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Abstract 

In finite noncooperative game, a method for finding approximate Nash equilibrium 
situations is developed. The method is prior-based on sampling fundamental simplexes 
being the sets of players’ mixed strategies. Whereas the sampling is exercised, the sets 
of players’ mixed strategies are mapped into finite lattices. Sampling steps are 
envisaged dissimilar. Thus, each player within every dimension of its simplex selects 
and controls one’s sampling individually. For preventing approximation low quality, 
however, sampling steps are restricted. According to the restricted sampling steps, a 
player acting singly with minimal spacing over its lattice cannot change payoff of any 
player more than by some predetermined magnitude, being specific for each player. 
The finite lattice is explicitly built by the represented routine, where the player’s mixed 
strategies are calculated and arranged. The product of all the players’ finite lattices 
approximates the product of continuous fundamental simplexes. This re-defines the 
finite noncooperative game in its finite mixed extension on the finite lattices’ product. 
In such a finite-mixed-extension-defined game, the set of Nash equilibrium situations 
may be empty. Therefore, approximate Nash equilibrium situations are defined by the 
introduced possible payoff concessions. A routine for finding approximate equilibrium 
situations is represented. Approximate strong Nash equilibria with possible 
concessions are defined, and a routine for finding them is represented as well. 
Acceleration of finding approximate equilibria is argued also. Finally, the developed 
method is discussed to be a basis in stating a universal approach for the finite 
noncooperative game solution approximation implying unification of the game 
solvability, applicability, realizability, and adaptability. 
Keywords: finite noncooperative game, fundamental simplex, sampling, 
approximation, approximate Nash equilibrium situations, mapping into a finite set, 
strong Nash equilibria, payoff concession 

1. Noncooperative-game models 

In general conception, noncooperative-game modeling is used for allocating resources 
rationally when they are exceeded with pretensions. Otherwise, if they are not, the 
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question is how to divide resources fairly. Noncooperative-game models are applied in 
economics [1], [2], ecology [3], [4], technics [5], [6], and social sciences [2], [3]. They 
allow to model and optimize interaction among economical subjects (enterprises), 
biological species, discharging queues (servers), schedules, etc. Also uncertainties are 
removed [7], [8], or reduced [7], [9], [10]. 

While modeling and practicing solution, finite noncooperative game (FNCG) is 
preferred to infinite one. The preference is explained with that FNCG is generally 
solved faster. Besides, FNCG solution in mixed strategies is suitable for practicing it 
as a mixed strategy in FNCG has finite support [7], [11]. Unlike this, solution of 
infinite game may contain infinite supports [7], [12]. While practicing such solution, 
the player whose solution strategy support is infinite selects ever the support pure 
strategies set of zero measure [12], [13], [14]. Therefore, efficient game modeling 
implies operations on FNCG. 

2. FNCG solution approximation 

FNCG is not always solved easily, if in mixed strategies. There is no universal 
algorithm for finding Nash equilibrium situations in FNCG [7], [12], [15]. 
Exceptions are [7], [16], [17], [18], [10] bimatrix games (when there are just two 
players) and dyadic games (every player has just two pure strategies). 

For an FNCG solution (in mixed strategies), sometimes it is fast and reasonable 
to approximate it rather than searching the exact solution. In fact, FNCG solution 
approximation is either finding Nash equilibrium strategies approximately or 
rounding probabilities therein [19], [13], [20]. Known polynomial algorithms for 
approximating Nash equilibria fit bimatrix games [19], but any class of non-dyadic 
FNCG with three players and more requires specific approach [7], [11], [12], [15]. 
Rounding probabilities is needed to have one or two digits after decimal point 
(DADP). This lets approximate statistical frequencies to the rounded probabilities 
while practicing, else the practiced result is off the equilibrium [13], [14]. 

As applicability of Nash equilibria in mixed strategies bears on probabilities 
with minimal number of DADP, FNCG solution approximation might be preferably 
started with searching through mixed strategies of such probabilities. Quantity of 
probabilities with finite number of DADP is finite. It implies sampling the sets of 
players’ mixed strategies. In this way, those sets being infinite are mapped into finite 
ones. With such sets’ finite approximation, a universal approach for FNCG solution 
approximation can be stated. 

3. Research goal and tasks 

Regarding not only limited applicability of Nash equilibria in mixed strategies, but 
also analytical and computational difficulties in searching exact solutions of FNCG, 
a method for finding applicable approximate Nash equilibrium situations must be 
developed. While accomplishing this, the following tasks are to be fulfilled: 

1. State preliminaries on FNCG (notations and indexing). 
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2. Map fundamental simplexes as sets of players’ mixed strategies into finite 
lattices. 

3. Envisage controllable sample step within every dimension of a simplex. 
4. For preventing approximation low quality, formulate restrictions on sampling 

steps. 
5. Set out a routine for building lattices approximating the sets of players’ mixed 

strategies. 
6. Introducing possible payoff concessions, state a routine for finding 

approximate Nash equilibrium situations. 
7. The similar routine should be stated for strong Nash equilibria with possible 

concessions. 
8. Estimate periods for solving FNCG with approximate equilibria. 
9. Argue for acceleration of finding approximate equilibria. 
Fulfilling these tasks drives to a universal approach for FNCG solution 

approximation. And if numbers of DADP and the game cycles are proper, this 
solution is fully applicable: after having practiced, statistical frequencies 
approximate enough to support probabilities [13], [14]. 

4. Preliminaries 

Take FNCG 
 

  (1) 

 

of  players, where nX  is set of pure strategies of the n -th player, and 

nK  is its payoff matrix, whose format is  
 

 by   

 

and indexing 
 

  
1

N

i i
J j


 ,   1,i ij M   1,i N  . (2) 

 

In FNCG (1), the set of all mixed strategies of the n -th player is  

 1nM  -dimensional fundamental simplex 

 

 . (3) 

 

In situation  
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of FNCG (1), the n -th player’s expected payoff is 
 

   1

1, , 1, 1

r

q q

N
N n

n i J rji

j M q N r

v k p


  

 
  

 
 

 P . (4) 

 

Now, after these preliminaries, every fundamental simplex (3) is going to be mapped 
into a finite lattice. 

5. Mapping fundamental simplexes as sets of players’ mixed strategies 
into lattices 

Mapping an infinite Euclidean finite-dimensional subset (fundamental simplex) into 
finite one means selecting sequences of points by a rule. The first part of the rule is 
that all the pure strategies belong to lattice. The second one is that, for keeping the 

sample step controllable, may every dimension have its own step. Let 1
nms
  be the 

sampling step along m -th dimension of simplex (3). Due to the first part of the 

mapping rule, . But numbers  
1

nM

nm m
s


 must be such that the sum of the 

n -th player’s all selected probabilities be equal to 1. Consequently, one of these 
numbers doesn’t make sense. Thus, without loss of generality, simplex (3) is 
mapped into the finite lattice 

 

 

 

 . (5) 

 

Lattice (5) is defined with numbers  
1

1

nM

nm m
s




. Clearly, probability  1

n nnM nMp s  

in (5) is written formally, being found as 
 

    
1

1 1

1

1
n

n n

M

nM nM nm nm

m

p s p s



 



  . (6) 
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And number 
nnMs  is non-constant depending on what numbers  

1

1

nM

nm m
s




 are 

assigned. Then FNCG (1) is defined in its finite mixed extension on the finite lattice 
 

 . (7) 

 

Thus the finite lattice (7) approximates the product  of fundamental 

simplexes. 
Dissimilar steps may be needed in the three following cases: 

1. When  
1

N

n n
M


 are pretty different, but players would wish to run through 

their lattices similarly (with nearly equal operation speed over the support pure 
strategies). 

2. Among its pure strategies, a player possesses more important strategies and 
less important strategies. 

3. Some players require lesser numbers of DADP, otherwise they will not 
implement their mixed strategies from an FNCG solution. 

The case 1 and case 3 needn’t dissimilar steps for the player (over its pure 
strategies). And the case 2 is just for that kind of dissimilarity. The lesser numbers 

 
1

1

nM

nm m
s




 provide the n -th player with faster solution implementation. However, 

faster solution implementation yields FNCG approximation low quality. So, 
sampling steps shall be restricted for the low quality prevention [21], [22]. 

Moreover, numbers  
1

1

nM

nm m
s




 are interdependent in order to ensure the sum of the 

player’s all probabilities is equal to 1. 

6. Restrictions on sampling steps 

The restriction concerns the player’s payoffs. They should not vary much as 
situation changes minimally over nodes of the finite lattice (7). In this way, 
approximation low quality is prevented. For the q -th player, minimal change of 

situation 
 

  (8) 

 

is transition from situation (8) to situation 
 

  (9) 

 

such that 
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     1 101 1

1 1

q qM M

q qm q qmm m
s s

  

 
 P P  

 

   11

1

qM

q qm m
s




   (10) 

 

by 1,q N . The norm in (10) is Euclidean one in . Following this,  

the n -th player’s payoff variation restriction is that 
 

           1 1 1 11 1 1 1

1 1 1 1
1 1

\
i i q q

N N
M M M M

n i im n i im q qm q qm nm m m m
i i

v s v s s s
      

   
 

    
      

    
P P P P  

  (11) 

 

for some 0n   by 1,q N  and 1,n N  by (10). Hence, integers   11 1

n
NM

nm m n
s



 
 

defining the sampling steps   11

1 1

n
NM

nm m n

s


 

 mustn’t be too small or else inequality 

(11) is violated. 

The restriction (11) at distance (10) for (8) and (9) by 1,q N  implies that as 

situation changes minimally over nodes of the finite lattice (7), the n -th player’s 

payoff changes no greater than by magnitude n . For the q -th player, distance (10) 

is the minimal spacing over its lattice . According to the restricted 

sampling steps, a player acting singly with minimal spacing over its lattice cannot 
change payoff of any player more than by some predetermined magnitude, being 
specific for each player. The lattice minimal spacing depends on how the lattice is 
built based on (5). Below, a routine for building lattices of players’ fundamental 
simplexes is set out. 

7. Routine for building lattices 

For finite lattice (5), let  
 

  

 

and index its elements as 
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 . (12) 

 

By a convention, the first element in (12) is the n -th player’s first pure strategy 1nx , 

i. e. 
 

    
11 11 1

1 1

n

n

M

n nm nm nmm M
s p s

 

 

 
 

P    

 by   1 1
1 1 1n np s    and   1 1 0nm nmp s    2, nm M  . (13) 

 

The last element in (12) is the n -th player’s last pure strategy 
nnMx , 

 

    
11 1

1 1

n
n n

n

MU U

n nm nm nmm M
s p s

 

 

 
 

P   by   1 0nU

nm nmp s     

 1, 1nm M     and   1 1n

n n

U

nM nMp s  . (14) 

 

Elements of the set (12) are arranged from (13) right to (14), where 1nM   

nested loops of this arrangement address themselves to inequality 
 

  (15) 

 

on the finite lattice (5). Within the core, i. e. inside the  1nM  -th loop, the 

probability 
 

    
1

1 1

1

1
n

n n

M

nM nM nm nm

m

p s p s



 



   (16) 

 

is calculated if inequality (15) is true. At the start of the routine for building the 
lattice (12), first 1nM   zero probabilities are initialized: 

 

  1 0nm nmp s    1, 1nm M   . (17) 

 

Inside the t -th loop, 1nM t   probabilities are initialized to zero before checking 

the inequality (15): 
 

  1 0nm nmp s    1, 1nm t M     (18) 

 

by 1, 2nt M   (Figure 1). 
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Initialization (17) 

1t  ,  0u   

The t -th loop:  

for  1 1nt ntp s   down to  

 1 0nt ntp s   with step 1
nts
  

Initialization (18) 

Inequality (15) 
True False 

Increase 
t  by 1 

Calculate  
(16) 

1nt M   
True False 

Increase 
u  by 1 

Get 

  
 

 

11

1

1

1

1

1

n

n

n

Mu

n nm m

u

nm nm
M

nm nm
M

s

p s

p s















  
 

   

P

 

 1 0nt ntp s   
True False 

Decrease 

 1
nt ntp s  

by 1
nts
  

Decrease  
t  by 1 

0t   
True False 

Return 

 1 0nt ntp s   
True False 

Decrease 

 1
nt ntp s  

by 1
nts
  

 

Figure 1. Calculation and arrangement of the set (12) elements 
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The paradigm of calculating and arranging elements of the set (12) shown in 
Figure 1 completes the routine for building lattices of players’ fundamental 
simplexes. Once we get in the core loop, the inequality (15) is checked only one 

time, whereupon  1
nt ntp s  is decreased and the probability (16) is calculated. Once 

the probability (16) is calculated for  1 0nt ntp s  , being truly     1

1 1
0

n nn M n M
p s

 
 , 

the nearest outer loop is addressed by decreasing t  by 1. The looped calculation 
runs until 0t  . 

8. Minimal spacing over lattice 

If integers  
1

1

nM

nm m
s




 are identical for the n -th player then the sampling step is 

constant through dimensions of simplex. Let it be 1
ns
 . In this case, it is possible to 

determine the minimal spacing over lattice (12) explicitly. By assigning n nms s , 

according to the routine in Figure 1, 
 

      
12 2 21 1 1

1 1

n

n

M

n nm n n nm nm M
s s p s

  

 

  
 

P P    

by   2 1 1
1 1n n np s s     and   2 1 1

2n n np s s    

 for   2 1 0nm np s    3, nm M  , (19) 

      
11 1 11 1 1

1 1

n
n n n

n

MU U U

n nm n n nm nm M
s s p s

    

 

  
 

P P    

by   1 1 0nU

nm np s
     1, 2nm M      

 and     1 1 1

1
n

n

U

n nn M
p s s

  


   for   1 1 11n

n

U

nM n np s s
    . (20) 

 

As it is easy to see, the n -th player’s lattice (12) written here as  by the 

sampling step integer ns  becomes fully regular having identical distance between its 

nodes. This distance is 
 

 

   1 1

1, 1, 1,
min

n n

l u

n n n n
l U u l U

s s 

   
  P P  

    1 21 1 2 2 2
n n n n n n

n

s s s s
s

       P P . (21) 

 

The n -th player cannot change its mixed strategy less than by (21). And if all the 

players use their own constant steps  1
1

N

n n
s


, then the n -th player’s payoff variation 
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restriction means that if the q -th player changes its strategy by 
2

qs
 then the n -th 

player’s payoff changes no more than by n . 

For non-identical integers  
1

1

nM

nm m
s




, minimal spacing over the n -th player’s 

lattice (12) is not deduced. In this case, each player has its own lattice minimal 

spacing. For the n -th player, it is   11

1

nM

n nm m
s




  by denotation (10). This minimal 

spacing calculated over the player’s finite lattice is like its resolution. 

9. Approximate Nash equilibrium situations with possible concessions 

In FNCG (1), classically defined in its mixed extension on the product  of 

continuous fundamental simplexes (3), Nash equilibrium situations  *
1

N

i i
P  

satisfying inequalities 
 

     and  1,n N   (22) 

 

exist ever. In FNCG (1), defined in its finite mixed extension on the finite lattice (7) 

which approximates the product  of continuous fundamental simplexes (3), 

the set of Nash equilibrium situations    1* 1

1
1

i

N
M

i im m
i

s





P  may be empty, because the 

corresponding N  inequalities 
 

 

   

   and  1,n N   (23) 

 

constitute a subset of those ones in (22). Therefore, payoff concessions are needed to 

get a nonempty set of equilibrium situations    1* 1

1
1

i

N
M

i im m
i

s





P  after (23). 
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Definition 1. In FNCG (1), the node    1* 1

1
1

i

N
M

i im m
i

s





P  of the finite lattice (7) is 

called equilibrium situation with concessions  
1

N

n n
  if 

 

 

   

   and  1,n N   (24) 

 

by the n -th player’s concession . 

If 0n   1,n N   then the node    1* 1

1
1

i

N
M

i im m
i

s





P  by (24), classically, is a 

Nash equilibrium situation. Henceforward, if  0 1,n N   such that 
0

0n   then 

this node by (24) is an approximate Nash equilibrium situation. Let it be called 

 n n B
 -equilibrium situation by 

 

   1, : 0qB q N     (25) 

 

and permitting also cases when the set (25) is empty. 
Primarily, inequalities (24) should be verified for null concessions. If set of 

Nash equilibrium situations appears empty, concessions are necessary. Another 
necessity of concession is based on that without concessions we may lose Nash 
equilibrium solutions existing just on the finite lattice (7) as a result of arithmetic, 
having finite digit precision and roundoff errors. Say, if we have a sampling step 1 3  

then even if equilibrium strategy probabilities are only 1 3  and 2 3  we need  
 

 6 7 8 9 1010 , 10 , 10 , 10 , 10n
        

 

or something like that. 
For convenience of sweep, the inequalities (24) are stated in the view: 

 

 

   1,n nu U    and  1,n N  . (26) 



116

JIOS, VOL. 40, NO. 1 (2016), PP. 105-143

ROMANUKE SAMPLING INDIVIDUALLY FUNDAMENTAL... 

  

Based on (26),  n n B
 -equilibrium situations can be found by the straight search, 

similarly to searching equilibrium situations in pure strategies in FNCG (1). Surely, 
strong equilibrium requires to be conceded likewise and even more. 

Definition 2. In FNCG (1), the node    1* 1

1
1

i

N
M

i im m
i

s





P  of the finite lattice (7) is 

called strong equilibrium situation with concessions    1,C C N
  for coalitions C  if 

 

 

   

   

 for  q C   and   1,C N   (27) 

 

by concessions . 

For convenience of sweep, the inequalities (27) are stated in the view for the 
straight search: 

 

 

   

 1,q qu U    for  q C   and   1,C N  . (28) 

 

Again, if 0C    1,C N   then the node    1* 1

1
1

i

N
M

i im m
i

s





P  by (27), classically, 

is a strong Nash equilibrium situation. Henceforward, if  0 1,C N   such that 

0
0C   then this node by (27) is an approximate strong Nash equilibrium situation. 

Let it be called strong    1,C C N
 -equilibrium situation. Consequently, the Nash 

equilibrium situation is the particular case of  n n B
 -equilibrium situation, and the 

(classical) strong Nash equilibrium situation is the particular case of the strong 

   1,C C N
 -equilibrium situation. 
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10. Routine for finding approximate Nash equilibrium situations 

In searching  n n B
 -equilibrium situations straightforwardly (starting without 

priorities), every situation 
 

        
*1 1* 1 1

1 1
1 1

i ii

N N
M Mu

i im i imm m
i i

s s
  

 
 

P P  (29) 

 

is held at some set   *

1
1,

N

i i
i

u U


  and N  payoffs 

 

    1* 1

1
1

i
N

M

n i im nm
i

v s





 
 

 
P   1,n N   (30) 

 

are calculated. Launching the routine for the first player, the n -th player’s payoff in 

left side of (26) is calculated, starting from 1nu  . If at some nu   

the inequality in (26) fails then next situation (29) is held (Figure 2). If it is true, the 

n -th player’s counter nc  is increased by 1. And if n nc U  1,n N    

then a  n n B
 -equilibrium situation is found, and the counter a  for  

 n n B
 -equilibrium situations (approximate Nash equilibrium situations) is 

increased by 1. 

Routine for finding strong    1,C C N
 -equilibrium situations starts identically: 

every situation (29) is held at some set   *

1
1,

N

i i
i

u U


  and the payoff 

 

    1* 1

1
1

i
N

M

n i im Cm
in C

v s





 
  

 
 P  (31) 

 

for the CQ -th coalition C  is calculated, where  1,C NQ d C  and  Nd C  is total 

number of coalitions C  by the given cardinal C  for N  players. The routine is 

launched for the simplest coalitions having 1C  . Clearly, these ones are players 

themselves. Before calculating the CQ -th coalition in left side of (28), C  loops are 

initialized, where the r -th loop has variable 
rq

u  by  
1

C

r r
C q


  (Figure 3). If at 

some C  and qu  by rq q  the inequality (28) fails then next situation (29) is held. If 

it is true, the coalition counter  Cc Q  is increased by 1. And if  
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The i -th loop:  

for * 1iu   up to *
i iu U  with step 1 

0a  ,  1i   

i N  True False 

Calculate (30) 

0nc   

The n -th loop:  

for 1nu   up to n nu U  with step 1 

1n   

Calculate the n -th player’s payoff in left side of (26) 

True False The inequality (26)  
at some n  and nu  held fixed 

Increase nc  by 1 

True False 
n nu U  

Increase nu  by 1 True False 
n nc U  

True False n N  

Increase n  by 1 
Increase a  by 1, and situation (29) is  

the a -th  n n B
 -equilibrium situation 

True False *
i iu U  

Increase *
iu  by 1 True False 1i   

Decrease i  by 1 Return 

 
Figure 2. Routine for finding  n n B

 -equilibrium situations 
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The i -th loop:  

for * 1iu   up to *
i iu U  with step 1 

0b  ,  1i   

i N  True False 

  0Cc Q   

The r -th loop: for 1
rq

u   

up to 
r rq qu U  with step 1 

1r   

Calculate the CQ -th coalition payoff 

in left side of (28) by rq q  

True FalseThe inequality (28) at  
some C  and qu  held fixed 

Increase  Cc Q  by 1 

True False 
r rq qu U  

Increase 
rq

u  by 1 

Increase b  by 1,  
and situation (29) is the b -th 

strong    1,C C N
 -equilibrium 

situation 

True False *
i iu U  

Increase *
iu  by 1 

True False 1i   

Decrease i  by 1 Return 

Take a coalition C  by 1C   

1CQ   

Calculate (31)  
by the CQ -th coalition C  

False True r C  

False True 1r   

Decrease r  by 1 True False  
1

r

C

C q

r

c Q U


  

True False  C NQ d C  

Increase CQ  by 1 True False C N  

Increase C  by 1 

Take a coalition C  by the given C  

 
Figure 3. Routine for finding strong    1,C C N

 -equilibrium situations 
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  
1

r

C

C q

r

c Q U


  (32) 

 

then the next coalition is taken without increasing C  by  C NQ d C . If by the 

given C  all coalitions have been taken and run through, C  is increased by 1 by 

C N  and for the new C  all corresponding coalitions are taken. If (32) is true 

 1,C NQ d C   for all coalitions whose cardinality 1,C N  successively, then a 

strong    1,C C N
 -equilibrium situation is found, and the counter b  for strong 

   1,C C N
 -equilibrium situations (approximate strong Nash equilibrium situations) 

is increased by 1. 

The routine for finding  n n B
 -equilibrium situations in Figure 2 is the starter 

subroutine for finding strong    1,C C N
 -equilibrium situations, when N  pseudo-

coalitions by 1C   are taken. That is why searching approximate strong equilibria 

should be launched directly anyway. 

11. Estimation of periods for solving FNCG with approximate equilibria 

If concessions are null, likelihood of a loop in Figure 2 or Figure 3 is going to be 
broken is higher. Consequently, solving FNCG with approximate equilibria is 

longer. To estimate periods for solving, magnitudes  
1

N

n n
  and concessions 

 n n B
  or    1,C C N

  are adjusted considering N  scatters 

 

 
 

 
 

 
11
, 1, , 1,, 1, , 1,

max min
NN

i i ii i i ii

n n

J J
J j j M i NJ j j M i N

k k


    
   by  1,n N  (33) 

 

of the players’ payoffs. For convenience of estimation, it is better to do on 
normalized payoffs. Thus, for payoff matrices 

 

 

 

by indexing (2), affinely equivalent transfer (AET) to FNCG (1) is exercised: 
 

 
 

 
1
, 1, , 1,
min

N
i i ii

n n n

J J I n
I t t M i N

g g g


  
     by  0n   (34) 

 

and 



121

JIOS, VOL. 40, NO. 1 (2016), PP. 105-143

JOURNAL OF INFORMATION AND ORGANIZATIONAL SCIENCES 

  

 

 
 

1
, 1, , 1,
max

N
i i ii

n
n J
J n

I
I t t M i N

g
k

g


  

  (35) 

 

for every player 1,n N . Usually, 
 

 n     1,n N   (36) 
 

and 1  . After the transfer, every player has its payoff equal to 1: 
 

  0; 1
n

Jk    1,n N  . (37) 
 

If the players’ payoffs  
1

N

n n
G  are primordially given in the same measuring 

system, the homogeneous AET to FNCG (1) can be exercised instead of (34) and 
(35): 

 

 
 

 
1

1, , 1, , 1,
min min

N
i i ii

n n r

J J I n
r N I t t M i N

g g g


   

 
   

 
  by  0n   (38) 

 

and 
 

 

 
 

1
1, , 1, , 1,

max max
N

i i ii

n
n J
J

r

I
r N I t t M i N

g
k

g


   


 
 
 

 (39) 

 

for every player 1,n N . The assignment (36) is used as well. Homogeneous AET 

by (38) and (39) leaves just a single player or a few players (generally speaking, not 
all players) having the maximal payoff equal to 1. 

The normalization allows taking 
 

 n     1,n N   (40) 
 

by   equal to a few hundredths at most. Similarly to (40), C  is invariable for the 

same C . However,  is recommended for 1 2C C . 

The players’ payoffs  
1

N

n n
G  will be randomized. So, 

n

Jg  is a value of the 

standard normal variate. The sampling steps will be identical for simplicity in 
exemplification and estimation. Having two pure strategies and two players is trivial 
and, furthermore, bimatrix games are solved exactly [16], [17]. Dyadic games are 
harder in their solving. So, three players and more will operate their two and three 
and four pure strategies. For estimation, the processor Intel® Core™ i3-4150 
CPU@3.50GHz by 4 GB of RAM is used on 64-bit Windows 7. 
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Figures 4 — 6 corresponding to  3, 4, 5N  show periods in seconds taken for 

finding    1,n N
 -equilibrium situations by  

 

 
20

0
0.01 0.002

w
w


     and   5, 10nms    1,n N    and  1, 2m  .  

 

 

Figure 4. Time taken for finding    1, 3n
 -equilibrium situations  

in a 2 2 2  -FNCG and their cardinalities (the lower bar chart) 
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Figure 5. Time taken for finding    1, 4n
 -equilibrium situations  

in a 2 2 2 2   -FNCG and their cardinalities (the lower bar chart) 

 
Cardinalities of sets of those situations are unacceptably great. Consequently, 
concessions ought to be assigned smaller. Then we obtain a few  
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in Figures 7 — 10 corresponding to  3, 4, 5, 6N  and showing periods in seconds 

taken for finding    1,n N
 -equilibrium situations by  
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5

1
0.001

w
w


    and   5, 10nms    1,n N    and  1, 2m  .  

 

 
Figure 6. Time taken for finding    1, 5n

 -equilibrium situations  

in a 

5

1

2
r
 -FNCG and their cardinalities (the lower bar chart) 
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Here concessions are decreased in 10 times, and the periods are shortened in about a 
few times (twice, at least). 

 
 

 
 
 

 

Figure 7. The shortened time periods taken for finding    1, 3n
 -equilibrium 

situations by  
5

1
0.001

w
w


   in a 2 2 2  -FNCG  

and their cardinalities (the lower bar chart) 

5 6 7 8 9 10 0.001

0.002

0.003

0.004

0.005

0

1

2



nms

5 

6 

7 

8 

9 

10

0.001

0.002

0.003

0.004

0.005
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21
0.22
0.23
0.24
0.25

nms



126

JIOS, VOL. 40, NO. 1 (2016), PP. 105-143

ROMANUKE SAMPLING INDIVIDUALLY FUNDAMENTAL... 

  

 
 
 

 

Figure 8. The shortened time periods taken for finding    1, 4n
 -equilibrium 

situations by  
5

1
0.001

w
w


   in a 2 2 2 2   -FNCG  

and their cardinalities (the lower bar chart) 
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Figure 9. The shortened time periods taken for finding    1, 5n
 -equilibrium 

situations by  
5

1
0.001

w
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
   in a 

5
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2
r
 -FNCG  

and their cardinalities (the lower bar chart) 
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Figure 10. The shortened time periods taken for finding    1, 6n
 -equilibrium 

situations by  
5
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 -FNCG  

and their cardinalities (the lower bar chart) 
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Bad scatters of the periods and the cardinalities are obvious for three players 
having three pure strategies (Figures 11 — 16). Apparently, decreasing the  
 

 
 

 

Figure 11. The shortest time periods (in seconds) taken for finding  

   1, 3n
 -equilibrium situations in a 3 3 3  -FNCG and their cardinalities (the lower bar 

chart) by the single    1, 3
0.001

n
-equilibrium situation for  5, 6, 7, 8, 9nms    
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and by the single    1, 3
0.002

n
-equilibrium situation for  5, 6, 7, 8nms   

 
 
 

 

Figure 12. Time periods (in seconds) taken for finding    1, 3n
 -equilibrium 

situations in a 3 3 3  -FNCG are somewhat longer  
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and their cardinalities (the lower bar chart) are very great 

 
 
 

 

Figure 13. Long time periods (in seconds) taken for finding  

   1, 3n
 -equilibrium situations in a 3 3 3  -FNCG  

and their cardinalities (the lower bar chart)  
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by no one    1, 3
0.001

n
-equilibrium situation 

 

 
 
 

 

Figure 14. The longest time periods (in seconds) taken for finding  

   1, 3n
 -equilibrium situations in a 3 3 3  -FNCG  
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and their few cardinalities (the lower bar chart)  

by the single    1, 3
0.001

n
-equilibrium situation 

 
 
 

 

Figure 15. Time (in seconds) taken for finding    1, 3n
 -equilibrium situations in a 

3 3 3  -FNCG and their cardinalities (the lower bar chart)  
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by the two    1, 3
0.001

n
-equilibrium situations  

and 11    1, 3
0.005

n
-equilibrium situations for 10nms   

 
 
 

 

Figure 16. Time (in seconds) taken for finding    1, 3n
 -equilibrium situations in a 

3 3 3  -FNCG and their cardinalities (the lower bar chart)  
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by the single    1, 3
0.001

n
-equilibrium situation  

and the single    1, 3
0.002

n
-equilibrium situation 

 

sampling step and increasing concessions lead to lengthening time periods (see the 
lengthened time in a 3 3 3  -FNCG in Figure 17). The sampling step decrement 

causes abruptly increasing time periods for a 3 3 3 3   -FNCG, where    1, 4
0.01

n
-

equilibrium situations are found occasionally in 3 minutes by 5nms  , in 12 minutes 

by 6nms  , in 42 minutes by 7nms  , but it took 2 hours for 8nms  . Adding a 

player worsens the timing: in a 
5

1

3
r
 -FNCG,    1, 5

0.001
n

-equilibrium situations 

are found occasionally in a half an hour by 4nms   and it took 3.2 hours for 5nms  . 

Almost the same 3.2 hours are taken for finding    1, 3
0.001

n
-equilibrium situations 

in a 4 4 4  -FNCG by 9nms  . An hour was taken for 8nms  , and a half an hour 

was taken for 7nms  . Only 5 minutes were taken for 6nms  , and about 70 seconds 

were taken for 5nms   producing the probability 0.2 step. 

 

 

Figure 17. The lengthened time taken for finding    1, 3n
 -equilibrium situations in 

a 3 3 3  -FNCG 
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Surely, integers   11 1

n
NM

nm m n
s



 
 aren’t to produce the probability    1, 5

0.1
z

z


 step 

necessarily. The step comes wider when the searching time is limited. And number 
of game cycles can’t be always multiple of 5 or 10, so the wide step can be even 1 3  

or 1 2 . 

Figure 18 shows time periods taken for finding    1, 3n
 -equilibrium situations 

in a 3 3 3  -FNCG, when the sampling step is 1 7  and wider through 1 4 . 

Cardinalities of those equilibria are unacceptably great. However, approximate Nash 
equilibrium situations by the probability 1 4  step were found in a second (less than 

a second; the longest is 0.83 second). And it looks like this approximate equilibria 

time consumption by  
5

1
0.001

w
w


   is verified for any 3 3 3  -FNCG. Time 

periods taken for finding    1, 4n
 -equilibrium situations in a 3 3 3 3   -FNCG 

appeared to be about roughly 100 times longer (Figure 19). Here approximate Nash 
equilibrium situations by the least probability 1 4  step were found in 37 seconds. A 

quick comparison of Figure 18 and Figure 19 reveals how the time grows much 
from a 3 3 3  -FNCG to a 3 3 3 3   -FNCG. About a half an hour was taken for 

finding the single    1, 4
0.001

n
-equilibrium situation by 7nms  . Figure 20 shows 

almost ideal case of a 4 4 4  -FNCG, where the single     
5

1, 3
2

0.001
n

w

w




-

equilibrium situation is found only by 7nms   producing the probability 1 7  step. 

 

 

Figure 18. Time (in seconds) taken for finding    1, 3n
 -equilibrium situations in a 

3 3 3  -FNCG and their unacceptably great cardinalities (the right bar chart) 
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Figure 19. Time (in seconds) taken for finding    1, 4n
 -equilibrium situations in a 

3 3 3 3   -FNCG and their cardinalities (the right bar chart) 

 

 
Figure 20. Time (in seconds) taken for finding the single  

    
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1, 3
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0.001
n

w

w




-equilibrium situation only by 7nms   in a 4 4 4  -FNCG (the 

unit cardinality is on the right bar chart) 
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in 
6

1

3
r
 -FNCG,    1, 4n

 -equilibrium situations in 4 4 4 4   -FNCG,    1, 5n
 -

equilibrium situations in 
5

1

4
r
 -FNCG, and    1, 6n

 -equilibrium situations in 

6

1

4
r
 -FNCG are too long for 5nms   or for even 4nms  . Nonetheless producing 

the probability 0.25  step herein, the 0.25 -approximate equilibria wouldn’t be 
fruitless. Obviously, the contrivance of routines (Figure 2 and Figure 3) for finding 
approximate Nash equilibrium situations runs out because of deep nested loops for 
those four FNCG hereinbefore exampled. And a new problem is how to accelerate 
finding approximate equilibria beyond the routine loop breaking. 

12. Acceleration of finding approximate equilibria 

Figures 4 — 20 prompt that, the greater concessions  n n B
  or    1,C C N

  are, the 

more approximate equilibria we obtain. For effective practicing, the best case is 
when there is a single equilibrium situation or, sometimes, a few ones. The reason is 
we don’t need additional choice problem [23]. Hence, to accelerate finding 

approximate equilibria, concessions  n n B
  or    1,C C N

  should be assigned 

small. If set of    1,n N
 -equilibrium situations or strong    1,C C N

 -equilibrium 

situations turns out empty, the failed concessions are increased at a small step. 
When the expected payoff (4) is calculated, parallelization of matrix 

multiplication [24], [25], [26] can accelerate [27] the routine for finding approximate 
Nash equilibrium situations. Besides, the player’s payoffs may be calculated on an 
individual processor core [28], [29], [30]. 

Adjustment of magnitudes  
1

N

n n
  is subtler. If the n -th player’s payoff 

variation restriction (11) at distance (10) for (8) and (9) is unfeasible, then either n  

is to be increased or sampling steps along simplex (3) dimensions are to be 
decreased. Any decrement of sampling steps leads to both the routine for building 
lattices and routine for finding approximate Nash equilibrium situations are slowed 

down. Therefore, magnitudes  
1

N

n n
  primarily are counseled to be assigned great. 

Subsequently they may be decreased. 

13. Discussion and conclusion 

Whatever method of solving FNCG (1) is used, possible concessions arise always if 
Nash equilibria are not found. Of course, it concerns other types of equilibria or 
utility. Another motive of conceding payoffs is the DADP limitation. 
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Assigning values  n n B
  or    1,C C N

  rationally allows to solve FNCG (1) 

much faster. The solution is implied as the single    1,n N
 -equilibrium situation or 

strong    1,C C N
 -equilibrium situation. Two or three approximate equilibria are 

desirable rarer, except there is a risk of an approximate equilibrium situation appears 

disadvantageous to a player. A demerit is the rationale for  n n B
  and    1,C C N

  is 

merely heuristic. 

Selection of the sampling steps  
11

1

nM

nm m
s




 or the integers  

1

1

nM

nm m
s




 is ruled by 

the restrictions imposed on them. Unfortunately, the n -th player’s payoff variation 

restriction (11) at distance (10) for (8) and (9) by 1,q N  depends utterly on how 

magnitudes  
1

N

n n
  have been assigned before. Assignment of  

1

N

n n
  is a 

preceding heuristics. 
The version of routine for building lattices in Figure 1 is scarcely unique. But it 

is not worth to rationalize it — the routine is exercised very rapid. Routines for 
finding approximate Nash equilibrium situations in Figure 2 and Figure 3 might be 
optimized, though. 

Nevertheless, mapping fundamental simplexes as sets of players’ mixed 
strategies into lattices is followed by the eight plain merits: 

1. The introduced fundamental simplexes’ sampling allows to solve 
approximately any FNCG. 

2. Owing to the sets of players’ mixed strategies in FNCG are finitely sampled, 
the solution is practiced effectively, i. e. the player’s payoff average in the solution 
situation converges to its expected payoff in this situation (due to that, by the proper 
number of game cycles, statistical frequencies approximate enough to support 
probabilities). 

3. Number of approximate solutions is regulated by assigning values  n n B
  or 

   1,C C N
  rationally. This also brings speedup in finding those solutions. 

4. Owing to the DADP limitation, the payoff average convergence is rapid 
needing less game cycles (again, due to statistical frequencies approximate closer to 
support probabilities). Eventually, the solution or an arbitrary situation becomes 
applicable. 

5. Sampling individually the player’s fundamental simplex grants capability to 
manipulate pure strategies of various ranks. Then, the player samples dimensions of 
higher ranks with lesser steps, and dimensions of lower ranks are sampled sparser. 

6. The routines are programmable within any environment. Priority 
environments are those who are CUDA enhanced [31], [32], [33] supporting 
multithreading modes [34], [35]. Special mathematical libraries are unnecessary. 

7. The problem of unique solution is removable by adjusting concessions 

 n n B
  or    1,C C N

 . 
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8. The nested loop routines in Figure 2 and Figure 3 are easily retargeted on 
other types of equilibria or utility. 

The work progression could be focused on the following unclear items: 
1. Shall number of game cycles, DADP, and concessions be theoretically 

bound? 
2. Does a maximal sampling step (for fully regular lattice having identical 

distance between its nodes) exist such that sampling steps mustn’t be increased up 
from this maximum or else solutions become very different every time when 
sampling steps are changed? 

3. Does a minimal sampling step (fully regular lattice) exist such that further 
decrement down from this minimum gives only similar (close) solutions? 

4. Is there any possibility to determine ranges of sampling steps within which a 
number of approximate Nash equilibrium situations is constant? 

These items, if ascertained, are believed to strengthen and supplement those 
eight merits. Proving theorems on convergence is supposed. But even without 
rigorous analysis, nonetheless, the suggested simplex finite approximation and 
concessions direct to solvability and applicability of any FNCG. And this is a basis 
in stating a universal approach for FNCG solution approximation in wide sense, 
where solvability, applicability, realizability, and adaptability would be unified. 
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