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Abstract 
A method of constructing boosting ensembles of heavy two-layer perceptrons is stated. The 
benchmark classification problem is recognition of shifted-turned-scaled flat images of a 
medium format with binary features. The boosting gain is suggested in two aspects. The 
earliest one is the ratio of minimal recognition error percentage among the ensemble 
perceptrons to the recognition error percentage performed by the ensemble. The second gain 
type is the ratio of minimal variance of perceptrons’ recognition error percentages over 26 
classes to variance of the ensemble’s recognition error percentages over 26 classes. Both ratios 
increase as the number of perceptron classifiers in the ensemble increase. The ensemble of 36 
classifiers performs with increased accuracy, where recognition error percentage is decreased 
for 33 %, and the variance is decreased for more than 50 %. Further increment of classifiers 
into ensemble cannot increase accuracy much as there is the saturation effect of the boosting 
gain. And the gain itself depends on the range of noise modeling object’s distortions. Thus, the 
heavier perceptron classifier the less gain is expected. 
Keywords: boosting ensemble, two-layer perceptron, recognition, accuracy, boosting gain 

1. Introduction 
Classification is needed for automatization ensuring reliability of complex systems and 
controlling them. At particular classification, object recognition is an element of watching and 
registering objects of interest. The ideal situation is when recognition error rate is zero. 
Despite this is utopia, recognition error rate can be decreased via increasing accuracy of the 
classifier performing the recognition. For recognizing objects with a lot of independent 
features (whose number is of the order of hundreds and thousands), neural networks fit best 
[1, 16]. And for classifiers based on neural networks there are several known approaches to 
increasing classification accuracy. 

2. Approaches to increasing classification accuracy 
One of the most popular classifiers is projected with decision trees [4, 11]. Decision trees are 
boosted to random forests, what increases their classification accuracy [9, 12]. However, 
designing a decision tree for recognizing even medium format images is too ineffective. For 
fulfilling this task, there are neural networks of various types: perceptron, cognitron, 
neocognitron, convolutional and hierarchical neuronets. These networks’ classification 
accuracy is increased either via architecture adjustment [1, 3, 2] or training process 
optimization [10, 7]. Boosting over neuronets is applied as well, but ensembles are aggregated 
from weak learners [8, 5], rather than heavy multilayer perceptrons or more complicated 
networks. Besides, most existing boosting methods were designed primarily for binary 
classification [8, 15, 17]. And in many cases, the extension to classification problem of 

 \ 1, 2N   classes isn’t straightforward [8, 5]. 
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3. Goal and tasks of the article 
With statistically universal approximators based on two-layer perceptron with nonlinear 
transfer functions (TLPNLTF), being the lightest among the heavy neuronets, boosting 
TLPNLTF ensembles are to be tried. For trying their performance, the problem of recognizing 
shifted-turned-scaled (STS) flat images with binary features (monochrome images) is going to 
be considered. The goal is to register classification accuracy increment of TLPNLTF 
ensembles, and to score the gain as a ratio of the ensemble classification accuracy to 
classification accuracy of the smartest TLPNLTF in the ensemble. 

Before boosting, the TLPNLTF classifier along with its training routine for recognizing 
STS images is formalized. Then the boosting training routine (BTR) is stated. After this, we 
take a few tens of TLPNLTF trained for recognizing STS images of a medium format. In this 
way, we are going to plot the dependence of recognition error percentage (REP) against the 
number of TLPNLTF classifiers within the ensemble. Thus the ratio showing the TLPNLTF 
boosting gain will be seen clearly. 

In discussion, possibilities of propagation of the obtained result should be expounded. In 
conclusion, the scientific meaning and practical significance will be declared. And an outlook 
for further work on heavy boosting ensembles will be given. 

4. Increasing classification accuracy with heavy boosting ensemble of 
TLPNLTF 

For constructing a TLPNLTF classifier, its transfer functions can be set log-sigmoid. And for 
the problem of recognizing  \ 1N   classes, the single object input of TLPNLTF is 

 1
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  X   by Q  features and the output of TLPNLTF is the number [14] 
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of the concurrent class, where HLQ  is number of neurons in the hidden layer of TLPNLTF, 
and  HL 1Q Q N N     coefficients 
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are to be determined during the training routine. While being trained [6, 13], the input of 
TLPNLTF is fed with the training set 
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    X   is the s -th class pure representative. 

Then comes the second stage, when the input of TLPNLTF is fed with the training set 
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by the infinite set  0, 1  of standard normal variate’s values, where the matrix mapping 

 , h Y  returns Q N  matrix with noised N  classes representatives modeling probable 
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object’s distortions at the level h  [13]. In the case of STS images, this mapping is applied 

successively for scaling  scale
scale, h Z , turning  turn

turn , h Z , and shifting 

 shift
shift , h Z  representatives of N  classes in Q N  matrix Z : 

 

      scale turn shift
shift turn scale, , , ,h h h h      Y Y  (5) 

 

by some relationships among shift
h h    and scale 0h   and turn 0h  . The set (4) feeds the 

input of TLPNLTF for passQ   times until validation error starts increasing. For making 
sure that the pure representatives (3) have not been disassociated from those N  classes, the 
input of TLPNLTF is re-fed with the set (3) at the final third stage of the training routine. 

For ensemble of  \ 1B  trained TLPNLTF (1), BTR starts with generating the 
training set (4) whose parameters  0, , ,R H    may differ from those ones when a 
TLPNLTF is trained. The set (4) is re-generated for T   times. Thus the training set for 
BTR includes  M R H N T     training samples. At the q -th iteration of boosting, these 

samples have the weights in vector    
1 M

q d q 
   D  by 01,q q  at some final iteration 

number 0q  [14]. 
Initially,   11d M 

   1, M  . Matrix  B M
a 

A  is of flags of classifiers’ correct 
responses, where 1a   is the correct classification of  -th sampled object by the  -th 
TLPNLTF, otherwise 0a  . The classifiers’ weighted errors are in matrix 
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q q 
   E , where the  -th classifier’s weighted error 
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BTR starts from 1q  . One after another, weighted errors (6) and the best TLPNLTF 
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along with the minimal weighted error (MWE) 
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over M  training samples. BTR continues if 
 

   1
* 1q N       (11) 

 

for some 0  tolerating MWE. While inequality (11) is true then q q  and 1q q  , and 
(6) — (10) are re-found. As soon as inequality (11) becomes false then 0q q  and there are 
calculated the coefficients 
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for convex combination of classifiers 
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where  sv   is the s -th output neuron value of the  -th TLPNLTF. The boosted classifier 
output is 
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For recognizing STS 60 80  monochrome images [13], there have been prepared 36 
trained TLPNLTF by 
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with HL 300Q   and 26N  , whose averaged REP   36
RE 1

p


  are in Figure 1. Variances of 

REP over 26 existing classes   36
REP 1

v


  are in Figure 2. Having initialized BTR for every 

2, 36B   with 
 

  01, 8, 0, 1, 0R H         (17) 
 

in the training set (4), which is re-generated for 100T   times, the averaged REP  REp B  is 
decreasing against the number of classifiers in the ensemble (there is an almost decreasing 
barred realization of this stochastic polyline in Figure 3). The inequality 

 

    RE RE1, 36
2 minp p


   (18) 

 

is true for the realization in Figure 3, and it is expected that (18) is true for the decreasing 
expectance of the averaged REP (as this is a stochastic polyline). Figure 4 with variance of 
REP over 26 classes  REPv B  confirms that the greater number of classifiers the harder 
decrement is. The expected polyline of the variance seems to be decreasing also, and the 
inequality 

 

    REP REP1, 36
2 minv v


   (19) 

 

is true for the realization in Figure 4. However, it is obvious that the rate of stochasticity 
(volatility) of polyline  REPv B  is higher than the rate of stochasticity of polyline  REp B . 
Therefore, we see a protuberance in Figure 4 starting from 13B   right to 34B  . Local 
protrusions by  29, 33B  and at 26B   along with crevasses at  12, 28, 34B  sharpen 

the impression about highly stochastic polyline  REPv B . 
 



79

JIOS, VOL. 39, NO. 1 (2015), PP. 75-84

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES 

  

 
Figure 1. Averaged REP of preliminarily prepared 36 trained TLPNLTF to be boosted  

within ensembles of them 

 
Figure 2. Variances of REP over 26 existing classes of preliminarily prepared 36 trained 

TLPNLTF before boosting 
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Figure 3. Averaged REP  REp B  against the number of TLPNLTF classifiers in the ensemble 

 
Figure 4. Variance of REP over 26 classes  REPv B  against the number of TLPNLTF 

classifiers in the ensemble 
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The TLPNLTF boosting gain is displayed in Figure 5 with the ratios for the averaged 
REP 
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and variance of REP 
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over 26 classes. As it is seen, the gains are increasing with the increasing number of 
TLPNLTF classifiers in the ensemble. Clearly, increment for REP gain is more stable and 
predictable than increment for REP variance gain. Nonetheless, saturation of the increments 
must be existing. This is because speed of the increment is apparently slowing down when 

12B  . 
 

 
Figure 5. The TLPNLTF boosting gain against the number of TLPNLTF classifiers  

in the ensemble 

 
The ratio showing the TLPNLTF boosting gain is expected to be the highest at the 

maximal number of TLPNLTF classifiers in the ensemble. In the tested case, it is 36B  . 
Predictably, for 36B   those gains for REP and for variance of REP over 26 classes will 
slowly grow. However, increasing classification accuracy with heavy boosting TLPNLTF 
ensemble up to have 
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is improbable. In machine learning, the registered saturation effect in Figures 3 — 5 is an 
ordinary phenomenon. 

5. Results and discussion 
With boosting ensembles of heavy TLPNLTF whose number 20B  , classification accuracy 
in recognizing STS images is increased for 33 %, what corresponds to the 50 % REP gain 
seen in Figure 5. Probably, there is an ultimate increment that cannot be exceeded for the 
considered problem. Figure 5 hints that the ultimate increment is about 38 %, what 
corresponds to the saturation 60 % REP gain. Variance of REP over 26 classes is decreased 
with the ensemble for more than 50 %, corresponding to the 100 % variance-of-REP gain. 
Nevertheless, volatility of the variance decrement gain is very high. 

The obtained gain result shall be propagated over problems of classifying objects having a 
few thousands features within two or three tens of classes. This is so because there are 

4800Q   features and 26N   classes in the problem considered and investigated above. 
And if integers Q  and N  differ from 4800 and 26 just for a few percent, then the gains must 
be close to realizations in Figure 5. Only one should remember that Figure 1 and Figure 3 
show REP averaged over the whole range of noise modeling STS images. At maximal level 

0H    of noise modeling ultimate object’s distortions by dint of (5), the gain is less, 
though. While recognizing STS images distorted ultimately at 8 0 1    , the gain is 
approximately one third, i. e.    REP 36 1.31; 1.34g   if those REP in (20) are calculated at 

0 1   only. But under the reduced distortions by half,  REP 36 5g  . 
Another peculiarity is that the heavier classifier the less gain is expected. And vice versa, 

the gain is believed to be greater for less Q  requiring lighter TLPNLTF classifier. Here the 
TLPNLTF lightness is in “inverse proportion” to number  HL 1Q Q N N     of coefficients 
within matrices (2). 

It ought to be mentioned that recognition with the ensemble is lingered over calculating 
B  outputs of TLPNLTF. The recognition operation part itself, including convex combination 
of classifiers (13) with weights (14) by coefficients (12) for calculating the boosted classifier 
output (15), takes insignificant time. Obviously, this demerit could be compensated with 
parallel calculations. 

6. Conclusion 
The stated method of a strong classifier construction is a kind of straight boosting, when the 
ensemble is formed outright, for the given number B  of weak (initial) classifiers. Every 
initial classifier itself can perform as well. Nevertheless, the TLPNLTF classifiers’ ensemble 
classification accuracy can be increased with convex combination of classifiers (13). In the 
investigated problem of recognizing medium format STS images, this increment comes with 
the inequalities (18) and (19). 

Ratios (20) and (21) are principal to claim the gain of the boosting. If they are greater 
than 1, and they are increasing polylines, the boosting gain is effective enough. However, the 
TLPNLTF boosting gain with the ratios (20) and (21) depends on the range of noise modeling 
STS images. For a common problem of classification, the shape and monotonicity properties 
of polylines (20) and (21) depend on the range of the object’s distortions. 

There are two crucial distinctions of the stated TLPNLTF boosting method from other 
multiclass boosting approaches. The first one is the linear rule (9) for re-calculation of 
distribution (10) over M  training samples while BTR runs. The second one is the condition 
(11) letting stop BTR if MWE becomes too great. Elements of distribution (10) are calculated 
as well for binary classification approach (AdaBoost), but here we have used heavy 
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TLPNLTF classifiers, rather than weak learners. This is an evidence of that the exponential 
loss function in (10) is universal in weighting difficultly classified objects with the set of M  
training samples. Generally, the straight boosting method is applicable for any classification 
problem, where more than one homogeneous TLPNLTF is available. The method earnest 
restriction is that convergences (22) and (23) are unlikely. Therefore, classification accuracy 
does not seem to be increased infinitely. 

Being based on convex combination of TLPNLTF classifiers (13) with weights (14) by 
coefficients (12) for calculating the boosted classifier output (15) along with statements (6) — 
(11), strong classifier constructions are easily programmable. The registered classification 
accuracy increment of 36 TLPNLTF ensemble and the scored gain allow to apply the 
ensemble and the similarly constructed TLPNLTF ensembles for problems of classifying 
objects within two or three tens of classes by a few thousands features in every class. 
Investigation on heavy boosting ensembles could be advanced focusing on ultimate and 
diverse object’s distortions. The boosting gain at these distortions (strictly including, for 
instance, the STS distortion type) may be insignificant needing much more (heavier) 
TLPNLTF classifiers. 
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