JIOS, VoL. 38, No. 2 (2014) SUBMITTED 11/14; ACCEPTED 11/14

UDC 004.41:001.87
Original Scientific Paper

A Case Study of Software Product Line for Business Applications
Changeability Prediction

Zdravko Rosko zrosko@gmail. hr
Adriacom Software d.o.o.
Vodice, Croatia

Vjeran Strahonja vieran.strahonja@jfoi.hr
Faculty of Organization and Informatics
University of Zagreb, Varazdin, Croatia

Abstract

The changeability, a sub-characteristic of maintainability, refers to the level of effort which is
required to do modifications to a software product line (SPL) application component.
Assuming dependencies between SPL application components and reference architecture
implementation (a platform), this paper empirically investigates the relationship between 7
design metrics and changeability of 46 server components of a product line for business
applications. In addition, we investigated the usefulness of Platform Responsibility (PR)
metric as an indicator of product line component changeability. The results show that most of
the design metrics are strongly related to the changeability of server component and also
indicate statistically significant correlation between Maintainability Index (MI) and PR metric.
The assessment is based on a case study of the implementation of the product line for business
applications in a financial institution. The results show that PR metric can be used as good
predictor of changeability in the software product line environment.

Keywords: Software product lines, changeability, maintainability index, metrics, reuse,
reference architecture, platform responsibility.

1. Motivation

Software maintenance is the most expensive activity that consumes about 50 - 70 percent of
development cost [23]. As software development processes in its life cycle through the phases
of requirements analysis, design, implementation, testing and maintenance, the complexity
and the cost of the software increases [28]. In spite of this fact, software organizations pay
much more attention to software development than to maintenance. Most of methods and
approaches are devoted to the development of new business applications, setting aside the
maintenance of existing ones. For programmers, maintenance is “less attractive” than
development; in fact, many existing business applications use old programming
environments, file systems, etc., whereas they prefer working with new, visual environments.
However, the same applications evolve and will continue to evolve along years and, to their
regret, programmers devote 61% of their professional life to maintenance, and only 39% to
new development [34].

There were many attempts to find ways to minimize maintenance cost by introducing
better development approaches that can minimize the costly effects of change, simplify
understanding of source code, facilitate early detection of faults, etc. One of the most
successful approaches is Software Product Lines (SPL) approach, a set of software-intensive
systems that share a common, managed set of features satisfying the specific needs of a
particular market segment or mission and that are developed from a common set of core
assets in a prescribed way [12]. This approach and its techniques make a system better

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
145

ROSKO AND STRAHONJA A CASE STUDY OF SOFTWARE PRODUCT LINE...

maintainable as stated in [15]: "The same design techniques that lead to good reuse also lead
to extensibility and maintainability over time".

Business applications are traditionally developed as standalone systems, each having
specific architecture. As opposed to traditional approaches that focus on one application, the
product line approach means a fundamental shift of focus from the individual system to the
product line, i.e. a set of applications that rely on a common product line platform. A software
platform is a set of software subsystems and interfaces that form a common structure from
which a set of derivative products can be efficiently developed and produced [27]. A common
rule of thumb found in literature is that a product lines approach will pay off only after the
development of the software product platform and an initial set of products in the family. The
relevant literature also claims that there is a significant reduction in costs associated with
managing the evolution of the products when a product line approach is followed [24]. Due to
the fact that any change in the platform can be relatively easily propagated to all of the
product line members, the advantages of using a platform-based approach are even more
significant.

The level of effort needed to maintain a software product line is related to the technical
quality of the source code. Many software metrics have been proposed as indicators for
technical quality of source code [18], [43]. Oman et al. proposed the Maintainability Index
[39], [13] which attempts to objectively determine the maintainability of software system
based upon on the characteristics of the source code. In the ISO/IEC 9126 standard (replaced
by ISO/IEC 25010:2011), maintainability is seen as one of the 6 main characteristics of
software product quality. IEEE (1990) defines maintainability as “The ease with which a
software system or component can be modified to correct faults, improve performance or
other attributes, or adapt to a changed environment” [19]. The maintainability is further
decomposed into the sub characteristics of analyzability, changeability, stability and
testability [22]. Changeability characterizes the amount of effort to change a system (ISO/IEC
9126). In the context of software product lines, where many applications rely on a common
platform, the technical quality of source code has its specifics comparing it with an ordinary
system, since it is an important determinant for software product lines changeability.
Changeability, the subject of this paper, is a key success factor in application areas such as
business systems, in which applications are evolving at a rapid pace.

In [32] we have proposed Platform Responsibility (PR), a product line reference
architecture coupling metric, to address the product component changeability prediction. In
this paper, we further discuss the various issues arising when trying to assess the
changeability of software product line components.

Object of the study. Object of this research study is the software product line server side
application components and their changeability characteristics.

Purpose. The purpose of the study is to investigate the relationship between a number of
design metrics and changeability of software product line components. Specifically, we would
like to investigate metrics that can be used as good indicator of product line components
changeability.

Perspective. This study targets two perspectives, one from the point of view of the
researcher and the second of a developer, i.e. the researcher or developer would like to find
out if there are any systematic differences in the changeability based on the design metrics of
the individual product line component.

Quality focus. The main objective of this research is to determine whether there is a
significant correlation between MI and PR metrics. In case there is a significant correlation
between them, we will investigate the usefulness of PR metric as a predictor of product line
components changeability, instead of using MI metric since it is too generic and yet not
adapted to the product line environment specifics.

Context. The context of the experiment is a software product line for business
applications in a financial institution. As a case for a survey we took 46 server side software
components used by 9 different business applications within the product line.

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
146

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

2. Related Work

Changeability is related concept to maintainability and it is generally considered as its sub
characteristic. Due to the fact that there are a number of different dimensions of
maintainability, there exists a great deal of inconsistency in terminology. Matinlassi et al.
proposed three maintainability abstraction levels; system, architecture and component [25].
The focus of our study is on component changeability, a sub characteristic of major
importance for maintainability [36][8]. Several empirical studies have been carried out to
investigate the maintainability of software product line artifacts [6], [9], [4], [25], [35] but a
review of the literature fails to note significant research related to the changeability of SPL
components in the context of external and internal dependencies.

There are different approaches used for the assessment of changeability.

The assumption that changeability is a sub characteristic of maintainability consequently
opens the door to application of maintainability metrics to the assessment of changeability.
Generally, maintainability metrics are based code level metrics, on change impact analysis or
on design metrics.

We are using the last approach.

Riaz et al. found in their study that the most successful maintainability metrics are based
on size, complexity, and coupling [31].

Ingram and Riddle [21] used six metrics: LOC (Lines of Code), DIT (Depth of Inheritance
Tree), WMC (Weighted Methods per Class), CBO (Coupling Between Objects) and
McCabe's Cyclomatic complexity (CC) to demonstrate a correlation between software
size/complexity and change proneness. In their study change tendency was measured as the
number of files changed for each revision. The result of the study suggests that classes with
the highest CBO were the most likely to change.

Chaumun et al. used experiment which showed a high correlation, across systems and
across changes, between changeability and the access to a class by other classes through
method invocation or variable access. This relationship refers to the so called afferent
coupling (Ca), the number of classes in other packages that depend upon classes within the
package. The more a class is used through invocation of its methods and outside references to
its variables, the larger the impact of a change to such a class. On the other hand, no result
could support the hypothesis that the depth of the inheritance tree has some influence on
changeability [3].

Wilkie and Kitchenham [41] tested the usefulness of the CBO (Coupling Between
Objects) metric in predicting the classes that are likely to be affected by a change. Their
object of study was a multimedia conferencing system which consists of 25.000 lines of code.
The metrics used in their study were: CBO, WMC (Weighted Methods per Class) and number
of functions per class. The research results show that the CBO metric is useful in identifying
the most change prone classes. Also the same metric does not identify the classes likely to
experience ripple effect changes.

Aldekoa [17] extended the Maintainability Index where the maintainability index of each
features is measured. The metric is based on the average of the McCabe’s Cyclomatic
Complexity value [26] which directly measures the number of linearly independent paths
through a program's source code.

Tizzei et al. [35] tested positive and negative change impact of component and aspect
based design on Product Line Architecture (PLA) stability. They concluded that the
combination of aspects and components supports the design of high cohesive and loosely
coupled PLAs and improve modularity.

André van der Hoek et al. [17] developed a class of closely related metrics that
specifically target product line architectures such as metrics base on Provided Service
Utilization (PSU) and Required Service Utilization (RSU). The metrics explicitly take into
account the context in which individual architectural elements are placed and are based on the
concept of service utilization. However, those metrics are based on concept of service that is
defined as any public accessible resource but do not consider dependencies on external third
party components and its influence on the quality of the application components.

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
147

ROSKO AND STRAHONJA A CASE STUDY OF SOFTWARE PRODUCT LINE...

In our study, we focus on the changeability assessment based on the product line
component dependencies. The dependency may exist between product line components and
internally owned (e.g. SPL platform) or externally owned (e.g. Spring) components. We
presume that changeability of a component is better and more under control of internal
development when the number of external dependencies that exist for a component is lower.
This assumption is along the lines of the recommendations of good modular design, which
seeks to achieve a high degree of internal cohesion, and the less external communication
(coupling).

These external and internal dependencies among components and between components
and the product line platform can serve to assess the impact of change as changes can
propagate from one component to other components through the dependencies.

3. Experimental Design

Here, we provide some background on the product line for business applications investigated
in this study. Furthermore, we describe goals, hypotheses, dependent and independent
variables. The objects of the study are, as stated above, not selected randomly; they are the
server side application components of the software product line for business applications in a
financial institution.

3.1. System Investigated

The source of data we have collected for this study was a product line for business
applications in a financial institution. The data we have collected include two cumulative
versions of the 9 applications and its corresponding server components. First version included
43 server components, while the second version included 46 components, having 3 additional
components added to the product line. The selection of the product line was influenced by its
technical complexity and the fact that the author has been involved in its development. The
product line is a Java-based group of 9 applications based on the shared platform. It is a
closed-source system built with several external components which include: Apache POI,
which is used for reading and writing Microsoft Office files, iText for reading and writing
PDF files, Apache Shiro for user authentication with Active Directory, Apache uploads, for
uploading files to a server, Aktiviti for process engine and Jasperreports used for the
generation of business reports.

To study the product line component changeability, the maintenance data were limited to
the Java source code which was collected from Subversion Edge source code repository [14].
In the repository the changes made can be viewed at the source code level hence they can be
identified and manually assigned to the different program components. Maintenance tasks
carried out on non-java application artifacts were out of the scope of this study. This study
analyzes only the Java code.

3.2. Goals, Variables and Hypotheses

The main goal of this study is to determine the design metrics that can be used as good
indicators of product lines component changeability. In order to determine that, we collected
historical maintenance data from a product line for business applications. The objective of this
study is to determine the differences in changeability for software product lines components
using the product line platform as a base. Motivation for this study is a need to understand the
differences in changeability among components within the product line. One objective of
introducing software product line is to provide the environment for better changeability. In
order to support the better changeability, it is important to understand what differences can be
expected within the product line, and explain them in order to improve the product line
changeability.

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
148

JOURNAL OF [INFORMATION AND ORGANIZATIONAL SCIENCES

3.3. Dependent Variables

In this paper, Platform Responsibility (PR) [32] and Maintainability Index (MI) [39] are both
used as the dependent variables to quantify product line components changeability. Our goal
here is to show that both, PR and MI measure the changeability of components, but from
different perspectives. The objective of the research is to verify the hypothesis that PR is more
suitable dependent variable for studying the relationship between design metric and
component changeability in software product line environment.

Figure 1 shows the elements the PR metric is calculated from. When introduced at [32],
PR metric is analyzed within the Distance framework of measurement theory [30] and
framework based on desirable properties which serves guidance provided to define proper
measures for specific problem [10]. These frameworks ensure that the metrics developed
using these guidelines are tested to be valid and that they can be used as measurement
instruments [32].

PR is a combination of three coupling metrics: D3 - number of distinct references outside
the platform that depend upon classes within the platform, D4 - the number of distinct
references inside the component that depend upon classes within environment (e.g. Java
RTE), D5 - number of distinct references inside the component that depend upon classes
within external components. It measures the “level of responsibility” of a reference
architecture implementation (a platform) to communicate to the external components needed
by application component in order to provide business logic to an application. The more the
component delegates a communication to the external components the more it is protected
from frequent changes to the external third party components. The three coupling metrics are
combined and used to calculate the PR value, stated by equation 1.

PR (1 D4 + D5) 100 (1)
= —_——_— | *
D3+ D4 + D5

The range for this metric is from 0 to 100. The larger the PR, the more maintainable is the
product line component. Components with a PR less than 50 are more difficult to maintain
than components with PR between 50 and 100 which have reasonable maintainability.

We can calculate a total PR for product line platform by taking in account all of the
components through the following equation:

PR (1 D4 + Do,) 100 ()
= — *
D3, + D4, + D5,

where n is the number of application components using the reference architecture
implementation (a platform).

[s

Component

Envn;onment External
ava Components

(rt.jar) A 4

Platform

,,,,,,,,,,,,, » Not used — > Used Q Dependency

Figure 1. Platform Responsibility Metrics [32]

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
149

ROSKO AND STRAHONJA A CASE STUDY OF SOFTWARE PRODUCT LINE...

MI, our second dependent variable, is a combination of widely-used and commonly-
available measures [4, 28, 33, 39, 40, 42]. Ml is a complex calculation involving a number of
different metrics: Cumulative Halstead Effort of all the parts of a class, Number of methods in
class, Total Cyclomatic Complexity of all the methods in the class, Total Number of Java
Statements in class [38]. The metrics are combined into parts and then used to calculate the
MI value, stated by equation 2.

EffortPart = 3.42 * log(HEFF/NOMT)
CyclomaticPart = 0.23 * log(TCC/NOMT)
LinesPart = 16.2 *log(NOS/NOMT)

MI =171 — ef fortPart — cyclomaticPart — linesPart 3)

The larger the MI, the more maintainable is the product line component. Components with a
MI less than 65 are difficult to maintain, components between 65 and 85 have reasonable
maintainability and those with MI above 85 have excellent maintainability. Since MI
measurement is not a trivial task, we used JHawk 5.1 tool to measure MI for each product line
component.

Maintainability MI Score
Highly maintainable >85
Moderately maintainable | >65 and < 85
Difficult to maintain <65

Table 1. Maintainability rules for MI [13]

The empirically derived coefficients from actual usage data for MI are shown Table 1. Ml is a
complexity metric to indicate the code that is difficult to maintain. MI metric is used by
individual programmers while maintaining a code to determine if the maintainability of given
software is improving or diminishing. Although several variants of the MI equations have
evolved over time, in this study we use the version originally proposed by Oman and
Hagemeister. Since many studies have shown that the MI model was often overly sensitive to
the comment metric, we use the version, where the comment equation portion was omitted to
limit the contribution of comments in MI.

3.4. Independent Variables

The selection of the independent variables includes 7 object oriented design metrics of size,
complexity, coupling and inheritance. The definition of those object oriented design metrics is
given in Table 2. The metrics selection is based on the previous research results which have
indicated that ACC, ADIT, AMC, and AWMC have statistically significant effects on
maintainability [42]. The selection is based on the metrics selection criteria, a set of criteria
for choosing suitable metric set [1]. Also, the metric selection is based on distinct metrics
characteristics which we have identified and used to omit the metrics which measure the same
thing. Finally the metrics selection was limited by available tools we could have used for this
case study. The goal of our metrics selection criteria was to avoid measuring too much or
measuring too little and not gaining sufficient insight into the desired objective. These metrics
are commonly used and have been validated [7].

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
150

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Metric Description

ABD Average block depth

ACC Average cyclomatic complexity

ADIT Average depth of inheritance hierarchy
AMC Average number of methods per class
ALCM Average lines of code per method
AWMC Average weighted methods per class
NMETH Number of methods

Table 2. Definition of design metrics

Some metrics such as CC, DIT, MC, LCM, and WMC are originally defined at the class level.
However, this study is performed at the product line component level. Therefore, those
metrics may not be directly used as independent variables. In order to use them in this study,
for each such metric, its mean among classes is calculated and used as an independent
variable. Naming of those metrics is prefixed by an “A”, for example, the average CC metric
is named ACC, when used at the component rather than at the class level.

3.5. Hypotheses

The hypotheses that relate metrics to product line components maintainability are listed and
described in Table 3. The relationship column (+/-) indicates the direction of correlation
between each metric and changeability (PR), where “+” means positive and “— means
negative correlation. Different authors have measured correlation between source code
metrics and maintainability [2, 16, 42]. To date various methods have been developed and
introduced to measure maintainability, however, there are a software product lines specifics,
since they heavily rely on the platform used by its components. It will be addressed by this
study. This experiment introduces a new relation measurement, the correlation between PR
and MI metrics, since they potentially measure the same thing, but from different perspective,
one (MI) from a generic perspective, the other (PR) from the product line specific perspective.

Metric +/- Description

MI + Measure the same thing as PR
ABD - Component become more complex
ACC - Component become more complex

ADIT Component coupling increases
AMC - Component become more complex

ALCM - Component become more complex
AWMC - Control flows are more complex
NMETH - Number of faults and difficulty increases

Table 3. The hypotheses

4. Execution

The experiment was based on data (Java source code) collected through the two major
releases of the product line in a financial institution. To ensure the data validity, the Java
source code metrics of collected data are measured twice, once using CodePro Analytix™ |
tool [20], and again with JHawk tool [37], but just for the metrics which could be measured
by both of the tools. These tools measure and report on key quality indicators in a body of
Java source code. In cases the results from the tools were different, we used JHawk results as
representative, since the JHawk tool was also used to measure the MI metrics which depends
on some of the other measured metrics.

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
151

ROSKO AND STRAHONJA A CASE STUDY OF SOFTWARE PRODUCT LINE...

4.1. Sample

The product line reference architecture implementation (platform) together with 9
applications has all together 161.376 lines of Java source code without comments (LOC). The
rest of the source code has been written by using Transact-SQL, XML, HTML, CSS, Java
Script languages. In this study we analyze the Java source code used by server side business
application components, consisting of 33.139 LOC, and of 27.252 Java statements (NOS).
Table 4 presents the 46 components and its data that was collected from Subversion Edge
source code repository.

(Metrics

izt D3 D4 D5 PR MI ABD ACC ADIT AMC ALCM AWMC NMETH

SCl1 13 6 0 6842| 10666 145 173 400 550 1090 10,00] 11
sC2 104 79 0 S683| 10422 121 130 577 661 8,88 867 119
8C3 8 5 0 61,54 104,90 138 146 300 6,50 10,61 ‘).50 13
SC4 25 17 0 59,52 96,39 153 158 420/ 240 13,30 31!01 12
8C5 42 38 0 52,50 8842 162 247 461 297 20,44 762 38
5C6 30 34 0 16,88 9744 160 1,79 420 1560 16,64 28.00| 78
SC7 26 16] 61,90 94,63 127 1.73 360 440 1627 7.60| 22
SC8 10 4) 7143 11242 L18 1,19 300 300 693 9.50| 16
SC9 17 15 0 53,13 101,15 147 159 366 1967 139 1133] 59
SC10 16/ 8 0 66,67 9752 1,51 159 433 1233 14,72 w,oo] 37
SCl11 6 5 0 5155 10087 1.50 1.50 350 1000 13,09 15,00 20
SC12 60 47 0 56,07 96,34 141 206 563 591 1453 12,55 65
SC13 81 60 0 5745 10764 123 132 525 851 899 11,69 141
SC14 29 19 0 6042 10940 125 133 375 1575 922 17,75 63
SC15 5 0 61,54 99,00' 1,42 1,71 400 350 1228 6,00 7
SCl6 30 18 0 62,50 97,50 1,55 1,76 4,20/ 7,60 1423 13,40| 38
SC17 64 44 0 5926/ 99,71 143 165 559 9,10 13,56 15,00| 91
SCI8 19 12 0 6129 9635 157 186 400 167 16,14 8.67| 14
5C19 18 14 0 5625 10079 145 175 500 500 1125 9,00| 20
SC20 38 29) 5672| 11435 1,12 130 629 588 6,51 7.76) 100
5021 16 13 0 55,17 99,03 1,53 219 466 867 16,00 19,67 26
sC22 8 5 0 6154] 10263 146 153 400 750 12,53 11,50 15
5C23 11 4 0 7333 10520 130 131 300 6.50] 992 8.50 13
SC24 10 5 0 6667 10445 139 147 4,66 5000 11,06 733 15
5C25 26 19 [} 57,78| 10093 147 163 4,50 633] 1268 10,50 38
5C26 31 21 0 5962 104,11 134 151 420 820 1095 12,60 41
SC27 31 24 0 56,36 104,26/ 133 143 4100 840 10,80 12 20 42
SC28 15 13 0 53,57 98,72 1,53 191 400 1033' 15,13 28,67] 43
S5C29 78 57 0 51,78 95,56 1,52 1,86 453 7.00' 15,73 13,00 91
SC30 20 10 0 66,67 9815 152 152 383 350 1428 533 21
SC31 13 13| o 50,00 97,50 1,54 192 433 800 1537 1533 24
$C32 29/ 20 0 5918 10575 122 1,40 533 583 8,65 8,17 35
SC33 33 26 0 55,93 911 1,54 189 3,60/ 22 80/ 15,53 43,80 114
SC34 17 14 0 54,84 103,02 143 143 433 12 J3| 1191 1?,67] 37
SC35 9 6 0 60,00 102,78 1,52 184 300 950 12,57 17,501 19
SC36 142 116 0 550 9842 149 187 565 981 1423 18,73 255
sC37 10 9 0 52,63 9921 145 164 350 550 13,63 9,00 11
SC38 15 11 0 5769 10452 133 144 366 6.00 1044 867 18
SC39 6 1 0 60,00 9354 164 229 400 gs0] 1852 19,50 17
SC40 27 28 0 1909 98,56 143 168 542 529 1201 %,86| 37
SCAl 6 1 0 00| 10745 133 150 350 3.00| 733 4,50 6
SC42 55 24 0 6062 10223 1,56 197 385 a6l 1243 943 65
SC43 12 8 0 6000 10116 1,50 1,50 433 400] 1166 6.00| 12
SC44 8 0 6667 10975 127 127 400 550 790 7,00 11
SCA5 6 1 0 8571 11901 130 140 400 500 6,00 7,50 10
SC46 11 5 0 68,75 10943 136 155 450 550 7,90/ 9,00 11
Total 1289 939 0] 275849 469068 6545 7562 19596 356,79 568.49 592.78 1991
Average 28 20 0 5997 10197| 142 164 426 7.76 12.36 12,89 43

Table 4. Sample data (V2)

The data we use comprise two separate time series: the stream of release V2, and a
corresponding stream of release V3. The data to be analyzed are historical data from 2012 and
2013 and comprise the data for all independent and two dependent variables that we observe
in this study. The mentioned source code repository is used by developers to commit the

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
152

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

changes at least on monthly bases. Java source code is developed using Eclipse IDE for Java
Developers which includes Subversion Edge client to work with Java source code stored in
the repository. The data from repository were collected in two separate Eclipse workspaces,
each for the corresponding release (V2, V3). Each workspace is used separately to collect the
source code metrics. For measurement of the D3, D4 and D5 dependency metrics we have
used CodePro Analytix™ Eclipse plug-in, and for measuring the rest of metrics we have used
JHawk tool. The collected metrics for both time series (V2, V3) are entered into IBM SPSS®
Statistics statistical software for further processing.

It can be observed that components vary in size in terms of the number of methods
(NMETH), and also vary in coupling in terms of number of platform references (D3) and
number of Java environment references (D4).

Table 5 provides a summary of the maintenance tasks and the impacts on the product line
components between the two releases of the product line applications. It shows that most of
these maintenance tasks were new components development.

Maintenance type | Components affected | Classes affected | LOC affected
Add 35 68 7314

Change 33 61 101

Delete 11 0 87

Table 5. The maintenance tasks and their impact on components

The components in Table 5 refers to the server side application units, each consisting of
component interface (facade), zero or more business objects and data access objects. The
results from the table show that most of these maintenance tasks were addition of the new
functionalities. Different maintenance tasks and changes in the source code have different
impact on the product line components. Some changes are localized and they do not affect
other components (facade) of the product line whereas others affect a number of components
(data access objects, business objects).

5. Analysis

This section presents the statistical analysis of the data we have gathered. In this study we
focus on investigating the capability of Platform Responsibility (PR) metric to serve as
indicator of application component changeability. As indicated earlier in Section 2 (related
work) and in [11], [5], many studies have already investigated the OO and coupling (Ca, Ce)
metrics for this purpose, however, the metrics to measure coupling between product line
application components and their reference architecture implementation (platform) has not
been used as a predictor of product components changeability. After the analysis, we assume
that changeability of a product line application component is better assessed in terms of
coupling metrics as coupling metrics measure the degree to which components depend on
product line reference architecture implementation (platform), external third party
components and to the Java environment. These dependencies may be used to assess the
impact of change as changes of an external third party component may impact application
component classes through the dependencies. A class belonging to a component that is
coupled to other external components is sensitive to changes and as a result it becomes more
difficult to maintain. Changeability of a class (and hence a product line component it belongs
to) depends on the number of changes required and the impacts of these changes related to
other dependent classes. More application component class dependencies on the platform
component classes rather than on other third party or environment classes, suggests a better
changeability. Therefore, the proposed metrics (PR) that capture the dependencies among
application classes and other external components are expected to have the ability of
predicting changeability of a software product line for business applications.

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
153

ROSKO AND STRAHONJA A CASE STUDY OF SOFTWARE PRODUCT LINE...

5.1. Descriptive Statistics

Table 4 shows the descriptive statistics for two accumulated versions of the server business
components. The selection of these metrics is based on the fact that they measure different
structural properties of a component: size, coupling, complexity, and inheritance, and since
they refine classical object-oriented (Chidamber and Kemerer metrics) [3], which are well
established and based on sound measurement theory.

Column "Skewness" is a measure of the asymmetry that shows whether the data

distribution is skewed. Column "Kurtosis" is a measure of the "peakedness" that shows
whether the data are peaked or flat relative to a normal distribution.
The low mean for NMETH and AWMC indicate that there are a small number of components
which are having very high number of methods. Their distribution and the distribution of
AMC metrics show high variations across the product line, which may reflect the lack of
development experience of the programmers involved in those components. Figure 3 and 4
show the PR and MI metric frequency distribution. Both of the metrics distributions form a
symmetrical, bell-shaped pattern, which approximates a normal distribution of the data.
Second, the mean, mod and median for both metrics are equal and are located at the center of
the distribution. Third, most of the values are clustered around the center of the distribution.

Metric Minimum Maximum Mean Standard Skewness Kurtosis

value value value deviation
PR 46.87 85.71 5995 6.88 1.17 2.79
MI 88.42 119.01 101.95 5.82 0.58 0.62
ABD 1.11 1.7 141 0.12 -0.38 -0.58
ACC 1.19 247 1.63 0.27 0.89 0.71
ADIT 3 6.29 4.29 0.78 0.54 -0.16
AMC 2.4 22.8 17.75 4.19 1.70 3.18
ALCM 6 20.44 1226 3.24 0.06 -0.29
AWMC 3.8 442 12.86 7.68 1.99 4.79
NMETH 6 255 45.09 48.26 2.45 7.17

Table 6. Descriptive statistics of the server components

Figure 2 visualizes the overall level of MI and PR metrics for 46 server components under
study. Roughly, we can say that there is an implicit relationship between MI and PR, i.e., a
component with a higher MI level is more likely to have a higher PR.

140,00

120,00

80,00
000 Mo AA o~ N A /\f‘

40,00

20,00

0,00

1 4 7 1013 16 19 22 25 28 31 34 37 40 43 46

=MI =—PR

Figure 2. Relationship of MI to PR metric

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
154

JOURNAL OF [INFORMATION AND ORGANIZATIONAL SCIENCES

30 Mean = 59.96
$td Dev. = 6.882

204

Frequency
\\-
|
|

/
" N

T T T
40.00 5000 60.00 70.00 50.00 90.00
PR

Figure 3. PR metric histogram

MI
154 Mean = 101 95
Std, Dev. = 5,528
=05

Frequency

5

2l

) T
80.00 90.00 10000 11000 12000
MI

Figure 4. MI metric histogram

Figure 5, the scatter plot, shows the relationship between PR and MI variables. The scatter
plot shows an upward trend, a positive correlation, in which a direct relationship exists
between PR and MI variables. That means that an increase in PR is related to an increase in
MI, and a decrease in PR is related to decrease in MI. The figure also shows that the
homoscedasticity assumption is met, because the variability of the PR variable, pretty much
remains relatively constant from one MI value to the next. The two outliers (PR=86, MI=118
and PR=86, MI=119) shown at the upper right corner at figure 5, are due to the rare event of
components which interface is designed but their business logic was never implemented.
These components are candidates to be dropped from the product line and could be excluded

from the analysis.

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
155

ROSKO AND STRAHONJA A CASE STUDY OF SOFTWARE PRODUCT LINE...

12000+

°
o
110004 & 83
o o 4
08388 o g 8
8 %8 o©
S 100004 . 8808
o8 BB £, g
o B ° og
£o%
8

90,00+

80.00

T T T T T T
4000 5000 6000 70.00 5000 9000
PR

Figure 5. MI and PR metric data distribution

5.2. Hypothesis Testing

Correlation technique was used to analyze the relationship between design metrics and both
PR and MI metrics, and also between MI and PR metrics them self. Since our goal was to
prove that PR metric can be used as a changeability predictor, we needed to find out if there is
a positive correlation between MI, widely-used measure, and PR, newly proposed measure.
The significance of the correlation was tested at 99% confidence level (i.e. p-level <0.01) and
at 95% confidence level (i.e. p-level < 0.05). The results obtained by applying this analysis
are given in table 7 and 8, where ** and * values indicate statistically significant correlations.

Among the 7 design metrics used in this study, all were found to have significantly
correlated negative effect on changeability (PR). ALCM (Average Lines of Code per Method)
shows the highest negative correlation followed by ACC and AWMC. It is most probably the
result of tendency that class methods with more lines of code than average, are using more of
the external components than average methods, which makes the component less changeable.
Therefore, the hypotheses related to those metrics are supported.

Table 8 shows the correlations between design metrics and MI, where only 3 metrics
(ABD, ACC, and ALCM) were found to have statistically significant negative effect on
maintainability (MI). ALCM (average lines of code per method) shows the highest negative
correlation followed by ABD and ACC. The correlation between Maintenance Index (MI)
and Platform Responsibility (PR) is moderate, r = 0.526** which we consider strong in the
context of the software product lines environment. The correlation indicates that PR can be
used for the same purpose as MI in case we are predicting product line component
changeability. Therefore, as the values of these metrics increase, the changeability of the
components and hence the product line decreases.

Metric | Pearson correlation coefficient (r)
ABD -296%*

ACC -353%*

ADIT -.304%*

AMC -313%*

ALCM - 4T7TH*

AWMC -374%*

NMETH - 277**

**_ Correlation is significant at the .01 level (2-tailed)

Table 7. PR and metrics correlations

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
156

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

Metric | Pearson correlation coefficient (r)
ABD =777

ACC - 751%*

ADIT .016

AMC -.050

ALCM -.941%*

AWMC -.239%

NMETH -.072

**_ Correlation is significant at the .01 level (2-tailed)
*_ Correlation is significant at the .05 level (2-tailed)

Table 8. MI and metrics correlations

6. Interpretation

Based on the results of correlation analysis performed, this section discusses the implications
of selected design metrics on the changeability of product line components. The implications
can provide decision support for reference architecture designers in the process of significant
architectural decision making at the relatively early phases of software product line
development.

The results are interpreted with respect to the hypotheses stated in section 3.5. All
hypotheses are tested using Pearson correlation. It can be concluded that there are significant
differences among the components, depending on their design metrics characteristics. This is
true for all the hypotheses. Furthermore, there is significant correlation between MI and PR
metrics, and thus the exceptional usage of PR instead of MI in software product line
environment can be suggested.

The design metrics used in this study, were found to have significantly correlated negative
effect on changeability, which is in line with what was reported in [29].

The same metrics are reported to be used as successful predictors for source code
maintainability, acording to systematic review [31].

A strong relation between import coupling metrics (efferent) and maintainability
characteristics has been reported by Dagpinar et al. [16]. Import coupling considers
interactions of the class or component that is using the functionality of other classes or the
component.

Our results also suggest that metrics related to application size, complexity and coupling
may be used as maintainability predictors.

The results of this study, where we used the PR dependency metrics, also measure the
import coupling for server component which is using the functionality of the platform (D3),
environment (D4) and external components (DS5). The results are consistent with those of the
aforementioned study and suggest that changeability of product line components depends on
source code design characteristics.

There are limits of this study to generalize the results of our experiment to industrial
practice. Threats to the conclusion validity of the results are that the number of samples is
low, in particular the number of maintenance changes. However, we believe that our proposed
work can be seen as a first step toward the needed empirical research on the relation between
source code design metrics and external quality of product line components. The specific
business environment, programming language, developers experience and technical
environment are not representative of the population we want to generalize to, but the threats
are reduced by making the experimental environment as realistic as possible.

7. Conclusion and Future Work

In this paper we have investigated the relationships between 7 design metrics and software
product line component changeability, a sub-characteristic of maintainability, based on a

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
157

ROSKO AND STRAHONJA A CASE STUDY OF SOFTWARE PRODUCT LINE...

software product line implementation in a financial institution. The metrics used here,
measure coupling, size, inheritance and complexity of a product line components used by the
9 applications from the product line. The Maintainability Index (MI) was used as the
dependent variable together with recently proposed Platform Responsibility (PR) metric. Our
goal was to find out if PR metric can be used instead of the MI metric in case the study is
carried over within software product line environment. Pearson correlation analysis results
indicate a statistically significant correlation between PR and MI metrics, and also between
most of the individual metrics and component changeability represented by those metrics. We
have also found the ability of the design metrics to predict components changeability, when
design metrics are used together. The results of this research support the idea to use the PR
metric as predictor of changeability in the software product line environment. The correlation
between MI and PR is interesting because it is much easier to measure PR than MI metric.
This indicates that PR metric may be used more often in the future as a predictor for product
line component changeability. The major limitation of this study was the sample size and the
specific technical environment which was used to develop the product line in a financial
institution. This study contributes preliminary and novel empirical knowledge about the
relationships between some design metrics and product line components changeability. In the
future work we will employee classical linear regression to investigate the relationship
between design metrics and changeability of software product line components. Also, the
future work will include the analysis of influences of individual design metrics.

References

[1] Abreu, F.B., Carapu\cca, R.: Object-oriented software engineering: Measuring and
controlling the development process. In: proceedings of the 4th International
Conference on Software Quality. (1994)

[2] Aggarwal, K.K., Singh, Y., Chhabra, J.K.: An integrated measure of software
maintainability. In: Reliability and maintainability symposium, 2002. Proceedings.
Annual. pp. 235-241. IEEE (2002)

[3] Ajrnal Chaumun, M., Kabaili, H., Keller, R.K., Lustman, F., Saint-Denis, G.:
Design properties and object-oriented software changeability. In: Software
Maintenance and Reengineering, 2000. Proceedings of the Fourth European. pp.
45-54. IEEE (2000)

[4] Aldekoa, G., Trujillo, S., Mendieta, G.S., Diaz, O.: Experience Measuring
Maintainability in Software Product Lines. In: JISBD. pp. 173-182. Citeseer (2006)

[5] Ayalew, Y., Mguni, K.: An Assessment of Changeability of Open Source Software.
Computer and Information Science. 6 (3), p68 (2013)

[6] Bagheri, E., Gasevic, D.: Assessing the maintainability of software product line
feature models using structural metrics. Software Quality Journal. 19 (3), 579-612
(2011)

[7] Belsley, D.A., Kuh, E., Welsch, R.E.: Regression diagnostics: Identifying
influential data and sources of collinearity. John Wiley & Sons (2005)

[8] Bengtsson, P., Bosch, J.: Architecture level prediction of software maintenance. In:
Software Maintenance and Reengineering, 1999. Proceedings of the Third
European Conference on. pp. 139-147. (1999)

[9] Briand, L.C., Bunse, C., Daly, J.W.: A controlled experiment for evaluating quality
guidelines on the maintainability of object-oriented designs. Software Engineering,
IEEE Transactions on. 27 (6), 513530 (2001)

[10] Briand, L.C., Morasca, S., Basili, V.R.: Property-based software engineering
measurement. Software Engineering, IEEE Transactions on. 22 (1), 68-86 (1996)

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
158

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

Burrows, R., Garcia, A., Taiani, F.: Coupling metrics for aspect-oriented
programming: A systematic review of maintainability studies. In: Evaluation of
Novel Approaches to Software Engineering. pp. 277-290. Springer (2010)

Clements, P., Northrop, L.: Software product lines: Practices and Patterns. Addison-
Wesley Boston (2002)

Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software
system maintainability. Computer. 27 (8), 44-49 (1994)

CollabNet: Subversion Edge,Release: 1.3.0.

Coplien, J., Hoffman, D., Weiss, D.: Commonality and variability in software
engineering. Software, IEEE. 15 (6), 37—45 (1998)

Dagpinar, M., Jahnke, J.H.: Predicting maintainability with object-oriented metrics-
an empirical comparison. In: Proceedings of the 10th Working Conference on
Reverse Engineering (WCRE). pp. 155-164. (2003)

Van Der Hoek, A., Dincel, E., Medvidovic, N.: Using service utilization metrics to
assess the structure of product line architectures. In: Software Metrics Symposium,
2003. Proceedings. Ninth International. pp. 298-308. IEEE (2003)

Fenton, N.E., Pfleeger, S.L.: Software metrics: a rigorous and practical approach.
PWS Publishing Co. (1998)

Geraci, A., Katki, F., McMonegal, L., Meyer, B., Lane, J., Wilson, P., Radatz, J.,
Yee, M., Porteous, H., Springsteel, F.: IEEE standard computer dictionary:
Compilation of IEEE standard computer glossaries. IEEE Press (1991)

Google, Inc: CodePro Analytix. Google, Inc (2011)

Ingram, C., Riddle, S.: Linking software design metrics to component change-
proneness. In: Proceedings of the 2nd International Workshop on Emerging Trends
in Software Metrics. pp. 31-37. ACM (2011)

International Organization for Standardization: ISO/IEC 9126-1: Software
engineering - product quality - part 1: Quality model, (2001)

Jalote, P.: A Concise Introduction to Software Engineering. Springer (2008)

Kang, K.C., Sugumaran, V., Park, S.: Applied software product line engineering.
CRC press (2009)

Mari, M., Eila, N.: The impact of maintainability on component-based software
systems. In: Euromicro Conference, 2003. Proceedings. 29th. pp. 25-32. IEEE
(2003)

McCabe, T.J.: A complexity measure. Software Engineering, IEEE Transactions
on. (4), 308-320 (1976)

Meyer, M.H.: The power of product platforms. Simon and Schuster (1997)

Misra, S.C.: Modeling design/coding factors that drive maintainability of software
systems. Software Quality Journal. 13 (3), 297-320 (2005)

Misra, S.C.: Modeling design/coding factors that drive maintainability of software
systems. Software Quality Journal. 13 (3), 297-320 (2005)

Poels, G., Dedene, G.: DISTANCE: A framework for software measure
construction. DTEW Research Report 9937. 1-47 (1999)

Riaz, M., Mendes, E., Tempero, E.. A systematic review of software
maintainability prediction and metrics. In: Proceedings of the 2009 3rd

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160
159

ROSKO AND STRAHONJA A CASE STUDY OF SOFTWARE PRODUCT LINE...

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]

International Symposium on Empirical Software Engineering and Measurement. pp.
367-377. IEEE Computer Society (2009)

Rosko, Z.: Assesing the Responsibility of Software Product Line Platform
Framework for Business Applications. Presented at the CECIIS-2013, (2013)

Schach, S.R., Jin, B., Wright, D.R., Heller, G.Z., Offutt, A.J.: Maintainability of the
Linux kernel. IEE Proceedings-Software. 149 (1), 18-23 (2002)

Singer, J.: Practices of software maintenance. In: Software Maintenance, 1998.
Proceedings., International Conference on. pp. 139-145. IEEE (1998)

Tizzei, L.P., Dias, M., Rubira, C.M., Garcia, A., Lee, J.: Components meet aspects:
Assessing design stability of a software product line. Information and Software
Technology. 53 (2), 121-136 (2011)

Vigder, M.: The evolution, maintenance, and management of component-based
systems. Component-Based Software Engineering: Putting the Pieces Together.
527-539 (2001)

Virtual Machinery: JHawk. (2013)
Virtual Machinery: JHawk 5.1 Documentation-Metrics Guide, (2012)

Welker, K.D., Oman, P.W.: Software maintainability metrics models in practice.
Crosstalk, Journal of Defense Software Engineering. 8 (11), 19-23 (1995)

Welker, K.D., Oman, P.W., Atkinson, G.G.: Development and application of an
automated source code maintainability index. Journal of Software Maintenance:
Research and Practice. 9 (3), 127-159 (1997)

Wilkie, F.G., Kitchenham, B.A.: Coupling measures and change ripples in C++
application software. Journal of Systems and Software. 52 (2), 157-164 (2000)

Zhou, Y., Xu, B.: Predicting the maintainability of open source software using
design metrics. Wuhan University Journal of Natural Sciences. 13 (1), 14-20
(2008)

Zuse, H.: A framework of software measurement. Walter de Gruyter (1998)

160

JIOS, VOL. 38, NO. 2 (2014), PP. 145-160

