linear
programming method [7, 12, 11].

Theorem 2. If there is (M + N)-dimensional matrix P(0)=[p, ] of the format

F ={)M( (st +1)}x{>N< (s +1)} , (19)

m=1 n=1

whose (M +N ) -position indices

M+

T=Uibn by gy e{lsTet] and i, et s ) 0)

determine the matrix element

z :K(X, Y) by x, =x,<,f’”> , Y, =y,<1""”*”> Vm=LM and Vn=1L N, (21)
then &# -matrix P(0)=[p, ], is reshaped into two-dimensional matrix G(0)= [ - Jg of
elements g,, = p,, whose format is

JCRIRINCE
Z= S,<nl>+1}><{ s§2>+1}. (22)
ERR
The matrix map P(0)— G(0), realizing this reshaping, is reversible.
Proof. Let the subset of indices {, }le < J be convolved into value

M

U, :z[ﬁ(sf<"11>—ml+l+1)}.(jM—m+1_Sign(m_l)) by m:L_M' (23)

m=1 my=1

It is obvious that the value (23) is always integer. Moreover, for j, =1, anl ) +1 there is

u =1,0,(0) by 0,(0)= ﬁ(sﬁj +1). (24)

m=1

Similarly, letting the subset of indices { Jiton }ivzl c J be convolved into value
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u, = i[ﬁ(&@nﬁl +1)J'(jM+N—n+1 _Sign(n _1)> by n=1N, (25)

n=l1 m=l

the value (25) appears integer and for j,,, =1, S,<12> +1 there is

N

u, =1,0,(0) by Q2(0)=H(S,§2>+1). (26)

n=1

Thus (M + N )-dimensional matrix P(0)=[p,]_ of the format (19) by (20) and (21) is

reshaped into two-dimensional matrix G(0)= I:gl¢1142 ]g of the format (22), where the set of

indices J = { jk}kM;N is mapped into the set {ul, uz} by (23) and (25). Further, let the function
p(a, b) by b # 0 round the fraction % to the nearest integer towards zero. And let
n(a,b)=a-b-p(a,b).

Then the subset of indices { jm}]\mi1 c J is restored by the index u,:

i :T](ul, st +1)+(s§;> +1)(1—sign[n(ul, st +1)}), (27)
-y —Z{H(Sﬁ) +1)J-(1Mm, -1)
m
lml_l(SMm1+1 +1)
Vom=T,M-1. (28)

The subset of indices { ., } c J is restored by the index u, similarly:

Jusn = (uz, ) ( )(1 mgn[n(uz, S§,2> +1)J), (29)
= Juan [ N n2+1 J (jM+anl _1)
S<2>

].M+N7n:1+n > N—n+1

N n1+1 + 1)

n]:I

V=1, N—-1. (30)

Consequently, the matrix map P(0)— G(0) is accomplished via (23) and (25), and the

matrix map G(0)— P(0) is accomplished via (27) — (30). The theorem has been proved.

When M =N =1, Theorem 2 is useless — the finite game (13) is already flat matrix
game. When M #1 or N #1, Theorem 2 allows mapping the finite game (13) on the finite

hypercubic irregular lattice D" % D into matrix game

([ (=2 ). 6 (0), an

u =1 uy=1
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U m

where the first player’s pure strategy ) (0) corresponds to its strategy X = [x“’"q in the
1 IxM

M
initial game (6) after having sampled under numbers {Sfy} , and the second player’s pure
m=1

strategy Zij{>(0) corresponds to its strategy Y:[y“‘”*"q in the initial game (6) after
2 IxN

n

N
having sampled under numbers {S§2>} . The section below aims to learn how good the game

n=1

(31) is to be approximation of the infinite game (6).

6. Consistency of Finite Support Optimal Strategy, Approximating the Player’s
Genuine Optimal Strategy

Speaking generally, the genuine optimal value in the game (6) may be unknown or
non-existent. The same concerns the players’ genuine optimal strategies — they may exist
only as € -optimal ones. That’s why we can’t compare the solution

(- 01 e a 0)) ) (32)

of the game (31) to anything else, in which p. (u,, 0) is the optimal probability of applying
(

the pure strategy ZM]X>(0), and q*(uQ, O) is the optimal probability of applying the pure

strategy zf? (0) , producing the game (31) optimal value
0.(0) ,(0)
Vs (0) = Zzguluz P+ (”p 0)'% (”2: 0) = z Z 8w, P (“1 > 0)‘% (”2: 0)
w=1 wu,=1 u;EUI(O)u;eUZ(O)

by denoting supports

supp{ p. (1, 0)}5‘9 = {z<§> (0)

u

}uerl(O)C{l, QI(O)}

and

supp{g. (i, 0)} " = {21 (0)}u;€uz(0)c{m} :

Nonetheless, having no pivot, a comparison can be done over a few matrix games,
approximating the initial one (6). For that we should consider & -matrix game

() 26 o) )

=1

by
Q1(5)=]ﬁ(S$>+l+6), Q2(8)=ﬁ<5r<12>+1+6)’

which is built by 8€Z\{0} and re-finding (9), (10), and re-mapping P(5)—> G(3) with
identifications

{st) =5+ 5}1: s =5+ a}N , (34)

m m
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(

u

whereupon the first player’s pure strategy =z (8) corresponds to its strategy X = [xfn”]
1 IxM

M
in the initial game (6) after having sampled under numbers {anl> +8} , and the second

m=1

<A/.M+n>

Y
) n

player’s pure strategy zl<, >(8) corresponds to its strategy Y = [ y ] in the initial game
IxN
N
(6) after having sampled under numbers {S §2> + 8} . And may there be a convention that the
n=1

numbers

{{an1> + S}M , {S§2> + S}j_

m=1 =1

| (35)

are chosen against the numbers (14) so that density of the sampling points along each
dimension by >0 doesn’t decrease, and density of the sampling points along each
dimension by 6 <0 doesn’t increase. That is, for points

{ {{xéf"’> (8)}55911}“4 | {{ o (8)}5"9:1}”“ } (36)

chosen after the numbers (35) with & € N, the inequalities

max_ (xﬁf”f”> — xin ) > max (xfj’“+l> (8)—xi™ (8)) at m=1, M (37
d, -1, sV d,=1, V45
and
mali(yf,d”+1> —yid">) > max (yf,""”> () —yf,d"> (8)) at n=1, N (38)
d,=1, 52 d,=1, 5945
hold.
May the set
{1 o (e )1 39)

be the game (33) solution, in which p*(ul, 8) is the optimal probability of applying the pure
(

U

strategy zlx>(6), and q.(u,, 8) is the optimal probability of applying the pure strategy

zf:> (8) , producing the game (33) optimal value
0(3) 0,(3)
V*(S):Zzguluz -p-(,8)-q. (1, 8) = Z Z 8, 'p*(ul’ 8)"7*(”2’ 5)
=1 u,=1 u; €U, (8) ureU,(3)

by denoting supports

supp{p* (uy, 6)}Q'(5) = {z<§> (3)

=1

and

supp{q. (u,, 5)}?(5) = {Z<Y> (8 }1,;€U2(s)c{1, o)

»=1

For acceptance of the game (31) solution (32) as an approximate solution of the game (6), the
value v*(O) and the optimal situation (32) itself mustn’t vary too much as the sampling

numbers (14) vary themselves. This implies relative independence of the solution (32) upon
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the sampling. Partially, within minimal neighborhoods of numbers of points to be sampled, it
is provided by conditions

v.(0) = v ([ v (<1) =12 (0) (40)
and either
U,(1)|=|u,(0) by re{l 2} (41)
or
U,(0|=u,(0)|=|u,(-1)| by re{l,2}. (42)

Inequalities (41) and (42) provide logical non-decrement of the support cardinality as the
sampling grows up minimally, but they don’t regard the support configuration. Meanwhile,
any of the supports (involving the corresponding probabilities)

{p*(ul*’ 0)}u{eUl(o)’ (43)
{q* (uz’ 0)}u;eu2(o) (44)

may have configuration, differing significantly from the genuine optimal support in the game
(6) or from the support, obtained after different sampling. Hence, the player’s supports must
be relatively independent in their configuration along with (41) or (42).

The support configuration lies in representing the player’s support as a hypersurface. Let

for the r-th player there be a piecewise linear hypersurface 4 (u,,0), obtained after

sampling with numbers (14). Vertices of hypersurface 7, (u1 , 0) are in points

M 0,(0)
{{xfh/m>} e s (ul, O)} (45)
m= =1
in the space R"*", and vertices of hypersurface 4, (u2, 0) are in points
e 2:(0)
{{ o }1 q. (s, 0)} (46)

u,=1

in the space R"*'. The first player’s optimal strategy support as (43) scores up the nonzero
vertices of the hypersurface 4 (ul, 0) by

pe(u,,0)=0 Yu 2U (0),

matching the index u, € U, (0) to the point
X, (0)=[x(0)] =[] enl) vy g=1.07(0) (47)

at Q]*(O)=|U1 (O)| through expanding the index u, via (27) and (28) into subset
{ Jn(q, 0)}”1\14:1 cJ . The second player’s optimal strategy support as (44) scores up the

nonzero vertices of the hypersurface 7, (u,, 0) by
q*(uz, O):O Vu,eU, (0),

matching the index u, €U, (0) to the point

Y, (0)=[A7(0)] =[] en by w=1,0(0) (48)

JIOS, VOL. 38, NO. 2 (2014), PP. 125-143
133



ROMANUKE APPROXIMATION OF UNIT-HYPERCUBIC INFINITE...

at Q2 |U | through expanding the index u, via (29) and (30) into subset

0/(0)

{ Taton (w, O)}n:1 c J . Then may the first player’s set {Xq (O)}q:1 of the points (47) be sorted

into the set
T a/(0) 7 (4 ai(0) 0/(0) 0i0)
Ko =] ) O =X O el e
-

so that the value

min__ po, ()_(q (0), X, (0)) = min ”X )—}_(q] (0)” =

(115{‘1+1-Q1*(0)} ‘115{‘1+] Q1

qe)q+, QI(O)}

with the re-sorted subset

{Tu(@ 0} N (g 00} =i (0, 0)f =

is reached at ¢, =¢g+1 for each ¢g=1,Q, (0)—1 by QI*(O) <0 (O) . Similarly, the second
player’s set {Yw (0)}%:(10) of the points (48) is sorted into the set

0;(0)

A e I T A (0] A A R T O

w=l1

so that the value

wle{ivglli,g;(o)} pR"" (YW(O)’ Yw] (O)) = w,e{‘l;?llg “Y ) le (0)” =

N
- o (a9 0) _ (Gien(0,0)) )2
- % (yn - yn (52)
W €{W+l, Q;(O)} \/Z

n=1

with the re-sorted subset
Furea 092, 01 s (9 00 = (0 0)} < (53)

is reached at w, =w+1 for each w=1, Q;(O)—l by O; (0) <0, (O) Importantly, one ought
to be aware of that the result of sorting in (49) and (51) depends on selection of the initial

points X, (0) e {Xq (0)}Q;i0) and Y, (0)e{Y, (0)}Q;(10) . And it is convenient to say that
q= W=
X,(0)=X,(0) ¥q¢=10/(0) by 0/(0)=0,(0) (54)
and
Y, (0)=Y,(0) Vw=1,0,(0) by 0,(0)=0,(0). (55)
Considering & -matrix games (33), let the hypersurfaces {hr(ur, 6)}/'6{1 ) and sets

{)_( ] (6)} ]1 and { (8)}Q2(18) regard built and found with identifications (34) and turning to
q= w=
description for (45) — (53). And then there is a way to learn how good the game (31) is to be

JIOS, VOL. 38, NO. 2 (2014), PP. 125-143
134



JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

the infinite game (6) approximation, invoking minimal number of &-matrix games,
approximating the initial one (6).

Definition 1. The solution (32) of the game (31) is called weakly consistent for being the
approximate solution of the game (6) if the inequalities

e P (X, (1), Xy () < e PW(_ X,.(0)). (56)
T P (Y. (1),?W+1(1))<%{{HQ§X) Pw( +(0), ¥,.,(0)), (57)
rr;[%>x|hl(ul,o)—h |<max|h( ~1)=h, (u,, 0)|, (58)
n;%ﬂhz(uz,o)—@ |<max|h( ~1)=h, (u,, 0)], (59)

and
[ (215 0) = (2, V)| < [ (21, = 1) =y (1, O)] im0 Ly (H7), (60)
|12y (45, 0) =y (s, V)| <[y (103, =1) Iy (115, 0)] i L, (H§v2>) (61)

are true along with (40) and (41). The game (31) solution (32) is called weakly 1-consistent.
Every strategy and its support in the weakly 1-consistent solution are called weakly consistent
or weakly 1-consistent.

Noting that the inequality (41) might be strengthened up to the double inequality (42).
This nonetheless conditions the approximate solution to be more strict, underscoring the
monotonous character of the support cardinality as the sampling changes within its minimal
neighborhood.

Definition 2. The weakly consistent solution (32) of the game (31) is called consistent for
being the approximate solution of the game (6) if the inequalities (42) and

ma w}_( 0),X,.,(0))< ma (X (-1), X, (-1 62
4l Q.(X) }pR ( ( ) q 1( )) qeLQ](Xl) }pJR ( ( ) q 1( )) ( )
and
m (Y,(0),Y,.,(0))< m Y, (-1, Y, (-1 63
we{l,in‘l()((J)—l}p]R ( W( ) " 1( )) WE{I,Q;)—(I)‘I}pR ( W( ) ! 1( )> 63)

are true. The game (31) solution (32) is called 1-consistent. Every strategy and its support in
the 1-consistent solution are called consistent or 1-consistent.

Properly speaking, neither conditions within Definition 1, nor conditions within
Definition 2 guarantee the perfection of the game (6) approximation as the game (31) with its
(weakly) consistent solution (32). But (weak) 1-consistency signifies that both the optimal
payoff and the players’ supports differentiate less as the sampling grows up minimally. And
this property becomes more strict with the inequalities (42) and (62), (63). Note that in
controlling the players’ optimal strategies for their weak 1-consistency, there are nine
inequalities (40), (41), and (56) — (61) to be checked. And there are 13 inequalities (40),
(42), and (56) — (63) to be checked for controlling the players’ optimal strategies for their
1-consistency. The following assertion will help to avoid superfluous computations in
checking weak 1-consistency.

Theorem 3. If the solution

{{ P (. 1)}3{?, {g. (uy, 1)}fjﬂ)} (9

of 1-matrix game is completely mixed, then for checking weak 1-consistency of the solution
(32) it is sufficient to check inequalities (40) and (58) — (61).
Proof. Inasmuch as the situation (64) is completely mixed then
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0 (N=0,(1)= ﬁ(s,§> +2)> ﬁ(s,§> +1)20/(0),
0:)=0.()=[ [(s+2)> [ [(s2 +1)>: 0),

giving us the inequality (41), even with strict sign. Further, as the solution (64) is completely
mixed then through the index convention (54) and (55) there are the sets

{)_(q(l)}gm) ={Xq (1)}Q'(l) and {S_( (1)}ii(ll) ={Y (1)}?2() such that

W w

g=1 q=1
% % _ (@) (1) _ ()
qE{ImQa(x) }pRM (X (1),Xq+1(1))—nr7r=1%dmr=n%(xm (1)—x, (1)) (65)
and
max Py (\_{ (1),\_{W+1(1)):mﬂ max (ysld"+l>(1)_y,<1d">(l))' (66)

we{l 0, ( ) }
Then, due to (37) and (38), have

% % (d,+1) _ (d,)
e (R0 Ko (1)< g (7)<

M _ - — -
< max \/Z(xfnjmwﬂ’())> _xi/,,,(q,0)> )2 = max pRM (Xq (O)’ Xq+1 (0)) >

qe{l,Qf(O)—l} g qe{LQr(O)—I
< v (d,+1) _  (d,)
" }PR~( (1), Voo (1)) S g marg (3 -") <

N
< max \/Z(yy‘“"(mo»—yij’"*"(w’o»)z= S P (Y.(0). Y, (0)).

we{l, Q;(O)—l}

n=l1

giving us the inequalities (56) and (57). The theorem has been proved.

Consistency of finite support optimal strategy, approximating the player’s genuine
optimal strategy, underscores quality of the approximation. Clearly, 1-consistency can be
widened to A -consistency by A € N, invoking 2A +1 matrix games, approximating the initial
one (6).

7. Infinite Antagonistic Game Approximation in A-Consistency

Definition 3. The solution (32) of the game (31) is called weakly A -consistent for being the
approximate solution of the game (6) if the inequalities

|v*(u)—v*(p+1)|<|v*(u—1)—v*(u)|, (67)

Q*(p+1)>Q*( ) by ref{l 2}, (68)

{max }pRM ()_( (u+1 g1 u+1 )< max pr ()_( ( ) )_(W(H)), (69)
q€ll, Of (u+1)-1 qe 1

max pR ( (H+1 u+1 ) (_w(u)7Yw+l(“))’ (70)

we{l, Q;(;,J.H)—l}

HI_II%)XMI(Z"I’ “)_hl(ula H+1)|\

LG 1}

(”1» 1) = (u, 1)

n;%>x|h2 (uy, )= hy (uy, p+1) |<max| (uy, n=1)=hy (uy, p)

, (71)

, (72)

and
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I (s ) =y (s )| < A (ot 0 =1) =y ()] i L, (H}?), (73)
||h2 (uy, 1) —h, (uy, u+1)|| < "h2 (uy, n=1)=hy (us, u)" in ]Lz(H[@) (74)

are true Vu=1-A,A—-1 by AeN. Every strategy and its support in the weakly
A -consistent solution are called weakly A -consistent.

Definition 4. The weakly A -consistent solution (32) of the game (31) is called
A -consistent for being the approximate solution of the game (6) if the inequalities

0, (1)= 0 (n-1) by refl 2] (75)

and

max v X , X, < max W
P (X () Rou (W) < comasc o

Al
Al

Jn=1). X (1) (76)

and

. N ?w ? YW* < max N ?w -1 5 Yw+ -1 77
WE{W}PR ( (“) 1(“)) WE{I’QE(u—l)fl}pR ( (“ ) 1(H )) (77)
are true Vu=1-A,A—1 by AeN. Every strategy and its support in the A -consistent

solution are called A -consistent.
This conception of A -consistency is some straightforward, because Definition 4 has been

conceived to be stated similarly to Definition 2. However, by A €N \{1} there is no need to

check all 2A —1 inequalities in (73) and 2A —1 inequalities in (74) for each of the players.
Theorem 4. If the inequalities

0 (1-2)=Q(-1) by re{l,2} (78)
and

e lel (X, (1=2), X, (1=2)) < max_p, (R, (). X (-2)  (79)
q&\ L, G U=A)=

and

max__ p. (S_{w (1-2), Y

s 0

well, 03(-)-1}

V() Yo (1) (80)

are true then the weakly A -consistent solution (32) of the game (31) is A -consistent.
Proof. Inasmuch as the inequalities (68) — (70) are true V p=1-Ai, A—1 then, having

added the inequalities (78) — (80) to them, there are true the inequalities (75) — (77). The
theorem has been proved.

Apparently, (weak) (k —1) -consistency follows (weak) A -consistency. The generalizing

Definitions 3 and 4 prescribe the monotonic-like properties for a series of matrix games,
obtained after sampling within the assigned neighborhood. The greater A (the wider this
sampling neighborhood) is, the more suitable matrix game (31) for being called the
approximation of the infinite game (6).

8. An Example of Consistency Deployment

For exemplifying some practical peculiarities of consistency, try solving approximately the
known infinite antagonistic game on the unit square

HY' xH =[0;1]x[0; 1] c R (81)
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as a time selection game [12]. By putting x =X and y =Y, this game kernel is such [11] that
K(x,y)=2x—y by x<y and K(x, y)=x—2y by x>y, and K(x, x)=0. Unification of
these formulas brings us to the whole formula:

K(x, y):(zx_y).%(y—xh(x_zy).w

3x—3y+(x+y).s1gn(2y—x) .

(82)

The function (82) is differentiable almost everywhere on (81), except the line x =y, whose
ordinary Lebesgue measure in R” is null. Owing to K (x, y)=-K(y, x) the game with the

kernel (82) on the unit square (81) is symmetric. Consequently, the optimal value in this game
is equal to zero. The players’ optimal strategies, if exist, have to be identical. They might be
found analytically, but the corresponding proof is rather intricate [12].

Just adverting to the support cardinality, we see in Figure 1 that 3-consistency by
S= S1<1> = S1<2> for the kernel (82) is impossible over pretty wide range of the numbers (14),
where the sets (9) and (10) are identical:

S+l

) _1 ) 1 S+l1
D1<1>(Sl<l>):{x]<,>zslT} _{y1<~1>=sls } - (s). (83)

s=1

0, (0)

s B B B B B
105— —

100 — —

95— —

7Y A e e e e
38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102104 106 108 110 112114 116 118 120 122 124 126 128 130 132 134 136 138 140

Figure 1. The support cardinality variation by r e {1, 2} and §=39,138

for §= Sfl> = Sl<2> in approximating the game with the kernel (82) on the unit square (81)

Here, due to S = S1<1> = S1<2> , every matrix G(O) = —[G(O)]T and v, (0) =0, and the players’

optimal strategies in the solution (32) are identical V §=39,138. Taking S =40, we can
check weak 1-consistency of the solution (Figure 2)

{{p- (. OF (. 0)F . (84)
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Figure 2. The player’s optimal strategy support and its optimal probabilities
from the solution (84) for S =40

So, the inequality (40) is already true, and |Ur (1)| =31, |U,, (O)| =27, bringing the inequality
(41) true also. Figure 3 along with Figure 2 hint that

max p, (X, (1), X, (1)) = max p. (Y, (1), ¥,.,(1))=0,

qel1, 30} we{l, 30}

max ps (X, (0), X, (0))= max p, (¥, (0).Y,,(0))=005,

q<(1, 26} wefl, 26}
01—
0.09— |
0.08— —
0.07 |
0.06 — |
0.05— —
0.04|— —
0.03— |
0.02— —
001+ —

0 ‘O O‘.1 0‘.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
2 3 4 8 6 7 8 8 10111213 14 15 16 17 18 19 20 21 22 23 24 25 25 27 28 20 30 31 32 3 % 35 36 37 3 % 40 41 42 Uy

Figure 3. The player’s optimal strategy support and its optimal probabilities
from the solution {{p (u,, 1)};: ’ {q* (u,, 1)}32:1} for S =40

what confirms the inequalities (56) and (57). Hypersurfaces

(I (1 =1). B (. 0. (. 1)) (&)
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being actually polylines now (Figure 4), bring the inequalities (58) and (59) true on the unit
segment H1<1> =H 1<2> = [O; 1] (Figure 5), and the inequalities (60) and (61) hold:

I I I I I
0.18— —

017
0.16—
015
0.14—
013
012
011

0.1
0.09—
0.08—
0.07—
0.06—
0.05—
0.04—
0.03—
0.02[—
0.01—

5 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

e e e U e O e e A e S S A A A |
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

[

4 5

[ [ gy
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 r
[ |
4 5

L A A |
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

0.07—
0.06—
0.05—
0.04—
0.03—
0.02—
0.01+—
0
| | | | | | | | | | | | | | | | | | | J
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
1‘ ‘2 ‘3 J! g ‘S ‘7 ‘B ‘9 1‘01‘1 1‘2 1‘314151‘6 1‘71‘8 1‘92‘02‘1 2‘2232‘42‘52‘62‘72‘82‘93‘03‘1 323‘33‘43‘53‘6 3‘73‘83‘94‘0
Lttt S O S AU N A N S M AN IR A A SN S 7'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 "'r
"I ‘2 1‘5 Jl 15 (‘3 ‘7 t‘i $‘3 1‘0 1‘1 1‘2 1‘3 1‘4 1‘5 1‘6 1‘7 1‘8 1‘9 2‘0 2‘1 2‘2 2‘3 2‘4 2‘5 2‘6 2‘7 2‘8 2‘9 3‘0 3‘1 3‘2 3‘3 3‘4 3‘5 3L3 3‘7 3‘8 3‘9 4‘0 4‘1 4‘2

Figure 5. Terms in the inequalities (58) and (59)
on the unit segment Hl<l> = Hl<2> = [0; 1] for § =40

|7, (u,. 0) =, (u,, 1)| <1.16-107* < 2.74-10™* <, (,, =1) =, (u,, O)|
by re{l, 2} in L,([0;:1]).

Therefore, situation (84) is weakly 1-consistent approximate solution of the game with the
kernel (82) on the unit square (81). And it is easy to see that this solution is 1-consistent: the

inequality (42) is confirmed (Figure 6) with that U, (~1)|=23 and

X < S < 2
max p (X, (-1). X, (-1)) = max p, (Y, (1), YW+1(—1))=§>0.05,

o2 w24

confirming the inequalities (62) and (63).
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Figure 6. The player’s optimal strategy support and its optimal probabilities
from the solution {{p (u,, _1)}40 {q* (1, _1)}30:1} for S = 40

>
=1

Moving rightwards, the solution (32) for S 6{41, 42} is not weakly 1-consistent. For

S =43 it becomes weakly 1-consistent, and it is 1-consistent for S € {44, 45}. Father on,
leaps of consistency continue (for instance, in local maximums of the polyline in Figure 1).
Nevertheless, Figure 7 shows the player’s approximate optimal strategy polylines resemble
the analytical version of the genuine optimal strategy (for the first player)
) 1+sign(x—0.25)j

2

-L5

-(1 + sign(x - 0.25) —sign (|x - 0.25|
by xeH" =[0;1] (86)

.
75—
T
65—
il
55—
T
45—
s p(x)
35—
T
25—
i
15—
il
05—
0

| | | | | | | |
0 0.05 0.1 0.15 0.2 0.25 03 0.35 0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 7. Genuine optimal strategy on the background of the player’s optimal strategy
polylines obtained for S =40, 60

1.5
X

deduced in the handbook [11]as p(x)=0 by x€[0;0.25) and p(x)=

by xe[0.25;1].

This resemblance testifies for expedience of the finite support usage rather than trying to
practice the probability density (86). And the sampling with (83) for §=40 is plainly
satisfactory owing to the 1-consistent solution (84).
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9. Discussible and Completive Notices

The conception of consistency has been intended for proper approximation of infinite
antagonistic games. The antagonistic game (6), defined on the unit hypercube (7), is
isomorphic to compact games in R . According to the isomorphism, the stated
approximation way is available to be applied for solving infinite antagonistic games on
compact action spaces.

Surely, if conditions of the (weak) A -consistency of a strategy support, approximating the
unknown genuine strategy, hold true, then it is not sufficient to say that the solution (32) is
(weakly) A -consistent. Speaking strictly, it is unclear whether the player’s strategy support,
satisfying the conditions of its A -consistency, causes at least the weak 1-consistency
conditions for the other player’s strategy support.

Before approximating, the weak 1-consistency ought to be checked first. The check
consecution starts with checking the inequalities (41), where the investigator must solve only
two matrix games and count the cardinalities of four supports. Then the inequality (40) is

recommended to be checked, where (—1) -matrix game is solved already. Then goes
subconsecution of checking the inequalities (56) — (61). In checking the weakly consistent
solution for its consistency, the inequalities (42) precede the inequalities (62) and (63).
Namely the stated consecutions are preferable, because the easiest consistency conditions are
checked before the more complicated ones in order to avoid superfluous computations over
non-consistent solutions, being revealed after easier comparisons like (41) or, generally, (68).

By the way, if (weak) A -consistency by A € N\{l} is to be checked then it is better to get

started with the inequalities (68) V u=1-A, A —1.
The main lack of the stated approximation way is that there are neither proved the limit

%EV*(S)

existence and its convergence to the genuine optimal value in the game (6) in the situation
approximated by the situation (32), nor proved the limits

Elsiﬁrghr(ur,fi) by refl,2}

existence and their convergence to the hypersurfaces from the genuine situation approximated
by the situation (32). But anyway the represented method of converting the infinite
antagonistic game on the unit hypercube into the matrix game lets have the solution to the
conflict object, even when the initial game is solved in ¢ -equilibrium situations or doesn’t
have solution at all. Besides, the approximate solution with the finite strategy supports is
practiced freer, because there are enabled discrete variates and there no continuous variates.
Nevertheless, the assertions proved above are needful and useful. For choosing the
numbers (14) and points (17) in order to sample the game (6) kernel, there is Theorem 1,

where the hypersurface K (X, Y) local extremums must be found before. Then the finite

game (13) on the finite hypercubic irregular lattice D"'xD? is mapped into the matrix game
(31) with the matrix map P(0)— G(0), whose conditions and maintenance of one-to-one
indexing are provided in Theorem 2. While checking weak 1-consistency, Theorem 3 quits of
superfluous computations over (41), (56), (57) with occurrence of completely mixed 1-matrix
game. And finally, Theorem 4 prompts how to check A -consistency easier by A eN \{1},
using overlapped conditions for weakly A -consistent solution and A -consistent solution,
leaving only four inequalities (78) — (80) to be checked.

Unlike € -net-construction technique, sampling the hypersurface K (X, Y) can be done
with numbers (14) and finite sets (9) — (12) even if the game kernel is unbounded and non-

measurable and non-differentiable. Irregularity in sampling ensures free choice of the
sampling points along every dimension, where the only restriction is the conditions of
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Theorem 1. Accurateness of the sampling is either strengthened with increasing the sampling
numbers (14) or underscored with consistency of higher rank.

The stated method of approximating infinite antagonistic games, grounded on the
irregular sampling and consistency control, could be adapted to solving approximately
noncooperative games. Then the suggested free choice of the sampling points along every
dimension will appear useful again because multidimensional matrices of players’ payoff
values are sometimes better to have them in square or hypercubic format [12, 11, 4] (having

0/(8) and

identical size of each dimension). However, the main problem is to sort sets {X . (8)} 1
.

{Y (8)}QZ(6) into sets {)_(q (8)}538) and {\_( (5)}?:(1& effectively. This problem is

w w=1 w

combinatorial and its solution isn’t trivial, unless the strategy is completely mixed. Another
open question is that the result of the sorting depends on selection of the initial points
X, (6)€{Xq (6)}5;6) and ?I(S)E{Yw,(éi)}i(la) , whereas the criterion for this selection

remains uncertain.
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